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Abstract

Random instances of Constraint Satisfaction Problems (CSP’s) appear to be hard for all known
algorithms, when the number of constraints per variable lies in a certain interval. Contributing to the
general understanding of the structure of the solution space of a CSP in the satisfiable regime, we
formulate a set of technical conditions on a large family of random CSP’s, and prove bounds on three
most interesting thresholds for the density of such an ensemble: namely, the satisfiability threshold,
the threshold for clustering of the solution space, and the threshold for an appropriate reconstruction
problem on the CSP’s. The bounds become asymptoticlally tight as the number of degrees of freedom
in each clause diverges. The families are general enough to include commonly studied problems such
as, random instances of Not-All-Equal-SAT, k-XOR formulae, hypergraph 2-coloring, and graph k-
coloring. An important new ingredient is a condition involving the Fourier expansion of clauses, which
characterizes the class of problems with a similar threshold structure.
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1 Introduction

Given a set of n variables taking values in a finite alphabet, and a collection of m constraints, each
restricting a subset of variables, a Constraint Satisfaction Problem (CSP) requires finding an assignment
to the variables that satisfies the given constraints. Important examples include k-SAT, Not All Equal
SAT, graph (vertex) coloring with k colors etc. Understanding the threshold of satisfiability/unsatisfiability
for random instances of CSPs, as the number of constraints m = m(n) varies, has been a challenging task
for the past couple of decades, with some notable successes (see e.g., [ANP05]). On the algorithmic side,
the challenge of finding solutions of a random CSP close to the threshold of satisfiability (in the regime
where solutions are known to exist) remains widely open. All provably polynomial-time algorithms fail
well before the SAT to UNSAT threshold.

The attempt to understand this universal failure led to studying the geometry of the set of solutions
of random CSPs [MPZ02, AC08], as well as the emergence of long range correlations among variables
in random satisfying assignments [KM+07]. These research directions are motivated by two heuristic
explanations of the failure of polynomial algorithms: (1) The space of solutions becomes increasingly
complicated as the number of constraints increases and is not captured correctly by simple algorithms; (2)
Typical solutions become increasingly correlated and local algorithms cannot unveil such correlations.

By analyzing a large class of random CSP ensembles, this paper provides strong support to the belief
that the above phenomena are generic, that they are characterized by sharp thresholds, and that the thresh-
olds for clustering and reconstruction differ at most by a subleading term, where the notion of ‘subleading’
will be made clearer below.

1.1 Related work

Building on a fascinating conjecture on the geometry of the set of solutions, statistical physicists have
developed surprisingly efficient message passing algorithms to solve random CSPs. For instance, survey
propagation [MPZ02, MZ02] has been shown empirically to find solutions of random 3-SAT extremely
close to the SAT-UNSAT transition. In order to understand the success of these heuristics, it has become
important to study the thresholds for the emergence of so-called clustering of solutions – the emergence of
an exponential number of sets (or clusters) of solutions, where solutions within a cluster are closer (in the
sense of Hamming distance, say), compared to the intra-cluster distance [MMZ05, AR06, AC08]. Moreover,
the fact that solutions within a cluster impose long-range correlations among assignments of variables,
motivates one to study the so-called reconstruction problem in the context of random CSP’s. Indeed, non-
rigorous statistical mechanics calculations imply that the clustering and reconstruction thresholds coincide
[MM06, KM+07].

Further, understanding the threshold for (non)reconstruction is also becoming relevant, if not crucial,
to understanding the limit of the Glauber dynamics to sample from the set of solutions of a CSP. Indeed
non-reconstuctibility was proved in [BK+05] to be a necessary condition for fast mixing, and is expected
to be sufficient for a large class of ‘sufficiently random’ problems [GM07].

Reconstruction for models on general graphical models -including for instance the case of random proper
colorings of the vertices of a graph- was first considered in [BK+05]. The problem amounts to understanding
the correlation, as measured e.g., through the mutual information, between the color of a vertex v and the
colors of vertices at distance at least t from v. In particular, the problem is said to be ‘unsolvable’ if such a
correlation decays to 0 with t. We refer to Section 3 for a precise definition of the reconstruction problem.
For a class of models, including the so-called Ising spin glass, the antiferromagnetic Potts model, and
proper q-colorings of a graph, [GM07] derived a general sufficient condition, under which reconstruction
for (sparse) random graphs G(n,m) with m = cn edges is possible if and only if it is possible for a Galton-
Watson tree with independent Poisson(2c) degrees for each vertex. Moreover, they also verified that the
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condition holds for the Ising spin glass and the antiferromagnetic Potts at non-zero temperature, leaving
open the case of proper colorings of graphs, which we settle here.

1.2 Summary of contributions

It is against this backdrop that we consider certain general families of CSP’s – the first dealing with
constraints consisting of k-tuples of binary variables (as in k-uniform hypergraph 2-coloring or Not-All-
Equal (NAE) k-sat), while the second dealing with q-colorings of vertices of graphs (which may be seen as
an instance of a CSP with q-ary variables) – and study three important threshold phenomena. Our chief
contribution is as follows.

(a) We formulate an easy-to-check set of assumptions under which a general class of constraint sat-
isfaction problems (including the models mentioned above) can be understood rather precisely in terms
of the thresholds for satisfiability, clustering and (non)reconstruction phenomena. In particular we verify
that the last two thresholds coincide within the precision of our bounds. (See Theorems 3.2 and 3.3 for
precise statements.)

(b) We consider tree ensembles (families of random CSP’s whose variable-constraint dependency struc-
ture takes the form of a tree), and prove optimal bounds on the threshold for reconstruction on trees.
These CSP’s consist of binary variables, and the constraints are k-ary, and the bounds are optimal to first
order, as k goes to infinity.

(c) We verify the sufficient condition of [GM07] for proper colorings of graphs, thus extending the
reconstruction result for colorings on trees to the same on sparse random graphs.

(d) By way of techniques, we make crucial use of the Fourier expansion of the (binary k-CSP) con-
straints, after introducing an assumption on the Fourier expansion, as part of the random ensemble under
consideration; this is key to being able to characterize the thresholds precisely.

(e) Finally, as illustrative examples, we mention the specific bounds (on various thresholds) that follow
for some standard models, such as the NAE k-SAT, k-XOR formulae etc.

The organization of the paper is as follows. In Section 2, we give the formal definitions and assumptions
of our models. We state our main results in Section 3. In Section 4, we state and prove the optimal bounds
for the tree reconstruction problem. In Section 5, we verify the sufficient condition (from [GM07]) for
the specific problem of graph proper q-coloring, thus proving one of our main results – optimal bounds
on the (sparse) random graph reconstruction problem for colorings. In Appendix A, we derive a certain
technical second moment bound that is needed to prove our theorem on the satisfiability threshold. In
Appendix B, we prove various technical results need to complete the proof of the clustering threshold. In
Appendix C, certain sharp threshold results are derived making use of recent results of [AC08, CD09],
so that we can extend the high-probability-statements derived in the previous appendices to hold with
probability tending to one. Further details on what is proved in these appendices appear in Section 3.3,
after the precise statement of our main results.

2 Definitions

In this section we define a family of random CSP ensembles: problems with constraints involving k-tuples
of binary variables. We further define q-ary ensembles as a natural extension of the latter. We finally
introduce some analytic definitions that will be necessary in order to present our results.

Binary k-CSP ensemble. Given an integer n, α ∈ R+, and a distribution p = {p(ϕ)} over Boolean
functions ϕ : {+1,−1}k → {0, 1}, CSP(n, α, p) is the ensemble of random CSP’s over n Boolean variables
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x = (x1, . . . , xn) defined as follows. For each a ∈ {1, . . . ,m = nα}, draw k indices ia(1), . . . , ia(k) indepen-
dently and uniformly at random in [n], and a function ϕa with distribution p(ϕ). An assignment x satisfies
the resulting instance if ϕa(xia(1), . . . , xia(k)) = 1 for each a ∈ [m]. A CSP instance can be naturally
described by a bipartite graph G (often referred to in the literature as a ‘factor graph’) including a node
for each clause a ∈ [m] and for each variable i ∈ [n], and an edge (i, a) whenever variable xi appears in the
a-th clause.

q-ary ensembles. A q-ary ensemble is the natural generalization of a binary ensemble to the case in
which variables take q values. For the sake of simplicity, we restrict our discussion here to the case of
pairwise constraints (i.e. k = 2 in the language of the previous paragraph).

Given an integer n, α ∈ R+, and a distribution p = {p(ϕ)} over Boolean functions ϕ : [q]× [q] → {0, 1},
CSPq(n, α, p) is the collection of random CSP’s over q-ary variables xi, for i = 1, 2, . . . , n, defined as follows.
For each a ∈ {1, . . . ,m = nα}, draw 2 indices ia, ja independently and uniformly at random in [n], and
a function ϕa with distribution p(ϕ). An assignment x = (x1, . . . , xn) satisfies the resulting instance, if
ϕa(xia , xja) = 1 for each a ∈ [m].

In this paper, by way of illustrating how the results for binary ensembles could be (purportedly)
extended to q-ary ensembles, we will study the q-coloring model which consists of ensembles with the
single clause ϕ (x, y) = I (x 6= y). This model corresponds to proper colorings with q colors of a random
sparse graph with an edge-to-vertex density of α > 0.

In the rest of this section, we briefly review some well known definitions in discrete Fourier analysis
that are useful for stating our results. For general background on this material, the reader may consult
any classical textbook on (discrete) Fourier analysis or the lecture notes by Diaconis[Dia88]; for a more
breezy introduction and a summary of some key tools one may also find the recent survey [Odo08] useful.

Functional analysis of clauses. We denote by vθ, the measure defined over {−1,+1}k such that

vθ(x) =
k∏

i=1

(
1 + xiθ

2

)
(1)

for every x ∈ {−1,+1}k . This is just the measure induced by choosing k independent copies of a random
variable that takes values ±1 and has expectation θ. Notice that when θ = 0, vθ corresponds to the uniform
measure over {−1,+1}k.

The inner product induced by this measure, on the space of real functions defined on {−1,+1}k is
denoted by (·, ·)θ, and the correponding norm by ‖ · ‖θ. If θ = 0, we drop the subindex and just use (·, ·)
and ‖ · ‖, respectively. Thus, if f, g : {−1,+1}k → R, then

(f, g)θ =
∑

x∈{−1,+1}k

f (x) g (x) vθ (x) , ‖f‖2
θ =

∑

x∈{−1,+1}k

f2 (x) vθ (x) ,

(f, g) =
1

2k

∑

x∈{−1,+1}k

f (x) g (x) , ‖f‖2 =
1

2k

∑

x∈{−1,+1}k

f2 (x) .

We denote the Hilbert space of functions {−1,+1}k → R under the inner product (·, ·) by Jk.

Fourier transform of clauses. For any Q ⊆ [k] ≡ {1, . . . , k}, let γQ(x)
def
=
∏

i∈Q xi. Under the scalar
product defined above (with θ = 0), the functions {γS}S⊆[k] form an orthonormal basis for Jk. Moreover,
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they are exactly the algebraic characters of {−1, 1}k with the group operation of pointwise multiplication.
Thus, we define the Fourier transform of a function f ∈ Jk, by letting for any Q ⊆ [k],

fQ
def
= (γQ, f) = 2−k

∑

x∈{−1,+1}k

f(x)γQ(x).

Noise operator. Given θ ∈ [−1, 1], we recall the Bonami–Beckner operator Tθ : Jk → Jk [Bon70, Bec75],
by

(Tθ f) (x)
def
=

∑

y∈{−1,1}k

f (xy) vθ (y) ,

where xy = (x1y1, . . . , xkyk). Notice that (Tθ f) (x) corresponds to the expected value of f(xθ), where xθ

is obtained from x by flipping each coordinate independently with probability (1− θ)/2. Notice that T1 is
just the identity operator and T0 sends f to the constant function (f, γ∅).

The Bonami-Beckner operator diagonalizes with respect to the Fourier basis, in the sense that (Tθ γQ) (x) =
θ|Q|γQ (x) for any Q ⊆ [k].

More generally, given h ∈ [−1, 1]k, we define (Th f) (x)
def
= E[f(xh)], where xh is obtained from x by

flipping the ith coordinate independently and with probability 1−hi
2 . Since Th also diagonalizes with respect

to the Fourier basis, one gets (Th γS) (x) = γS (h) γS (x) .

Discrete derivative and influence. Given a function f ∈ Jk−1, we define its discrete derivative f (1) ∈
Jk−1 as f (1) (x) = 1

2 [f (1, x) − f (−1, x)]. We define analogously f (i) for any other variable index. Finally,
the influence of the ith variable on f is defined using the norm of the derivative

Ii (f)
def
=
∥∥∥f (i)

∥∥∥
2
.

For any Q ⊆ [k], f
(i)
Q = fQ∪{i}.

3 Main results

As mentioned in the introduction, our goal is in estimating the thresholds for satisfiability, clustering and
reconstruction in random CSP’s. In general, one should speak of threshold functions depending on the
problem size n. With a slight abuse of notation, we shall leave implicit the dependence on n of threshold
functions unless necessary.

3.1 Binary k-CSP ensembles

3.1.1 Assumptions

We assume the following conditions on the ensemble.

1. Permutation symmetry. If ϕπ is the Boolean function obtained from ϕ by permuting its arguments,
we require p(ϕπ) = p(ϕ). (Notice that this assumption does not imply any loss of generality. Indeed, in
the definion of the ensemble CSP(n, α, p) the indexes of the arguments of clause ϕa(xia(1), . . . , xia(k)) are
independent and uniformly random.

2. Balance. The distribution p is supported on Boolean functions such that ϕ(x1, . . . , xk) = ϕ(−x1, . . . ,−xk).
This condition implies that the odd Fourier coefficients of ϕ are zero.
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3. Feasibility. For each Boolean function ϕ in the support of p, every partial assignment (x1, . . . , xk−1) can
be extended to a satisfying assignment (x0, x1, . . . , xk−1) of ϕ. This condition implies that ‖ϕ‖2 ≥ 1/2.

4. Dominance of balanced assignments. For every θ ∈ [−1, 1],

Eϕ log ‖ϕ‖θ ≤ Eϕ log ‖ϕ‖ ,

with equality if and only if θ = 0. This condition implies that, in a typical random instance, most solutions
are balanced in the sense that they have almost as many +1’s as −1’s.

While our ultimate goal is to exhibit results as k → ∞, the probability distribution p over the functions
ϕ : {−1, 1}k → {0, 1} must be defined for every k, and some agreement should exist between such proba-
bility distributions for different k’s. In our work this agreement is given by two conditions concerning the
derivative of the clauses in the support of p:

(a) ℓ1 norm of the Fourier transform grows at most polynomially in k. That is, for every ϕ ∈ supp(p),

∑

Q

∣∣∣ϕ(i)
Q

∣∣∣ ≤ ka , (2)

for some constant a not depending on k, and recall that ϕ
(i)
Q = (γQ, ϕ

(i)) .

(b) ‘Small weight’ Fourier coefficients are small. There is a constant C > 0 (not depending on k) such
that for every ϕ ∈ supp (p),

∥∥∥Tθ ϕ
(i)
∥∥∥

2
≤ e−Ck (1−θ)

∥∥∥ϕ(i)
∥∥∥

2
, θ ∈ [0, 1] . (3)

3.1.2 A few remarks

The feasibility conditions implies that all the variables of ϕ have the same influence, namely,

Ii (ϕ) =
1 − ||ϕ||2

2
. (4)

In order to prove this consider, say, i = 1 and let Nab(ϕ) a, b ∈ {0, 1} be the number of partial assignments
x1, . . . , xk−1 such that ϕ(+1, x1, . . . , xk−1) = a and ϕ(−1, x1, . . . , xk−1) = b. Then, by definition we have

||ϕ||2 =
1

2k
[N01(ϕ) +N10(ϕ) + 2N11(ϕ)] , (5)

I1(ϕ) =
1

2k+1
[N01(ϕ) +N10(ϕ)] , (6)

whence our claim (4) follows using N01(ϕ) +N10(ϕ) + 2N11(ϕ) = 2k−1.
Condition (a) above on the ℓ1 norm of the Fourier transform implies in particular, that for any fixed

l, there exists Al > 0 (independent of k), such that

∑

1≤|Q|≤l

|ϕQ|2 ≤ Al e
−Ck/2

∑

|Q|≥1

|ϕQ|2. (7)

An equivalent formulation of Eq. (3), with a possibly different constant C, is

(
Tθ ϕ

(i), ϕ(i)
)
≤ e−Ck (1−θ)

∥∥∥ϕ(i)
∥∥∥

2
, θ ∈ [0, 1] . (8)
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3.1.3 Results

An ensemble of binary k-CSP’s will be characterized by the following quantities.

1

Ωk

def
= Eϕ

2 I1 (ϕ)

1 − 2I1(ϕ)
,

1

Ω̂k

def
= −Eϕ log

(
1 − 2I1(ϕ)

)
,

1

Ω̃k

def
=

2EϕI1 (ϕ)

1 − 2EϕI1(ϕ)
.

Notice that Ωk ≤ Ω̂k, and that Ωk ≤ Ω̃k. Indeed, the first inequality follows by using the inequality
log(z) ≤ z − 1 with z = 1/(1 − 2I1), and the second follows by Jensen’s, noting the convexity of x 7→
(2x)/(1 − 2x). More over, Ω̂k ≈

(
e1/bΩk − 1

)−1 ≤ Ω̃k ; indeed, letting X = − log
(
1 − 2I1(ϕ)

)
, and using

Jensen’s, we have:
1

Ω̃k

=
E
(
1 − e−X

)

Ee−X
=

1

Ee−X
− 1 ≤ eE(X) − 1 = e1/bΩk − 1 .

Proposition 3.1 A random binary constraint satisfaction instance from the CSP(n, α, p) ensemble is sat-
isfiable, with high probability, if α < αs(k)(1 − on(1)), where

Ωk log 2 {1 + ok(1)} ≤ αs(k, n) ≤ Ω̂k log 2 {1 + ok(1)} .

Vice versa, if α > αs(k)(1 + on(1)), then with high probability, a CSP(n, α, p) instance is unsatisfiable.
Further |Ω−1

k − Ω̂−1
k | ≤ 8Eϕ{I1(ϕ)2}.

As clarified by the last part of the statement, the upper and lower bound approach each other when
the influence of a single variable in a clause becomes smaller.

Given a measure µ(x) over variable assignments in {+1,−1}V , the reconstruction problem is said to be
unsolvable if correlations with respect to µ decay rapidly with the distance r on G. More precisely, if µi,∼r

denotes the joint distribution of xi and {xj : dG(i, j) ≥ r}, then limr→∞ lim supn→∞ E‖µi,∼r−µiµ∼r‖TV =
0.

Theorem 3.2 Let µ(x) be the uniform measure over solutions of an instance from the CSP(n, α, p) en-
semble. The reconstruction problem is solvable for µ if α > αr(k), where

αr(k) =
Ωk

k
{log k + o(log k)} .

Vice versa, the reconstruction problem is unsolvable if α < αr(k).

Given an instance of CSP(n, α, p), a dmax-cluster of solutions is any equivalence class of solutions under
the (closure of the) relation x ≃ x′ if dHamming(x, x

′) ≤ dmax. We say that the set of solutions is clustered
if it is partitioned into exponentially many clusters for some function dmax = dmax(n) with dmax(n) ↑ ∞ as
n→ ∞.

In order to estabilish clustering, we require two more conditions.
(a’) First, a slightly stronger form of dominance of balanced assignments:

Eϕ{||ϕ||2θ} ≤ Eϕ{||ϕ||2} . (9)

(b’) The following condition on the Fourier transform of clauses
∑

Q1⊆Q2

Eϕ{ϕQ1ϕQ2}θ|Q1|δ|Q2|−|Q1| ≤
∑

Q

Eϕ{ϕ2
Q}θ|Q| , (10)

holding for all θ ∈ [−1,+1], δ ∈ [0, 1−|θ|]. In particular the latter condition holds whenever p(ϕ(s)) = p(ϕ)
for all s = (s1, . . . , sk) ∈ {+1,−1}k, where ϕ(s)(x1, . . . , xk) = ϕ(s1x1, . . . , skxk), condition typically known
in the literature [CD04], as closure under polarization.
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Theorem 3.3 Consider a CSP(n, α, p) ensemble satisfying the above conditions, The set of solutions of a
random instance from this ensemble is clustered, with high probability, if α > αd(k), where

αd(k) =
Ω̃k

k
{log k + o(log k)} .

Further |Ω̃−1
k − Ω−1

k | ≤ 8Eϕ{I1(ϕ)2}.

Thus, a key result of the present paper is that, for a large number of ensembles, αd(k) and αr(k) differ at
most by a quantity whose relative size is negligible for large k.

Example 1: 2-coloring hypergraphs. Let us consider the ensemble of CSP’s consisting of clauses of
the type ϕ, where ϕ (x1, . . . , xk) = I (

∑
xi /∈ {−k, k}). The CSP(n, α, p) in this case, corresponds to the

distribution of 2-colorings of a random hypergraph on n vertices and αn edges, with edge size k, and each
edge chosen independently and uniformly at random.

The conditions 1-3 (permutation symmetry, balance, feasibility) clearly hold for this model. The
dominance of balanced assignments, in its weak ans strong form, follows after checking that ‖ϕ‖2

θ =

1 −
(

1+θ
2

)k −
(

1−θ
2

)k
is maximized at θ = 0. To establish condition (a), cf. Eq. (2), notice that

ϕ
(i)
Q = − 1

2k
[1 − (−1)|Q|] ,

which clearly implies that the ℓ1 norm of the Fourier transform is bounded. In order to check condition
(b), cf. Eq. (3), notice that

(
Tθ ϕ

(i), ϕ(i)
)

∥∥ϕ(i)
∥∥2 =

(
1 + θ

2

)k−1

−
(

1 − θ

2

)k−1

≤ e−k(1−θ)/2 ,

for all θ ∈ [0, 1]. On the other hand, we have that

∑

Q1⊆Q2

Eϕ{ϕQ1ϕQ2}θ|Q1|δ|Q2|−|Q1|

=

(
1 − 1

2k−1

)
− 1

2k

[
(1 + δ)k + (1 − δ)k

]

+

(
1

2k

)2 [
(1 + (δ + θ))k + (1 − (δ + θ))k + (1 + (δ − θ))k + (1 − (δ − θ))k

]
,

and the previous expression reaches its maximum for δ = 0. Thus,

∑

Q1⊆Q2

Eϕ{ϕQ1ϕQ2}θ|Q1|δ|Q2|−|Q1| ≤
(

1 − 1

2k−2

)
+

(
1

2k

)2
[

(1 + θ)k + (1 − θ)k

2

]
,

and the right hand side of the previous formula is equal to
∑

Q Eϕ{ϕ2
Q}θ|Q|, proving condition (b’).

Now, an easy computation shows that Ωk = Ω̃k = 2k−1 − 1 and Ω̂−1
k = − log(1 − 2−k+1), therefore we

have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability

2-coloring (2k−1/k) [log k + o(log k)] 2k−1 log 2 [1 + o(1)] 2k−1 log 2 [1 + o(1)]
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Example 2: Not All Equal k−SAT. Let us consider now an ensemble of CSP’s consisting of clauses of
type {ϕs}s∈{+1,−1}k , where ϕs (x1, . . . , xk) = I (

∑
xisi /∈ {−k, k}) and p (ϕs) = 2−k for each s ∈ {+1,−1}k.

In this case, the CSP (n, α, p) model corresponds to the distribution of NAE k−SAT instances for a random
formula in n variables, consisting of αn random clauses, each with k literals.

For this model, the conditions 1-3 are easily verified. The dominance of balanced assignments in its
strong form follows from the fact that

Es ‖ϕ‖2
θ = Es

(
1 −∏k

i=1

1 + siθ

2
−∏k

i=1

1 − siθ

2

)
= Es ‖ϕ‖2 ,

which for intance implies also the dominance of balanced assignments in tis weak form:

2Es log ‖ϕ‖θ ≤ log Es ‖ϕ‖2
θ = log Es ‖ϕ‖2 = 2Es log ‖ϕ‖ .

On the other hand, the Fourier expansion of ϕs is given by ϕs,Q = −2−k[γQ(s) + γQ(−s)] (for Q 6= ∅)
and ϕ

(i)
s,Q = −2−kγQ(s)[1 − (−1)|Q|]. In particular

∣∣∣ϕ(i)
s,Q

∣∣∣ = 2−k[1 − (−1)|Q|], so that both Eqs. (2) and (3)

hold along the same lines as the previous example, while the condition (b’) follows from the closure under
polarization of this model. Indeed, in this case we get the same values for Ωk, Ω̃k and Ω̂k, so that, we have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability

NAE-SAT (2k−1/k) [log k + o(log k)] 2k−1 log 2 [1 + o(1)] 2k−1 log 2 [1 + o(1)]

Example 3: k-XOR formulas. For an even integer k, the k-XOR ensemble (k even) consists of
clauses of type {ϕǫ}ǫ∈{+1,−1}, where ϕǫ = 1

2

(
γ∅ + ǫγ[k]

)
. This set of clauses is endowed with the uniform

probability distribution p(ϕ+1) = p(ϕ−1) = 1/2. In this case, the CSP (n, α, p) model corresponds to a
system of αn random linear equations in Z2, in which every equation involves k randomly chosen variables
(with replacement) from a total of n possible variables.

Conditions 1-3 hold for k even, and the dominance of balanced assignments condition in its weak and
strong form, follows from the fact that Eϕ ‖ϕ‖2

θ = Eϕ ‖ϕ‖2. The condition on Fourier expansion of clauses
for this model is straightforward: The Fourier expansion of ϕǫ is concentrated at ∅ and [k], so that the Eq.
(2) holds with a = 0 and the Eq. (2) holds with C = 1. Also, condition (b’) follows from the following
calculation, ∑

Q1⊆Q2

Eϕ{ϕQ1ϕQ2}θ|Q1|δ|Q2|−|Q1| =
1

4
+

1

4
θk =

∑

Q

Eϕ{ϕ2
Q}θ|Q|.

In this case, we have that Ωk = 1, while Ω̂k = 1/ log 2. Therefore, we have:

Reconstruction - Clustering Lower bound satisfiability Upper bound satisfiability

XOR-SAT 1
k [log k + o(log k)] log 2 + o(1) 1 + o(1)

We remark here that, in the case of XOR-SAT, the clustering and satisfiability thresholds can be
determined exactly by exploiting the underlying group structure [MRZ03, CD+03] (see [MM09] for a
discussion of the reconstruction problem in XOR-SAT).

3.2 q-ary ensembles: graph coloring

The following results concerning the colorability and clustering of proper colorings were proved by Achliop-
tas and Naor [AN05] and Achlioptas and Coja-Oghlan [AC08], respectively.
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Theorem 3.4 (Graph q-colorability [AN05]) A random graph with n vertices and nα edges is satisfiable
with high probability if α < αs(q), where

αs(q) = q [log q + oq(1)] .

Vice versa, if α > αs(q)(1 + oq(1)), such a graph is with high probability uncolorable.

Theorem 3.5 (Clustering of q-colorings [AC08]) The set of proper q-colorings of a random graph with n
vertices and nα edges is clustered with high probability if α > αd(q), where

αd(q) =
q

2
[log q + o(log q)] .

One of our main results is to prove a corresponding reconstruction theorem for this model as follows.

Theorem 3.6 (Graph q-coloring reconstruction) Let µ(x) be the uniform measure over of proper q-colorings
of random graph with n vertices and nα edges. For q large enough, the reconstruction problem is solvable
for µ if α > αr(q), where

αr(q) =
q

2
[log q + log log q +O (1)] .

Vice versa, the reconstruction problem is unsolvable, with high probability, if α < αr(q).

3.3 General strategy

The results described in the previous section are of three types: bounds on the satisfiability thresholds,
cf. Proposition 3.1 and Theorem 3.4; on the clustering threshold, cf. Theorems 3.3 and 3.5; on the
reconstruction threshold, cf. Theorems 3.2 and 3.6. The proof strategy is as follows.

The satisfiability threshold can be upper bounded using the first moment of the number of solutions,
and lower bounded using the second moment method. This technique is by now discussed in detail in
[AM02, AN05, ANP05]; we describe its application to the general CSP(n, α, p) ensemble in Appendix A.

The clustering threshold can be upper bounded through an analysis of the recursive ‘whitening’ process
introduced in [Pa02], and further studied in [BV04, MMW07]. This process associates to each cluster
a single configuration in an extended space. This approach was successfully developed in [AR06]. The
improved bounds in Theorems 3.3 and 3.5 can be obtained by approximating the CSP ensemble with
an appropriate ‘planted’ ensemble [AC08]. The proof of Theorem 3.3 is presented in Appendix B. As
mentioned in the introduction, the following sharp threshold statements (in the sense of Friedgut [F05])
are justified in Appendix C: a precise statement of a recent characterization, by Creignou-Daude [CD09],
of the class of binary CSP’s for which the satisfiability property exhibits a sharp threshold phenomenon;
and also an analogous proof for the property of having an exponential number of solutions; the latter being
needed in completing the proof of the clustering threshold.

The reconstruction threshold is characterized via a three-step procedure:

(1) Bound the reconstruction threshold for an appropriate ensemble of (infinite) tree instances, i.e. CSP
instances for which the associated factor graph is an infinite Galton-Watson tree. In the case of proper
q-colorings, a sharp characterization was obtained independently by two groups in the past year [BVV07,
Sly08]. In Section 4 we prove sharp bounds on tree reconstruction for binary CSPs. The proof amounts
to deriving an exact distributional recursion for the so-called belief process, and carefully bounding its
asymptotic behavior.

(2) Given two ‘balanced’ solutions x(1), x(2) (a solution is balanced if each possible variable value is taken
on the same number of vertices), define their joint type ν(x, y) as the matrix such that the fraction of
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vertices i with x
(1)
i = x and x

(2)
i = y is equal to ν(x, y). Consider the number Zb(ν) of balanced solution

pairs {x1, x2} with joint type ν. One has to show that EZb(ν) is exponentially dominated by its value at
the uniform type ν(x, y) = 1/q2 (with q = 2 for binary CSPs). More precisely EZb(ν)

.
= exp{nΦ(ν)} with

Φ achieving its unique maximum at ν.
This is also a crucial step in the second moment method. It was accomplished in [AN05] for proper

q-colorings of random graphs. In the case of binary CSPs, we prove this estimate in Appendix A.

(3) Prove that the above imply that the set of solutions of a random instance is, with high probability,
roughly spherical. By this we mean that the joint type ν12 of two uniformly random solutions x(1), x(2)

satisfies ||ν12−ν||TV ≤ δ with high probability for all δ > 0. Notice that this implication requires bounding
the expected ratio of Zb(ν) to the total number of solution pairs. We prove that the implication nevertheless
holds in Section 5 for q-colorings. The argument for binary CSP’s is completely analogous, and we omit it.

Finally, it was proved in [GM07] that, under such a sphericity condition, graph reconstruction and tree
reconstruction are equivalent, which finishes the proof of Theorems 3.2 and 3.6.

Notice that the techniques used for the clustering and reconstruction thresholds are very different. Thus
it is a surprising (and arguably deep) phenomenon that they do coincide as far as the present techniques
can tell.

4 Tree ensembles and tree reconstruction for binary k-CSP ensembles

In this section we define tree ensembles and prove estimates about the corresponding tree reconstruction
thresholds.

4.1 The tCSP(α, p) ensemble

The ensemble tCSP(α, p) is defined by α ∈ R+ and a distribution p over Boolean functions ϕ : {−1,+1}k →
{0, 1}. We assume the conditions on the distribution p introduced in Section 3.1. An (infinite) instance

from this ensemble is generated starting by a root variable node ø, drawing an integer η
D
= Poisson(kα)

and connecting ø to η function nodes {1, . . . , η}. Each function node has degree k, and each of its k −
1 descendants is the root of an independent infinite tree. Finally, each function node a is associated
independently, with a random clause ϕ drawn according to p.

A uniform solution for such an instance is sampled by drawing the root value xø ∈ {−1,+1} uniformly
at random. The values of descendants of each variable node i are then drawn recursively. If the function
node a connects i to i1, . . . , ik−1, then the values xi1 , . . . ,xik−1

are sampled uniformly from those that
satisfy the clause associated with a, that is, such that the quantity ϕ

(
xi, xi1 , . . . , xik−1

)
is equal to 1.

By the balance condition, this procedure can be shown to be equivalent to sampling a solution according
to the ‘free boundary Gibbs measure.’ The latter is a distribution over solutions of the entire (infinite)
tCSP formula defined by considering the unifom distribution over solutions of the first ℓ generations of the
tree, and then letting ℓ→ ∞.

4.2 Reconstruction

Given any fixed tree ensemble T , let x be a random satisfying assignment for T according to the distribution
described previously. We denote by xℓ the value of x at the variables at generation ℓ, and in the case that
the root degree is 1, we denote by x0,1, . . . ,x0,k−1, the values at the variable nodes connected to the unique
child of the root. Also, we use η0 for the root degree of T . If the tree ensemble T has root degree η0 = d,
we denote by Ti, i = 1, . . . , d, the subtree generated by the root, its ith child, and the child’s descendants.

10



If η0 = 1, we denote by T ′
i , i = 1, . . . , k − 1, the subtree generated by the ith child of the root’s child and

its descendants.
Finally, because the tree ensemble T could be random (for instance we denote by T a random

tCSP (α, p)), we will use E for expectation respect to T, and 〈·〉T for expectation respect to x (given
T = T ) and E for expectation respect to any other independent random variable (adding, if not in context,
a subindex to indicate such random variable).

Reconstruction: For a fixed tree ensemble T , let µ
∅,ℓ

be the joint distribution of (x0,xℓ) and let µ
∅
,

µ
ℓ

be the marginal distribution of x0 and xℓ respectively. The reconstruction rate for T is defined as the
quantity

∥∥µ∅,ℓ (·, ·) − µ∅ (·)µℓ (·)
∥∥

TV
. We say that the reconstruction problem for T is tree-solvable if

lim inf
ℓ→∞

∥∥µ∅,ℓ (·, ·) − µ∅ (·)µℓ (·)
∥∥

TV
> 0.

Analogously, if T is a random tCSP (α, p), we define the reconstruction rate of T as

E
∥∥µ∅,ℓ (·, ·) − µ∅ (·)µℓ (·)

∥∥
TV

,

and we say that the reconstruction problem for T is tree-solvable

lim inf
ℓ→∞

E
∥∥µ∅,ℓ (·, ·) − µ∅ (·)µℓ (·)

∥∥
TV

> 0.

Bias, compatibility: Given a satisfying assignment xℓ for the variables at generation ℓ, define the ‘bias’
of the root, restricted to the value of the variables at level ℓ, as

hT (xℓ)
def
= 〈x0 |xℓ = xℓ 〉T .

Throughout the next proofs we will study hT (xℓ), for xl random and subject to different kind of distribu-
tions. Notice that under the balance condition

∥∥µ∅,ℓ(·, ·) − µ∅(·)µℓ(·)
∥∥

TV
= 1

2 〈|hT (xℓ)|〉T . In fact, it is the
case that

|hT (xℓ)|µℓ(xℓ) = |µ∅,ℓ(1, xℓ) − µ∅,ℓ(−1, xℓ)| = 2

∣∣∣∣µ∅,ℓ(1, xℓ) −
1

2
µℓ(xℓ)

∣∣∣∣

and similarly,

|hT (xℓ)|µℓ(xℓ) = 2

∣∣∣∣µ∅,ℓ(−1, xℓ) −
1

2
µℓ(xℓ)

∣∣∣∣ .

By the balance condition, µ∅(1) = µ∅(−1) = 1/2. Therefore,

〈|hT (xℓ)|〉T =
∑
xℓ

(
|µ∅,ℓ(1, xℓ) − µ∅(1)µℓ(xℓ)| + |µ∅,ℓ(−1, xℓ) − µ∅(−1)µℓ(xℓ)|

)

= 2
∥∥µ∅,ℓ(·, ·) − µ∅(·)µℓ(·)

∥∥
TV

.

Now, let DT (xℓ)
def
= {x} if hT (xℓ) = x, DT (xℓ)

def
= {−1, 1} if |hT (xℓ)| < 1. Observe that DT (xℓ)

consists of the values of the root that are compatible with the assignment xℓ for the variables at generation
l.

Domain of clauses: Given a binary function ϕ (x0, . . . , xk−1), define the partial solution sets

S+ (ϕ)
def
= {(x1, , xk−1) : ϕ (1, x1, . . . , xk−1) = 1} ,

S− (ϕ)
def
= {(x1, , xk−1) : ϕ (−1, x1, . . . , xk−1) = 1} ,

Λ+ (ϕ)
def
= S+ (ϕ) \S− (ϕ) , Λ− (ϕ)

def
= S− (ϕ) \S+ (ϕ)

If the clause ϕ is balanced and feasible, we have that |S+ (ϕ)| = |S− (ϕ)| = 2k−1 ‖ϕ‖2 and |Λ+ (ϕ)| =
|Λ− (ϕ)| = 2k I1 (ϕ).
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Theorem 4.1 The reconstruction problem for the ensemble tCSP(α, p) is tree-solvable if and only if α >
αtree(k) where

αtree(k) =
Ωk

k
{log k + o(log k)} .

Proof. Upper bound:
Given a tree ensemble T , the rate of ‘naive reconstruction’ for T is defined as

zℓ (T )
def
= 〈I [hT (xℓ) = 1]〉T ( = 〈I [hT (xℓ) = −1]〉T by the balance condition),

which indicates the probability that a random assignment for the variables at generation ℓ, distributed as
xℓ, fixes the root to be equal to 1 (or −1). It is easy to see that 〈|hT (xℓ)|〉T ≥ zℓ (T ). Observe also, that
for any x, y ∈ {−1, 1},

〈I [hT (xℓ) = x] |x0 = y 〉T = 2zℓ (T ) δx,y. (11)

Thus, our objective is to show that in an appropiate regime of the parameter α, the quantity E [zℓ (T)]
remains bounded away from zero as ℓ→ ∞, implying tree-solvability of the reconstruction problem in such
regime. Indeed, this implies tree-solvability by ‘naive reconstruction’, i.e. by the procedure that assigns to
the root any value compatible with the values at generation ℓ. By notational convenience, define

zℓ (α) = 2E [zℓ (T)] and ẑℓ (α) = 2E [zℓ (T) |η0 = 1] .

Now, notice that for a tree ensemble T with root degree η0 = d, and any assignment xℓ for the variables
at generation ℓ, hT (xℓ) = 1 iff hTi (xℓ ↾ Ti) = 1 for some i = 1, . . . , d, so that

2zℓ (T ) =

〈
1 −

d∏

i=1

(1 − I [hTi (xℓ ↾ Ti) = 1]) |x0 = 1

〉

T

= 1 −
d∏

i=1

〈
(1 − I [hTi (xℓ) = 1])

∣∣∣x0 = 1
〉

Ti

(By the tree Markov property)

= 1 −
d∏

i=1

(1 − 2zℓ (Ti)) .

Therefore, averaging over T , we get

zℓ (α) = Eη

[
1 −

η∏

i=1

(1 − ẑℓ (α))

]
, η ∼ Poisson (kα)

= 1 − exp (−kαẑℓ (α)) .

On the other hand, given a tree ensemble T with root degree η0 = 1 and with the clause ϕ assigned to the
root’s child, we have that for any satisfying assignment xℓ for the variables at generation ℓ, hT (xℓ) = 1 iff

k−1∏

i=1

DT ′
i

(
x

(i)
ℓ−1

)
⊆ Λ+ (ϕ) , (12)

where x
(i)
ℓ−1 is the assignment xℓ ↾ T ′

i for the variables at generation ℓ− 1 in the subtree T ′
i . Observe that

(12) holds, in particular, if for some a = (a1, . . . , ak−1) ∈ Λ+ (ϕ), hT ′
i

(
x

(i)
ℓ−1

)
= ai for i = 1, . . . , k − 1.
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Therefore, if y = (y1, . . . ,yk−1) denotes a random uniform vector from S+ (ϕ), we have

zℓ (T ) ≥ 1

2

∑

a∈Λ+(ϕ)

〈
k−1∏

i=1

I

[
hT ′

i

(
x

(i)
ℓ−1

)
= ai

]
|x0 = 1

〉

T

=
1

2

∑

a∈Λ+(ϕ)

Ey

k−1∏

i=1

〈
I

[
hT ′

i
(xℓ−1) = ai

]
|x0 = yi

〉
T ′

i

(By the tree Markov property)

=
1

2

|Λ+ (ϕ)|
|S+ (ϕ)|

k−1∏

i=1

2zℓ−1

(
T ′

i

)
(By Eq. (11)) .

This in turn implies, after averaging over T , that

ẑℓ (α) ≥ Eϕ

[
2 I1 (ϕ)

‖ϕ‖2

]
(zℓ−1 (α))k−1 =

(zℓ−1 (α))k−1

Ωk
,

which leads to the recursion zℓ (α) ≥ 1 − exp
(
−kα (zℓ−1 (α))k−1 /Ωk

)
. Now, it is standard to verify that

this recursion implies that zℓ (α) is, for all ℓ, greater or equal than the maximum of the fixed points of the
function g (z) = 1− exp

(
−kαzk−1/Ωk

)
in the interval [0, 1]. The minimum value of α for which such fixed

point is positive is given by

α∗ =
Ωk

(
1 + u

(
1 + 1

u

)k−2
)

k (k − 1)
,

where u is the unique solution of the equation u = (k − 1) log (1 + u). In particular, asymptotically in k,
we have that α∗ = Ωk

k (log k + o (log k)), which implies the upper bound for αtree.
Lower bound :
The matching lower bound on αtree(k) requires a more elaborate proof; we first prove three lemmas,

before returning to complete the lower bound proof. �

Given a tree ensemble T , let x+
ℓ

D
= (xℓ |x0 = 1) and x−

ℓ
D
= (xℓ |x0 = −1). When the tree ensemble is

not clear in the definition of x+
ℓ (or x−

ℓ ), we add a subindex indicating the tree ensemble from where it is
defined. Notice that, if µ+ and µ− are the distributions of x+

ℓ and x−
ℓ respectively, then

dµ−

dµ+
=

1 − hT (xℓ)

1 + hT (xℓ)
. (13)

By the balance condition, it’s clear that

hT

(
x+

ℓ

) D
= −hT

(
x−

ℓ

)
. (14)

Also, it is easy to show that
〈
hT

(
x+

ℓ

)〉
T

=
〈
[hT (xℓ)]

2
〉

T
(and therefore [Rl (T )]2 ≤

〈
hT

(
x+

ℓ

)〉
T
≤ Rl (T )),

so that non-reconstructibility for T is equivalent to the condition lim
ℓ→∞

〈
hT

(
x+

ℓ

)〉
T

= 0 (see [MP03]).

Similarly, if T is a random tCSP (α, p) ensemble, non-reconstructibility for T, is equivalent to the condition
lim
ℓ→∞

E
[〈
hT

(
x+

ℓ

)〉
T

]
= 0.

Lemma 4.2 (a) Given a tree ensemble T with root degree η0 = d, we have

[
1 − hT

(
x+

ℓ

)

1 + hT

(
x+

ℓ

)
]

D
=

d∏

i=1

[
1 − hl,i

1 + hl,i

]
, (15)
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where (hl,i)
d
i=1 are independent random variables such that hl,i

D
= hTi

(
x+

ℓ

)
.

(b) Given a tree ensemble T with root degree η0 = 1 and with the clause ϕ assigned to the unique child
of the root, we have that [

1 − hT

(
x+

ℓ+1

)

1 + hT

(
x+

ℓ+1

)
]

D
=

Thl
ϕ(−1, s)

Thl
ϕ(1, s)

, (16)

where s ∼Unif (S+ (ϕ)) and hl = (hl,i)
k−1
i=1 are independent random variables such that hl,i

D
= hT ′

i

(
x+

l

)
.

Proof. This recursion follows straightforwardly from the recursive definition of tree formulae. The balance
condition on clauses implies

1 − hT

(
x+

l

)

1 + hT

(
x+

l

) =

〈
I
[
xl = x+

l

]
|x0 = −1

〉
T〈

I
[
xl = x+

l

]
|x0 = 1

〉
T

.

Therefore, if the root degree of T is η0 = d, we have by the tree Markov property that

1 − hT

(
x+

l

)

1 + hT

(
x+

l

) =

d∏

i=1

〈
I
[
xl = x+

l ↾ Ti

]
|x0 = −1

〉
Ti〈

I
[
xl = x+

l ↾ Ti

]
|x0 = 1

〉
Ti

,

and the last expression has the same distribution as

d∏

i=1

1−ul,i

1+ul,i
, due to the fact that

(
x+

l ↾ Ti

)d
i=1

are inde-

pendent random assignments for the variables at generation l of Ti, such that x+
l ↾ Ti

D
= x+

l,Ti
. This proves

Eq. (15). Now, if the root degree of T is η0 = 1, define
(
x̃+

l,i

)k−1

i=1
to be independent random assignments

for the variables at generation l of the subtrees T ′
i , such that x̃+

l,i
D
= x+

l,T ′
i
. By the tree Markov property, we

have that
(
x+

l+1 ↾ T ′
i

)k−1

i=1

D
=
(
six̃

+
l,i

)k−1

i=1
where s ∼ Unif S+ (ϕ). Using once more the tree Markov property,

we get

[
1 − hT

(
x+

ℓ+1

)

1 + hT

(
x+

ℓ+1

)
]

=

∑

y

ϕ (−1, y)

k−1∏

i=1

〈
I

[
xl = six̃

+
l,i

]
|x0 = yi

〉
T ′

i

∑

y

ϕ (−1, y)
k−1∏

i=1

〈
I

[
xl = six̃

+
l,i

]
|x0 = yi

〉
T ′

i

=
Thl

ϕ (−1, s)

Thl
ϕ (1, s)

,

which is precisely Eq. (16). �

The first step of the above recursion can be analyzed precisely, in terms of its distribution.

Lemma 4.3 If T is a random tCSP (α, p) ensemble, then the random variable hT

(
x+

1

)
takes values in

{0, 1} and, if α < (1 − δ)(Ωk log k)/k, we have EhT

(
x+

1

)
≤ 1 − k−1+δ.

Proof. If T is a tree ensemble with root degree η0 = 1 and clause ϕ assigned to the root’s child, from Part(b)

of Lemma 4.2, we have that
1−hT (x+

1 )
1+hT (x+

1 )
D
= ϕ (−1, s) where s ∼ Unif (S+ (ϕ)) . Recall that h0,i ≡ 1. Therefore,

it follows that hT

(
x+

1

)
= 1 with probability

|Λ+(ϕ)|
|S+(ϕ)| = 1/Ωk and hT

(
x+

1

)
= 0 otherwise. Similarly, if T
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is a tree ensemble with root degree η0 = d, it follows from Part(a) of Lemma 4.2 that hT

(
x+

1

)
= 1 with

probability 1 − (1 − 1/Ωk)d and hT

(
x+

1

)
= 0 otherwise. This implies then that hT

(
x+

1

)
has support in

{0, 1} and that EhT

(
x+

1

)
= 1 − exp (−kα (1 − 1/Ωk)). The conclusion follows straightforwardly.

�

For subsequent steps we track the averages, have
ℓ

def
= E

〈
hT

(
x+

l

)〉
T

and ĥave
ℓ

def
= E

[〈
hT

(
x+

l

)〉
T
|η0 = 1

]
,

using the following bounds.

Lemma 4.4 For any ℓ ≥ 0 we have

have
ℓ ≤ 1 − e−2kαbhave

ℓ , ĥave
ℓ+1 ≤ 1

2
Fk(h

ave
ℓ ) +

1

2
Rk(

√
have

ℓ ) , (17)

Fk(θ)
def
= 2Eϕ

[
(ϕ(1),Tθ ϕ

(1))

‖ϕ‖2

]
, Rk(θ)

def
= 2Eϕi


2 I1 (ϕ)

‖ϕ‖2

∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
| θmax(|Q|,2)


 , (18)

Finally, if hℓ is supported on non-negative values, then

ĥave
ℓ ≤ Fk(h

ave
ℓ ) . (19)

Proof. We will say that a random variable X ∈ [−1,+1] is ‘consistent,’ if E f(−X) = E
[(

1−X
1+X

)
f(X)

]
for

every function f such that the expectation values exist. A useful preliminary remark [MM06] is that the
random variable hT

(
x+

l

)
is consistent (no matter the tree ensemble). In fact, this follows directly from

the Eqs. (13) and (14) above:

E f(−hT

(
x+

l

)
) =

∑
xl

f(−hT (xl))µ
+ (xl) =

∑
xl

f(−hT (xl))
1 + hT (xℓ)

1 − hT (xℓ)
µ− (xl)

= E

[
f(−hT

(
x−

l

)
)
1 + hT

(
x−

l

)

1 − hT

(
x−

l

)
]

= E

[
f(hT

(
x+

l

)
)
1 − hT

(
x+

l

)

1 + hT

(
x+

l

)
]

A number of properties of consistent random variables can be found in [RU08]. Let us now consider the
first inequality. If T is a tree ensemble with root degree η0 = d, it is immediate to from Eq. (15), that

〈(
1 − hT

(
x+

l

)

1 + hT

(
x+

l

)
)1/2〉

T

=

d∏

i=1

〈(
1 − hTi

(
x+

l

)

1 + hTi

(
x+

l

)
)1/2〉

Ti

. (20)

It is possible to show that consistency implies EX = EX2 and E
(

1−X
1+X

)1/2
= E

√
1 −X2 (through the

test functions f (x) = x (1 + x) and f (x) = x (1 + x)1/2 (1 − x)−1/2), we thus have

√
1 −

〈
hT

(
x+

l

)〉
T

=

√
1 −

〈[
hT

(
x+

l

)]2〉
T
≥
〈√

1 −
[
hT

(
x+

l

)]2
〉

T

( by Jensen’s ineq.)

=

〈(
1 − hT

(
x+

l

)

1 + hT

(
x+

l

)
)1/2〉

T

=

d∏

i=1

〈(
1 − hTi

(
x+

l

)

1 + hTi

(
x+

l

)
)1/2〉

Ti

=

d∏

i=1

〈√
1 −

[
hTi

(
x+

l

)]2
〉

Ti

≥
d∏

i=1

(
1 −

〈
hTi

(
x+

l

)〉
Ti

)
(using

√
x ≥ x, for x ∈ [0, 1] ).
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This implies in particular, if T is a random tCSP (α, p),

√
1 − E

〈
hT

(
x+

l

)〉
T
≥ Eη

[
η∏

i=1

(
1 − E

[〈
hT

(
x+

l

)〉
T
|η0 = 1

])
]

, η ∼ Poisson (kα) ,

from where the first inequality follows.
Now, from the recursion Eq. (16), we have for a tree ensemble T with root degree η0 = 1, and random

clause ϕ assigned to the child of the root,

hT

(
x+

l+1

)
=

2Thl
ϕ(1) (s)

1 + Thl
ψ (s)

, ψ (s)
def
= ϕ (1, s)ϕ (−1, s)

or alternatively,

hT

(
x+

l+1

)
= Thl

ϕ(1) (s) +
(
Thl

ϕ(1) (s)
)
Gk (hl, s) , Gk (hl, s)

def
=

[
1 − Thl

ψ (s)

1 + Thl
ψ (s)

]
,

where s ∼Unif S+ (ϕ). Notice that for any antisymmetric function f (s), we have that Esf (s) =
(ϕ(1),f)
‖ϕ‖2 .

Therefore, due to the fact that Thl
ϕ(1) (s) is antisymmetric and Gk (hl, s) is symmetric (both in s and hl,

actually), we have the formulas

〈
hT

(
x+

l+1

)〉
T

=
2

‖ϕ‖2

〈(
ϕ(1),

Thl
ϕ(1) (s)

1 + Thl
ψ (s)

)〉

T

(21)

and
〈
hT

(
x+

l+1

)〉
T

=

〈(
ϕ(1),Thl

ϕ(1)
)

‖ϕ‖2

〉

T

+

〈(
ϕ(1),

(
Thl

ϕ(1)
)
Gk (hl, ·)

)

‖ϕ‖2

〉

T

. (22)

In the last expression, the first term is equal to

“
ϕ(1),T〈hl〉T ϕ(1)

”

‖ϕ‖2 , while the second term can be writen, using

Fourier expansion, as

1

‖ϕ‖2

∑

Q⊆[k−1]
|Q| odd

(
ϕ(1), γQEhl

[γQ (hl)Gk (hl, ·)]
)(

ϕ(1), γQ

)
.

Using the fact that E |X| ≤ (EX)1/2 for consistent random variables, we can bound the terms with |Q| ≥ 3
by

∣∣(ϕ(1), 1
)∣∣

‖ϕ‖2

∑

Q⊆[k−1]
|Q|≥3 odd

∣∣∣
(
ϕ(1), γQ

)∣∣∣



∏

i∈Q

〈
hTi

(
x+

l

)〉
Ti




1/2

.

Also, using the fact that for any even function f (x) with 0 ≤ f (x) ≤ 1 and a consistent random variable
X, we have

|E[Xf(X)]| = |E[2X2f(X)/(1 + X)I{X≥0}]| ≤ |E[2X2/(1 + X)I{X≥0}]| = |E[X]|,

we can bound the terms with |Q| = 1, by

∣∣(ϕ(1), 1
)∣∣

‖ϕ‖2

k−1∑

i=1

(
ϕ(1), γ{i}

) ∣∣∣
〈
hTi

(
x+

l

)〉
Ti

∣∣∣ .
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Therefore, for a random tCSP (α, p) with root degree η0 = 1, we obtain after averaging

ĥave
l+1 ≤ Eϕ

(
ϕ(1),Thave

l
ϕ(1)

)

‖ϕ‖2 + Eϕ




2 I1 (ϕ)

‖ϕ‖2

∑

Q⊆[k−1]
|Q|≥3 odd

∣∣∣
(
ϕ(1), γQ

)∣∣∣
(√

have
l

)max{|Q|,2}


 ,

which is precisely the second inequality in the Lemma.
Now, suppose that hl is supported on non-negative values and let As =

{
hl : Thl

ϕ(1) (s) > 0
}
. Notice

that the complement of As is −As (due to the antisymmetry of Thl
ϕ(1) (s) respect to hl). Therefore, using

the consistency of the random variables hl,i, from the Eq. (21) we get

〈
hT

(
x+

l+1

)〉
T

=
2

‖ϕ‖2

〈(
ϕ(1),

Thl
ϕ(1) (s)

1 + Thl
ψ (s)

)
I (hl ∈ As) −

(
ϕ(1),

T−hl
ϕ(1) (s)

1 + T−hl
ψ (s)

)
I (−hl ∈ As)

〉

T

=
2

‖ϕ‖2

〈(
ϕ(1),

Thl
ϕ(1) (s)

1 + Thl
ψ (s)

)
I (hl ∈ As)

[
1 −

k−1∏

i=1

1 − hl,i

1 + hl,i

]〉

T

≤ 2

‖ϕ‖2

〈(
ϕ(1),Thl

ϕ(1) (s)
)

I (hl ∈ As)

[
1 −

k−1∏

i=1

1 − hl,i

1 + hl,i

]〉

T

=
2
(
ϕ(1),T〈hl〉T ϕ

(1) (s)
)

‖ϕ‖2 .

Therefore, for a random tCSP (α, p) with root degree η0 = 1, we obtain after averaging, that

ĥave
l+1 ≤ 2Eϕ

(
ϕ(1),Thave

l
ϕ(1)

)

‖ϕ‖2 ,

which corresponds to the last inequality of the lemma. �

We now return to completing the proof of Theorem 4.1.
Proof (Theorem 4.1, lower bound). If θ = 1, T1 is the identity operator whence (ϕ(1),T1ϕ

(1)) = I1 (ϕ).
We have therefore Fk(1) = 1/Ωk. Now, expanding in Fourier series we get,

(ϕ(1),Tθ ϕ
(1)) =

∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
|2 θ|Q| =

∑

Q⊆[k],Q∋{i}
|(ϕ, γQ)|2 θ|Q|−1 .

By the Fourier expansion condition,
Fk(θ) ≤ e−Ck(1−θ)/Ωk. (23)

Now fix α = (1 − δ)(Ωk log k)/k, whence, by Lemma 4.3, have
1 ≤ 1 − k−1+δ, and h1 is supported on

non-negative reals. Using Eq. (19), we get ĥav
2 ≤ e−Ckδ

/Ωk, and therefore,

hav
2 ≤ 1 − exp{−2(1 − δ)e−Ckδ

log k } ≤ e−Ckδ/2 .

On the other hand, from the Eq. (7), we obtain the following bounds for Fk(θ), Rk (θ):

Fk(θ) ≤ 2Eϕ

[∑k−1
i=1 |

(
ϕ(1), γ{i}

)
|2

‖ϕ‖2

]
θ + 2Eϕ

[ I1(ϕ)

‖ϕ‖2

]
θ2 ≤ Ae−Ck/2θ + θ2

Ωk
,
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Rk(θ) ≤ 2Eϕi

[
2 I1 (ϕ)

‖ϕ‖2

k−1∑

i=1

|
(
ϕ(1), γ{i}

)
|2
]
θ2 + 2Eϕ


2 I1

(
ϕ
)

‖ϕ‖2

∑

Q⊆[k−1]

|
(
ϕ(1), γQ

)
|


 θ3

≤ Ae−Ck/2θ2 + kaθ3

Ωk
.

Therefore, for all ℓ we have

hav
ℓ+1 ≤ 1 − e−kα[Fk(hav

ℓ )+Rk(hav
ℓ )] ≤ (1 − δ) log k

(
2Ae−Ck/2hav

ℓ + 2ka(hav
ℓ )3/2

)
.

which implies hav
ℓ → 0 if, for some ℓ > 0, hav

ℓ ≤ k−5a, thus finishing the proof. �

5 Reconstruction on Trees to Graphs: the case of proper q colorings

In this section we prove that the set of solutions of the proper q-coloring ensemble satisfies the sphericity
condition described in Section 3.3.

Given two assignments x(1), x(2) of the variables x1, . . . , xn, their joint type vx(1),x(2) is the q× q matrix

with vx(1),x(2) (i, j)
def
= 1

n#
{
t ∈ G : x(1) (t) = i and x(2) (t) = j

}
. We consider random assignments x(1), x(2)

taken uniformly and independently over all the satisfying assignments of a random instance of the q-coloring
model with edge-variable density α. Our purpose is to prove that for all δ > 0, ||vx(1),x(2) − ν||TV ≤ δ

w.h.p., where v is the matrix with all entries equal to 1/q2.

Our argument makes crucial use of the following estimate for the partition function from [AC08].

Lemma 5.1 ([AC08, Lemma 7]) Let Z be the number of satisfying assignments of a random instance
of the q-coloring model with edge-variable density α < q log q, then

EZ ≥ Ω

(
1

n(q−1)/2

)[
q

(
1 − 1

q

)α]n

,

and, for some function f(n) of order o(n), we have Prob
(
Z < e−f(n)E [Z]

)
→ 0 as n→ ∞.

Let us introduce some notation. If w is a vector of lenght q and v is a q × q matrix v, let H and E
denote their entropy an their enrgy respectively, where

H(v) = −∑
i,j
v (i, j) log v (i, j) , H(w) = −∑

i
w (i) logw (i)

E(v) = log


1 −∑

i

(
∑
j
v (i, j)

)2

−∑
j

(∑
i
v (i, j)

)2

+
∑
i,j
v (i, j)2


 , E(w) = log

(
1 −∑

i
w (i)2

)

Let Bǫ
q consists of all the q-vectors w with nonegative entries such that

∑
i
w (i) = 1 and ‖w − w‖2 > ǫ.

Similarly, let Bδ,ǫ
q×q be the set of all the q × q matrices with nonegative entries such that ‖(v − v) 1‖2 ≤ δ,∥∥1t (v − v)

∥∥2 ≤ δ and ‖v − v‖2 ≥ ǫ.

Our goal in this section is to prove the following theorem.

18



Theorem 5.2 Let x(1), x(2) be random assignments taken uniformly and independently over all the sat-
isfying assignments of a random instance of the q-coloring model with edge-variable density α. If α <
(q − 1) log (q − 1), then for any ǫ > 0,

Prob

(∥∥∥vx(1),x(2) − v
∥∥∥

2
> ǫ

)
→ 0 as n→ ∞.

We will present several lemmas before returning to the proof of the Theorem. First we introduce
estimations concerning an additive functional depending on the energy and entropy of a vector of lenght q.

Lemma 5.3 If w ∈ Bǫ
q, then H(w) + αE(w) ≤ [H(w) + αE(w)] − αǫ

2(1−1/q) .

Proof. Notice that [H(w) + αE(w)]− [H(w) + αE(w)] = α log
(

1−‖w‖2

1−‖w‖2

)
. This quantity is bounded below

by α log
(
1 + ǫ

1−1/q

)
, and therefore by αǫ

2(1−1/q) . �

Lemma 5.4 Let x be a random assignment of the variables taken uniformly over all the satisfying assign-
ments of a random instance of the q-coloring model with edge-variable density α < q log q. Then, for any
ǫ > 0,

Prob
(∥∥wx − w

∥∥2
> ǫ
)
→ 0 as n→ ∞

where w is the vector with q entries such that wx (i) = 1
n# {v ∈ G : xv = i} and w is the vector with all

entries equal to 1/q.

Proof. Given a property P , denote by Z(P ), the number of satisfying assignments for shich P holds.
Choose ξ such that ξ < αǫ

2(1−1/q) . We have that

Prob
(∥∥wx − w

∥∥2
> ǫ
)

= E
[
Z
(∥∥wx

∥∥2
> ǫ+ 1/q

)
/Z
]
,

an expression that we can bound by

E
[
Z
(∥∥wx

∥∥2
> ǫ+ 1/q

)]

e−nξE [Z]
+ Prob

(
Z < e−nξE [Z]

)
.

Now, according to the Lemma 5.1, Prob
(
Z < e−nξE [Z]

)
→ 0, and therefore it is enough to show that the

term
E
[
Z
(∥∥wx

∥∥2
> ǫ+ 1/q

)]
/e−nξE [Z] vanishes.

Denote by Gǫ the set of all vectors ℓ, with nonegative integer entries, such that
q∑

i=1
(ℓi/n) = 1 and

q∑
i=1

(ℓi/n)2 > ǫ + 1/q, and denote by Ωw the set of assignments x such that wx is equal to the vector w.

Now,

E
[
Z
(∥∥wx

∥∥2
> ǫ+ 1/q

)]
=
∑

ℓ∈Gǫ

∑
x∈Ωℓ/n

Prob (x is a satisfying assignment) (24)

=
∑

ℓ∈Gǫ

n!
q∏

i=1
ℓi!

([
n

n− 1

] [
1 −

q∑
i=1

(ℓi/n)2
])αn

≤ ∑
ℓ∈Gǫ

3q2q√n exp (n [H (ℓ/n) + cnE (ℓ/n)])

≤ 3q2q√n |Gǫ| sup
ℓ∈Gǫ

{exp (n [H (ℓ/n) + cnE (ℓ/n)])} .
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Here |Gǫ| is the number of elements of Gǫ, which is bounded by nq. Notice also that if ℓ ∈ Gǫ, then ℓ/n ∈ Bǫ
q,

so that by Lemma 5.3,

H (ℓ/n) + αE (ℓ/n) ≤ [H(jq) + αE(jq)] −
αǫ

2 (1 − 1/q)
(25)

= log q + α log (1 − 1/q) − αǫ

2 (1 − 1/q)
.

On the other hand by the Lemma 5.1, there is some constant C such that

e−nξE [Z] ≥ C

n(q−1)/2
e−nξ

[
q

(
1 − 1

q

)α]n

. (26)

Combining Eq. (24), (25) and (26), we have that for a polynomial p (n) of degree 3q/2,

E
[
Z
(∥∥wx − w

∥∥2
> ǫ
)]

e−nξE [Z]
≤ p(n) exp

(
n

[
ξ − αǫ

2 (1 − 1/q)

])
. (27)

From (27), it is now clear that
E

h
Z

“
‖wx−w‖2

>ǫ
”i

e−nξE[Z]
→ 0 as n→ ∞, due to the fact that ξ − αǫ

2(1−1/q) < 0. �

Next, our objective is to work with the quantity κδ,ǫ
q , which we define as the upper limit of the interval

(indeed, easy to see that this is an interval) consisting of the values c such that

sup
v∈Bδ,ǫ

q×q

H(v) + cE(v) ≤ H(v) + αE(v).

To motivate, let us recall that an important part of the second moment argument of Achlioptas and Naor
[AN05, Theorem 7] (in showing that the chromatic number χ [G (n, d/n)] concentrated on two possible
values), relied on an optimization of the expression H(v) + αE(v) over the Birkoff polytope Bq×q of the
q× q doubly stochastic matrices. In particular, they proved that, as long as α ≤ (q− 1) log(q− 1), one has

sup
v∈Bq×q

H(v) + αE(v) = H(v) + αE(v) . (28)

Since B0,ǫ
q×q ⊆ Bq×q, we have κ0,ǫ

q ≥ (q − 1) log (q − 1). The next lemma says that sup
v∈Bδ,ǫ

q×q

H(v) + αE(v) is in

fact ‘separated’ from H(v) + αE(v), provided that α < κδ,ǫ
q .

Lemma 5.5 Suppose that v ∈ Bδ,ǫ
q×q where ǫ > 2δ, then, if α < κδ,ǫ

q , we have that

[H(v) + αE(v)] ≤ [H(v) + αE(v)] −

(
κδ,ǫ

q − α
)

2 (1 − 1/q)2
[ǫ− 2δ] .

Proof. Indeed,

[H(v) + αE(v)] − [H(v) + αE(v)] =
[
H(v) + κδ,ǫ

q E(v)
]
−
[
H(v) + κδ,ǫ

q E(v)
]

+
(
κδ,ǫ

q − α
)

[E(v) − E(v)]

≥
(
κδ,ǫ

q − α
) [

log

(
1 +

1

(1 − 1/q)2

[
‖v − v‖2 − ‖(v − v) 1‖2 −

∥∥1t (v − v)
∥∥2
])]

≥

(
κδ,ǫ

q − α
)

2 (1 − 1/q)2
[ǫ− 2δ] .

�
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Lemma 5.6 Given ǫ > 0 and α < αq = (q − 1) log (q − 1), there exists δ > 0 such that κδ,ǫ
q ≥ α.

Proof. Assume the contrary, then there exists a sequence δn ↓ 0 such that κδn,ǫ
q < α for each n. Due to the

continuity of exp(H(v) +αE(v)) in the compact set Bδ,ǫ
q×q, the supremum of exp(H(v) +αqE(v)) is reached

at a matrix vδn ∈ Bδn,ǫ
q×q ⊆ Pq×q, and due to the compactness of Pq×q, a subsequence

{
vδnk

}

k≥1
of these

matrices converges in Pq×q to a matrix v ∈ B0,ǫ
q×q. Therefore H(v) +αE(v) ≤ H(v) +αE(v)− (αq−α)ǫ

2(1−1/q)2
. On

the other hand,

H(v) + αE(v)) ≥ lim inf
k→∞

H(vδnk
) + αE

(
vδnk

)
≥ H(v) + αE (v) ,

obtaining a contradiction. �

Proof of Theorem 5.2. Given a property P , denote by Z(2) (P ), the number of pairs of satisfying
assignments for which P holds. Take α′ such that α < α′ < (q − 1) log (q − 1) and use Lemma 5.6 to

choose δ such that κδ,ǫ
q ≥ α′, guaranteeing also that 2δ < ǫ. Now, let ξ be a positive real such that

2ξ < (α′−α)

2(1−1/q)2
[ǫ− 2δ]. We have that

Prob

(∥∥∥vx(1),x(2) − v
∥∥∥

2
> ǫ

)
= E

[
Z(2)

(∥∥∥vx(1),x(2) − v
∥∥∥

2
> ǫ

)
/Z2

]
,

which is bounded by the addition of the terms E
[
Z(2)

(
vx(1),x(2)∈ Bδ,ǫ

q×q

)]
/e−2nξE [Z]2,

Prob
(
Z < e−nξE [Z]

)
, Prob

(∥∥∥
(
vx(1),x(2) − v

)
1
∥∥∥

2
> ǫ

)
and Prob

(∥∥∥1t
(
vx(1),x(2) − v

)∥∥∥
2
> ǫ

)
. Now, Lemma 5.1

implies that the second term vanishes and lemma 5.4 implies that the last two terms go to zero. Therefore,

to show that Prob

(∥∥∥vx(1),x(2) − v
∥∥∥

2
> ǫ

)
→ 0 is sufficient to prove that the term E

[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
/e−2nξE [

vanishes.
Denoting by Gǫ,δ the set of all q× q matrices L, with nonegative integer entries, such that L/n ∈ Bδ,ǫ

q×q,
and denoting by Ωv the set of pairs of colorings x1, x2 such that vx1,x2 is equal to the matrix v, we have

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
=

∑
L∈Gǫ,δ

∑
x1,x2∈ΩL/n

Prob (x1 and x2 are satisfying assignments)

=
∑

L∈Gǫ

n!∏
i,j
Lij!

[
n

n− 1

]αn

1 −∑

i

(
∑
j
Lij/n

)2

−∑
j

(∑
i
Lij/n

)2

+
∑
i,j

(Lij/n)2




αn

≤ ∑
L∈Gǫ,δ

3q2q√n exp (n [H (L/n) + αE (L/n)]) .

And now, because κδ,ǫ
q ≥ α′ > α and L/n ∈ Bδ,ǫ

q×q where 2δ < ǫ, we can invoke Lemma 5.5 to get that

[H(L/n) + αE(L/n)] ≤ [H(v) + αE(v)] − (α′ − α)

2 (1 − 1/q)2
[ǫ− 2δ] .

Therefore,

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]
≤ 3q2q√n |Gǫ,δ| [q (1 − 1/q)α]2n exp

(
−n (α′ − α)

2 (1 − 1/q)2
[ǫ− 2δ]

)
,
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where |Gǫ,δ| is the number of elements in Gǫ,δ, which is bounded by nq2
. On the other hand by Lemma 5.1,

we have that for some constant C,

e−2nξE [Z]2 ≥ C

n(q−1)
e−2nξ

[
q

(
1 − 1

q

)α]2n

.

Hence, for a polynomial p (n) of degree q2 + q − 1, we have

E
[
Z(2)

(
vx(1),x(2) ∈ Bδ,ǫ

q×q

)]

e−2nξE [Z]2
≤ p(n) exp

{
n

(
2ξ − (α′ − α)

2 (1 − 1/q)2 [ǫ− 2δ]

)}
.

Due to the fact that 2ξ < (α′−α)

2(1−1/q)2
[ǫ− 2δ], it is now clear that

E
h
Z(2)

“
v
x
(1),x(2)∈Bδ,ǫ

q×q

”i

e−2nξE[Z]2
→ 0 as n→ ∞. �
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A Proof of Proposition 3.1

Given a random instance from the ensemble CSP(n, p, α), let {ϕa}αn
a=1 be its set of clauses and consider

the symmetrized statistic

Ln (ϕ) =
1

nαk!

∑

σ∈Sk

# { a ∈ [nα] : ϕa = ϕσ} . (29)

It is convenient two introduce to slightly modified ensembles. We denote by CSP(n, p, α; p̃n) the ensemble
CSP(n, p, α) conditioned on Ln = p̃n.

A binary configuration x is said to be balanced if |x · 1| ≤ 1. We will use Z and Zb, to denote the
variable that counts the number of satisfying assignments and balanced satisfying assignments, respectively,
of a random CSP ensemble. Given two binary assignments x(1), x(2), we define their overlap as

Q12
def
=

1

n
x(1) · x(2) =

1

n

n∑

i=1

x
(1)
i x

(2)
i . (30)

In other words (1 −Q12)/2 is the normalized Hamming distance of x(1) and x(2).
Proof (Proposition 3.1, upper bound). The upper bound in Proposition 3.1 follows from a first
moment calculation. Let Z be the number of solutions of a random instance from the ensemble CSP(n, p, α).
We will show that, for α > (1 + ǫ)Ω̂k log 2, E[Z] → 0 as n → ∞. First fix p̃n such that ‖p̃n − p‖

TV
≤

1/n1/2−γ . Notice that the probability that a random clause of type ϕ is satisfied by the assignment x with
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x · 1 = nθ is ||ϕ||2θ . This implies

E[ Z|Ln = p̃n] =
∑

x∈{−1,1}n

P (x is a satisfying assignment|Ln = p̃n)

≤ n sup
θ∈[−1,1]

∑

x·1=nθ

P (x is a satisfying assignment|Ln = p̃n)

≤ n 2n
∏

ϕ

‖ϕ‖2epn(ϕ)αn
θ

≤ n exp

(
n

{
log 2 + α

∑

ϕ

p (ϕ) log ‖ϕ‖2
θ +O(n−1/2+γ)

})

≤ n exp

(
n

{
log 2 + α

∑

ϕ

p (ϕ) log ‖ϕ‖2 +O(n−1/2+γ)

})
,

where in the last step we used the condition of dominance of balanced assignments. By taking expectation
over p̃n, we obtain E[Z] → 0 whenever α > (1 + ǫ) Ω̂k log 2, as claimed. �

To establish the corresponding lower bound, we use the second moment method, but first we need a
few preliminary lemmas.

We define by Kn(p; a,A, γ) to be the set of probability distributions {p̃(ϕ)} over clauses ϕ : {+1,−1} →
{0, 1} such that:

(i) supp(p̃) = supp(p);
(ii) p̃ satisfies conditions 1-4 and (a), (b) stated in Section 2, with constants a,A; and finally,
(iii) ||p̃− p||TV ≤ n−1/2+γ for some γ > 0.

Then we have the following.

Lemma A.1 Let Ln be the statistics defined in Eq. (29) for a random formula from the CSP(n, p, α)
ensemble. Then there exists constants a,A such that for any γ > 0, with high probability

Ln ∈ Kn(p; a,A, γ) . (31)

Proof. Notice that for each permutation π Ln(ϕπ) = Ln(ϕ) and that, for each ϕ{−1,+1}k → {0, 1},
k!Ln(ϕ) is distributed as a binomial with parameters nα, and k!p(ϕ). In particular Ln(ϕ) = 0 if p(ϕ) = 0
and Ln(ϕ) > 0 with high probability otherwise. This implies Item (i) in the definition of Kn(p; a,A, γ).

Item (iii) that, ||Ln − p||TV ≤ n−1/2+γ , follows immediately from the central limit theorem.
Consider finally Item (ii). Condition 1 is enforced by the symmetrization procedure in Eq. (29).

Conditions 2, 3 only depend on supp(Ln) and thus hold with high probability by the above argument.
Dominance of balanced assignments (condition 4) is the statement that

Eϕ log ‖ϕ‖θ − Eϕ log ‖ϕ‖ < 0, (32)

for all θ 6= 0, θ ∈ [−1, 1]. Notice that the left hand side is a polynomial in θ whose coefficients are continuous
function of the quantities {Ln(ϕ)}. Hence this condition is of the form Ln ∈ A for A an open set in R

D,

D = 22k
. Since p ∈ A and ||Ln − p||TV ≤ n−1/2+γ whp, we conclude Ln ∈ A.

Finally conditions (a) and (b) only depend on supp(Ln) and therefore follow from the above. �
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Lemma A.2 Given p̃n ∈ Kn(p; a,A, γ), consider a random instance from the CSP(n, p, α; p̃n) ensemble.
For θ ∈ {−1,−1 + 2/n, . . . , 1 − 2/n, 1}, let Zb(Q12 = θ) be the number of balanced solution pairs x(1),
x(2) ∈ {+1,−1}n with overlap θ. Then,

E [Zb(Q12 = θ)]

[EZb]
2 ≤ C n−1/2 exp {nΦ (θ)} ,

where C is bounded uniformly in θ and

Φ(θ)
def
= H(θ) + αEϕ∼epn log

{
(ϕ,Tθ ϕ)

‖ϕ‖4

}
.

Here H(θ) ≡ −1+θ
2 log(1 + θ)− 1−θ

2 log(1 − θ) is the binary entropy function.

Proof. For simplicity take n to be even (the argument is analogous for n odd). Let ϕ be a boolean function,
and let i : [k] → [n] be a uniform random choice of the indexes of the variables in ϕ (i.e. i(1), . . . , i(k)
are independent and uniform in [n]). Given two balanced vectors x(1), x(2) ∈ {+1,−1}n, with Q12 = θ, we
have

Eπ

[
ϕ
(
x

(1)
i(1), . . . x

(1)
i(k)

)
ϕ
(
x

(2)
i(1), . . . , x

(2)
i(k)

)]
= (ϕ,Tθ ϕ) .

Therefore

EZb(|Q12| = θ) =
∑

x(1)·x(2)=nθ

P
(
x(1), x(2) are satisfying assignments

)

≤
∑

x(1)·x(2)=nθ

∏

ϕ

(ϕ,Tθϕ)epn(ϕ)nα

≤ C

n3/2
exp

(
n

{
H
(

1 + θ

4
,
1 + θ

4
,
1 − θ

4
,
1 − θ

4

)
+ α

∑

ϕ

p̃n (ϕ) log (ϕ,Tθϕ)

})
.

Where H is the entropy function

H(θ1, . . . , θd) = −
d∑

i=1

θi log θi . (33)

and we used the following bound on binomial coefficients (valid for θi ≥ 0, θ1 + · · · + θd = 1)

n!
∏d

i=1(nθi!)
≤ C

n(d−1)/2
exp

{
H(θ1, . . . , θd)

}
. (34)

By the very same argument, for some positive C ′,

EZb =
∑

x balanced

∏

ϕ

‖ϕ‖2epn(ϕ)αn

>
C ′

n1/2
exp

(
n

{
H
(

1

2
,
1

2

)
+ α

∑
ϕ
p̃n (ϕ) log ‖ϕ‖2

})
.

It is straightforward now to check that

EZb(Q12 = θ)

(EZb)2
≤ C ′′

n1/2
exp

{
nΦ (θ)

}
(35)

which implies the claim. �
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Lemma A.3 Given p̃n ∈ Kn(p; a,A, γ), consider a random instance from the CSP(n, p, α; p̃n) ensemble,
and define

Ωk,epn

def
= Eϕ∼epn

2 I1 (ϕ)

1 − 2I1(ϕ)
. (36)

If α ≤ (1−ε)Ωk,epn log 2, then exist a constants C0 = C0(p; a,A, γ, ε) > 0 (independent of p̃n ∈ Kn(p; a,A, γ)),
and an absolute constant C such that for any θ ∈ {−1,−1 + 2/n, . . . , 1 − 2/n, 1}

E [Zb(Q12 = θ)]

(EZb)
2 ≤ C

n1/2
e−nC0θ2

. (37)

Proof. In view of the previous lemma, it is sufficient to prove that there exist a constant C0 = C0(p; a,A, γ, ε) >
0 (independent of p̃n ∈ Kn(p; a,A, γ)) such that

Φ(θ) ≤ −C0 θ
2 . (38)

Since throughout this proof p̃n is fixed, it will be undestood that ϕ ∼ p̃n whenever we take expectation
over the clause distribution. Also, dependence of Ωk,epn

and Ω̂k,epn
(defined analogously) upon p̃n will be

dropped.
Fix α ≤ (1 − ε)Ωk log 2 ≤ (1 − ε)Ω̂k log 2. We will prove the thesis claim by considering three different

regimes for θ: 0 < θ ≤ e−ck, e−ck ≤ θ ≤ 1 − ε1/2 and 1 − ε1/2 ≤ θ ≤ 1, where c is a small constant. In the
first two intervals we will prove that the derivative of Φ(θ) with respect to θ is strictly negative. Recalling
that ‖ϕ‖2 ≥ 1/2, we have

dΦ

dθ
≤ −atanh θ + kαEϕ

(ϕ(1),Tθ ϕ
(1))

‖ϕ‖4

≤ −θ + 2kαEϕ

∑k−1
i=1 |ϕ(1)

{i}|2

‖ϕ‖2 θ + 2kαEϕ
||ϕ(1)||2
‖ϕ‖2 θ3

≤ −θ +Ae−Ck α

Ωk
θ + 2k

α

Ωk
θ2

≤ −1

2
θ + 4kθ2 ,

where we used (from Eq. (3)) the hypothesis on low weight Fourier coefficients. The last expression is
strictly negative if 0 < θ < e−ck for any c > 0 and all k large enough. Integrating the last expression over
θ, we get Φ (θ) ≤ −C0 θ

2.
Next assume e−ck ≤ θ ≤ 1 − ε. Using the hypothesis (ϕ(1),Tθ ϕ

(1)) ≤ e−Ck(1−θ)||ϕ(1)||2, we have

dΦ

dθ
≤ −atanh θ + 4kαEϕ

||ϕ(1)||2
||ϕ||4 e−Ckǫ

≤ −atanh θ + 2k
α

Ωk
e−Ck

√
ǫ ≤ −atanhθ + 2 (log 2) ke−Ckǫ ,

which is strictly negative if θ > c−ak with, say, c = (Cε2)/2.
Finally, we notice that, for 1− ε2 ≤ θ ≤ 1, any ε small enough we have H(θ) ≤ − log 2+ ε/10. Further,

using the fact that (ϕ,Tθ ϕ) = ||Tθ1/2 ϕ||2 is non-decreasing in θ

Φ(θ) ≤ − log 2 +
ε

10
− αEϕ log ||ϕ||2 = − log 2 +

ε

10
+

α

Ω̂k

≤ −ε log 2

2
,
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which finishes the proof. �

Proof (Proposition 3.1, lower bound). Fix p̃n ∈ Kn(p; a,A, γ), α ≤ (1 − ε)Ωk,epn
log 2 and let Zb the

number of balanced solutions of a random instance from the CSP(n, p, α; p̃n) ensemble. From Lemma A.3
we have that, for Un ≡ {−1,−1 + 2/n, . . . , 1 − 2/n, 1},

E{Z2
b}

{EZb}2
=
∑

θ∈Un

E{Zb(Q12 = θ)}
{EZb}2

(39)

≤ C

n1/2

∑

θ∈Un

e−C0nθ2
(40)

≤ C ′

n1/2
n

∫ ∞

−∞
e−C0nθ2

dθ ≤ C ′
0 (41)

for some new constant C ′
0 = C ′

0(p; a,A, γ, ε) > 0.
For p̃n ∈ Kn(p; a,A, γ), we gave Ωk,epn

= Ωk(1 + O(n−1/2+γ)). Let Fn be a random instance from
CSP(n, p, α) ensemble, p̃n ∈ Kn(p; a,A, γ), α ≤ (1 − 2ε)Ωk log 2, whence α ≤ (1 − ε)Ωk,epn

log 2. By
Paley-Zygmund inequality

P(Fn is sat|Ln = p̃n) ≥ E{Z2
b}

2{EZb}2
> C ′

0/2 . (42)

By Lemma A.1 we have P(Fn is sat) ≥ C ′
0/4. Finally, the fact that the satisfiability property (of our CSP

ensembles) exhibits a sharp transition, thanks to the theorem of N. Creignou and H. Daude [CD09] (see
Theorem C.1 in Appendix C here) implies P(Fn is sat) → 1 as n→ ∞.

�

B Proof of Theorem 3.3

In this appendix we introduce the planted CSP ensemble, clarify its connection to the original ensemble,
and use it to prove Theorem 3.3. Throughout the section, we denote a CSP instance with nα clauses by
F = (F1, F2, . . . , Fnα). Here

Fa = (ϕa; ia(1), . . . , ia(k)) (43)

denotes the clause labeled a, which is completely specified by the Boolean function ϕa : {+1,−1}k → {0, 1}
and by the choice of k indices ia(1),. . . , ia(k). The number of solutions of the instance F is denoted by
Z(F ).

Given a distribution p = {p(ϕ)}, it is also convenient to define the ‘average clause’ ϕ : {+1,−1}n → R+:

ϕ(x) =
1

nk

∑

i(1),...,i(k)∈[n]

∑

ϕ

p(ϕ)ϕ(xi(1), . . . , i(k)) . (44)

Throughout this section, we will assume that the strong balance condition (9) holds. We think that this
condition can be refined at the price of a more careful analysis.
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B.1 The planted ensemble and a transfer theroem

Given n ∈ N, α ≥ 0, and a distribution p = {p(ϕ)} over k-clauses, the planted ensemble pCSP(n, α, p) is
a joint distribution over binary assignments x∗ = (x∗1, x

∗
2, . . . , x

∗
n) ∈ {0, 1}n and random CSP formulas F

defined as follows. The assignment x∗ is drawn with distribution

Pp(x) ≡ 1

EZ(F )
ϕ(x)nα . (45)

It is easy to check that this is normalized, i.e. that EZ(F ) =
∑

x ϕ(x)nα.
We will use Pp, Ep to denote probability and expectation with respect to the planted model. Sampling

x from this distribution is straightforward, since Pp(x) is uniform once we condition on the weight of x
(i.e. on x · 1).

Conditional on x∗, the clauses Fa, a = 1, 2, . . . , nα, are independent and distributed according to

Pp{Fa = (ϕa, ia(1), . . . , ia(k))|x∗} ≡ 1

nkϕ(x∗)
p(ϕa)ϕa(x

∗
ia(1), . . . , x

∗
ia(k)) . (46)

draw indices ia(1), . . . , ia(k) ∈ [n] independently and uniformly at random. Notice that this is in-
deed a well defined distribution over clauses, and in particular it is normalized thanks to Eq. (44).
In order to sample from the above clause distribution, one can proceed as follows. Sample indices
ia(1), . . . , ia(k) ∈ [n] independently and uniformly at random and a boolean function ϕa with distribu-
tion p( · ). If ϕa(x

∗
ia(1), . . . , x

∗
ia(k)) = 1, accept this choice, otherwise reject it and repeat the sampling.

The joint distributon of the planted assigbment and the CSP instance is then

Pp(F, x
∗) =

1

nnkαEZ(F )

nα∏

a=1

p(ϕa)ϕa(x
∗
ia(1), . . . , x

∗
ia(k)) . (47)

By construction, the assignment x∗ satisfies F . It is convenient to compare the planted distribution with
the uniform distribtion we have been considering so far. In this case, an instance is drawn according to the
ensemble CSP(n, α, p), and an assignment x∗ is drawn uniformly at random from among the ones satisfying
F . The joint distribution is then

Pp(F, x
∗) =

1

nnkα Z(F )

nα∏

a=1

p(ϕa)ϕa(x
∗
ia(1), . . . , x

∗
ia(k)) . (48)

By taking the ratio of the above probabilities, we immediately get the following

Lemma B.1 Let F : (F, x∗) → R be a function of an instance, solution pair. Its expectations with respect
to the planted and uniform model ae related as follows

EpF(F, x∗) = E

{
Z(F )

EZ(F )
F(F, x∗)

}
. (49)

Proof. By a standard change-of-measure argument EpF(F, x∗) is equal to

∑

(F,x∗)

Pp(F, x
∗)F(F, x∗) =

∑

(F,x∗)

P(F, x∗)
{

Pp(F, x
∗)

P(F, x∗)
F(F, x∗)

}

=
∑

(F,x∗)

P(F, x∗)
{

Z(F )

EZ(F )
F(F, x∗)

}
, (50)
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which is nothing but our claim. �

It is clear thar the planted and uniform model are strictly related as soon as Z(F ) concentrates around
its expectation EZ(F ).

Lemma B.2 Fix α < Ωk log 2{1 + ok(1) and let Z(F ) be the number of solutions of a random instance F
from the CSP(n, α, p) ensemble. Then, for any ε > 0, Z(F ) > e−nεEZ(F ) with high probability.

Proof. For any constant A, the property Z(F ) > enA is monotone over the space of CSP instances
(regarded as a product space). Applying as in [AC08], a sharp threshold result (which we prove as
Lemma C.2 in Appendix C), it is sufficient to prove that Z(F ) > e−nεEZ(F ) with probability bounded
away from 0 as n→ ∞.

Let Zb(F ) the number of balanced solutions (i.e. the number of solutions such that |x · 1| ≤ 1).
Obviously Z(F ) ≥ Zb(F ). On the other hand, by an argument already employed in Appendix A (here
Un ≡ {−1,−1 + 2/n, . . . , 1 − 2/n, 1}):

E{Z(F )} =
∑

x∈{−1,1}k

P (x is a satisfying assignment)

≤
∑

θ∈Un

(
n

n(1 + θ)/2

)
Eϕ{||ϕ||θ}2

≤
∑

θ∈Un

(
n

n(1 + θ)/2

)
Eϕ{||ϕ||}2

≤ n

(
n

n/2

)
Eϕ{||ϕ||}2 = nE{Zbb(F )} .

That is E{Z(F )} and E{Zb(F )} differ at most by a polynomial factor. It is therefore sufficient to prove
that Zb(F ) > e−nεEZb(F ) with probability bounded away from 0 as n→ ∞.

This follows from Paley-Zygmund inequality, since

P
{
Zb(F ) ≥ 1

2
EZb(F )

}
≥ E {Zb(F )}2

4E {Zb(F )2} ≥ 1

4C
, (51)

for some uniformly bounded C > 0, by Eq. (41). �

Theorem B.3 Given a sequence of events {An} and a constant c > 0, assume that (x∗, F ) ∈ An with
probability larger than 1 − e−c n under the planted model pCSP(n, α, p). Then (x∗, F ) ∈ A with high
probability under the uniform model.

Proof. Consider the complement of An, denoted by Ac
n. By Lemma B.1, we have

Pp{(x∗, F ) ∈ Ac
n} = E

{ Z(F )

EZ(F )
I(x∗,F )∈Ac

n

}

≥ E
{ Z(F )

EZ(F )
I(x∗,F )∈Ac

n
IZ(F )≥e−cn/2EZ(F )

}

≥ e−cn/2
{
P{(x∗, F ) ∈ Ac

n} − P{(x∗, F ) ∈ Ac
n, Z < e−cn/2EZ(F )}

}
.

By solving for P{(x∗, F ) ∈ Ac
n} we get

P{(x∗, F ) ∈ Ac
n} ≤ ecn/2 Pp{(x∗, F ) ∈ Ac

n} + P{Z < e−cn/2EZ(F )} .
The first term vanishes by assumption, and the second by Lemma B.2. �
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B.2 Clustering

The proof of Theorem 3.3 proceed in two steps. First we consider a pair (x∗, F ) drawn according to the
planted model and show that the planted solution is isolated from most of the other solutions. Next, we
use Theorem B.3 to transfer this statement to the uniform ensemble.

In order to estabilish the first result, we need the following estimate.

Lemma B.4 Let (x∗, F ) be an solution/instance pair distributed according to the planted model, and denote
by Z(2)(θ) the number of solutions x of F such that x∗ · x = nθ. Then, for any a < 1

Ep

{
Z(2)(θ)

∣∣ |x∗ · 1| ≤ na
}

= exp
{
nΨ(θ) + o(n)

}
, (52)

Ψ(θ) ≡ H(θ) + α log

{
Eϕ(ϕ,Tθϕ)

Eϕ{||ϕ||2}

}
. (53)

Proof. For the sake of simplicity we shall focus on the case x∗ · 1 = 0 (i.e. n is even and the planted
solution is perfectly balanced). It should be clear from the derivation that allowing for |x∗ · 1| ≤ na only
produces a change of order O(n−1+a) in the exponent.

Fix such a planted solution x∗, and let x be such that

∑

i:x∗
i =+1

x∗i xi =
n

2
θ+ ,

∑

i:x∗
i =−1

x∗ixi =
n

2
θ− , (54)

with (θ+ + θ−)/2 = θ (whence x∗ · x = nθ). Then

Pp(x is a solution |x∗) =
[
Pp(ϕa(xia(1), . . . , xia(k)) = 1|x∗)]nα , (55)

and by the definition of planted ensemble

Pp(ϕa(xia(1), . . . , xia(k)) = 1|x∗) =
1

nkϕ(x∗)

∑

ia(1),...,ia(k)

∑

ϕ

p(ϕ)ϕ(x∗ia(1), . . . , x
∗
ia(k))ϕ(xia(1), . . . , xia(k))

=
1

ϕ(x∗)
Eϕ(ϕ,Sθ+,θ−ϕ) ,

where we introduced the operator Sθ+,θ− acting as follows

Sθ+,θ−ϕ(x1, . . . , xk) ≡
∑

y∈{+1,−1}k

k∏

i=1

1 + θxixiyi

2
ϕ(y1, . . . , yk) . (56)

Further

Pp(x
∗ · 1 = 0) =

1

EZ(F )
ϕ(x∗)nα

(
n

n/2

)
.

Combining the above, and after a few algebraic manipulations, we get

Ep

{
Z(2)(θ)

∣∣ x∗ · 1 = 0
}

=
1

ϕ(x∗)nα

∑

θ++θ−=2θ

(
n/2

n(1 + θ+)/4

)(
n/2

n(1 + θ−)/4

)
[Eϕ(ϕ,Sθ+,θ−ϕ)]nα ,

31



where the sum runs over θ+, θ− ∈ {−1,−1+4/n, . . . , 1−4/n, 1}. Now letting δ = (θ+ − θ−)/2 and passing
to the Fourier transform, we get

Eϕ(ϕ,Sθ+,θ−ϕ) =
∑

Q1⊆Q2

Eϕ{ϕQ1ϕQ2}θ|Q1|δ|Q2|−|Q1| ≤
∑

Q

Eϕ{ϕ2
Q}θ|Q| = Eϕ(ϕ,Sθ,θϕ) ,

where we used Eq. (10). Also notice that (ϕ,Sθ,θϕ) = (ϕ,Tθϕ). Therefore, the sum over θ+, θ− can be
estimated by the θ+ = θ− term, up to a polynomial factor

Ep

{
Z(2)(θ)

∣∣x∗ · 1 = 0
}

=
1

ϕ(x∗)nα
nO(1)

(
n/2

n(1 + θ)/4

)2

[Eϕ(ϕ,Tθϕ)]nα .

The statement follows by noticing that ϕ(x∗) = Eϕ||ϕ||2 for x∗ balanced. �

Lemma B.5 Let (x∗, F ) be an solution/instance pair distributed according to the planted model pCSP(n, α, p)
and assume

Ω̃k

k
(log k)(1 + ε) ≤ α ≤ Ωk(log 2)(1 − ε) . (57)

Then there exists constants 0 < θ1 < θ2 < 1, and c, c′ > 0 such that, with probability at least 1 − e−cn the
following happens. The instance F does not admit any solution x with nθ1 ≤ x · x∗ ≤ nθ2, and the number
of solutions with x·x∗ ≥ nθ2 is at most e−nc′

EZ(F ) (expectation is here with resepct to the uniform model).

Proof. In view of Lemma B.4 it is sufficient to show that there θ∗ ∈ (0, 1) such that:

(a) Ψ(θ∗) < 0.

(b) supθ∈[θ∗,1] Ψ(θ) < log 2 + α logE||ϕ||2.

In order to prove (a), we first notice that, for any ε ∈ (0, 1/2)

Eϕ(ϕ,Tθϕ)

Eϕ||ϕ||2
≤ 1 − 1

(1 + ε)Ω̃k

+
1

(1 + ε)Ω̃k

e−k(1+ε)(1−θ) , (58)

provided θ > 1 − ε. Indeed both sides equal 1 at θ = 1. Further, the derivative of the left hand side can
be estimated as

d

dθ

Eϕ(ϕ,Tθϕ)

Eϕ||ϕ||2
= 2k

Eϕ(ϕ(1),Tθϕ
(1))

Eϕ||ϕ||2
≥ 2k

e−k(1+ε)(1−θ)
Eϕ||ϕ(1)||2

Eϕ||ϕ||2

= k e−k(1+ε)(1−θ) 2EϕI1(ϕ)

1 − 2EϕI1(ϕ)
≥ d

dθ

{
1 − 1

(1 + ε)Ω̃k

+
1

(1 + ε)Ω̃k

e−k(1+ε)(1−θ)

}
.

Here we used the following inequality, valid for any f : {+1,−1}k → {0, 1}, provided θ > 1 − ε

(f,Tθf) =
∑

Q

|fQ|2 θ|Q| ≥ ||f ||2θk ≥ ||f ||2e−k(1+ε)(1−θ) . (59)

Let α = (1 + ε)(Ω̃k/k)γ log k/k, and θ∗ = 1 − ω∗/k. Equation (58) implies

Ψ(θ∗ = 1 − ω∗/k) ≤ H(ω∗/k) −
γ

k
(log k) +

γ

k
(log k) e−(1+ε)ω∗ , (60)
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for all ε > ω∗/k. If we fix ε = ωmax/k, and let k → ∞, we finally obtain (for ω ∈ (0, ωmax))

Ψ(θ∗ = 1 − ω∗/k) ≤
{
ω∗ − γ + γ e−ω∗

} log k

k
+O(k−1) . (61)

As soon as γ > 1, we can find ω∗ such that ω∗ − γ + γ e−ω∗ < 1 (just take ω∗ = log γ). Further,
supθ∈[θ∗,1] Ψ(θ) = O(1/k) which is smaller than log 2+α logE||ϕ||2 for k large enough and α < Ωk(log 2)(1−
ε). �

Proof (Theorem 3.3). Consider a random instance from the CSP(n, α, p) ensemble, and sample a
solution x∗ uniformly at random. By Lemma B.5 and Theorem B.3, with high probability there is no
solution x such that x · x∗ ∈ [nθ1, nθ2]. Declare the cluster of x∗, C(x∗) to be the set of solutions x such
that x · x∗ ≥ nθ2. It will contain an exponential small fraction of solutions.

The same operation can be repeated enδ times. Since each cluster thus constructed is exponentially
small, for δ small enough the probability that any of the two clusters intersects is exponentially small. �

C Sharp Threshold Results for CSPs

Recall that in the previous section, we appealed crucially in two places to certain sharp transition behavior
of the CSP’s under consideration. We furnish the requisite references and details here.

Since we are interested in the behavior of binary k-CSP’s for large k, in what follows we may safely
assume that k ≥ 3. Once again for simplicity, let F = Fk(n, αn) denote a random binary CSP(n, α, p)
on n variables and αn clauses, and the distribution p over clauses satisfying the main conditions (1)–(4)
mentioned in Section 3. As is customary, for the SAT-UNSAT threshold to be meaningful, we also assume
that p satisfies the following elementary condition.

5. Unsatisfiability of the ensemble. For every ǫ = ±1, there is at least one clause g with pg > 0 such
that g (ǫ, . . . , ǫ) = 0. (Note that by the balance condition (2), necessarily g (−ǫ, . . . ,−ǫ) = 0).

Building on their previous work, Creignou and Daude recently showed [CD09] that the satisfiability of
Fk(n, αn) undergoes a sharp transition, except when the formula contains a function of one of the following
two types:

(i) A Boolean function f strongly depends on one component if there exist ǫ ∈ {+1,−1} and i with 1 ≤ i ≤ k
such that (x1, . . . , xn) ∈ {+1,−1}n and f(x1, . . . , xn) = 1 imply that xi = ǫ.

(ii) A Boolean function f strongly depends on a 2-XOR-relation if there exist i, j with 1 ≤ i 6= j ≤ k such
that (x1, . . . , xn) ∈ {+1,−1}n and f(x1, . . . , xn) = 1 imply that xi ⊕ xj = 1.

Theorem C.1 (CD09) With F = Fk(n, αn) and p satisfying (5) above, the transition from SAT(F ) to
UNSAT(F ) is sharp if and only if F contains no function strongly depending on one component and no
function strongly dependent on a 2-XOR-relation.

Note that we had used this result in completing the proof of the lower bound in Proposition 3.1, in
Appendix A.

We now furnish various details needed to justify that the property of having an exponential number of
solutions has a sharp threshold. Recall that this was needed to boost the Lemma B.2 (see Appendix B) in
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the proof of the clustering threshold, to show that the probability once bounded away from 0, is actually
tending to 1, as the problem size n went to infinity.

Let Φ be a formula on the variables y1, . . . , yl that can be constructed from our ensemble, let X =
{x1, . . . , xn} be a set of n variables (disjoint from {y1, . . . , yl}), and let Φn denote the set of all formulas
that result after substituting l distinct variables from X and replacing them in Φ. Given a CSP ensemble
F on n variables, let F ⊕Φ be equal to F ∧Φ∗, where Φ∗ is a random formula chosen uniformly from Φn.

We say a random ensemble F has the property AB = AB(F ) if F has fewer than 1
2B

n satisfying
assignments. We want to prove the following:

Lemma C.2 For any B ∈ [1, 2) there is a sequence tBn such that for any ǫ > 0,

lim
n→+∞

P
(
Fk

(
n, (1 − ǫ)tBn

)
has property AB

)
= 0, and (62)

lim
n→+∞

P
(
Fk

(
n, (1 + ǫ)tBn

)
has property AB

)
= 1.

Note that AB is a monotone property, since whenever F has the property, then F ∧ F ′ will have the
property for any formula F ′ on the variables {x1, . . . , xn}. We will use the following theorem of Friedgut
[F05] to prove that AB has a ‘sharp threshold’, in the sense of Lemma C.2.

Theorem C.3 (F05) Suppose that AB does not have a sharp threshold. Then, there exists α > 0, a
formula Φ, and for any n0 > 0, there exist n > n0, m > 0, and a formula F with variables x1, . . . , xn such
that all of the following hold:

T1 . P (F ⊕ Φ has the property AB) > 1 − α.

T2 . α < P (Fk(n,m) has the property AB) < 1 − 3α.

T3 . With probability at least α, a random formula Fk (n,m) contains an element of Φn as a subformula.

T4 . P (F ∧ Fk (n, 2 log n) has the property AB) < 1 − 2α.

A first observation is the subtle fact that Theorem C.3 is originally stated in terms of a parametric
Bernoulli model, while our model is Binomial. But it is the case, by standard arguments, that we can
translate results concerning the existence of a sharp threshold of monotone properties from one model to
other, provided that m is of order Ω (n). We will prove that this is the case, in step (1) below.

An important fact that we will use throughout is that, because of the feasibility condition, a pure literal
reduction scheme exists: Suppose that xl is a variable that appears only once in a formula F = C1∧· · ·∧Cm,
say, in the clause C1 = f

(
xl, xi1 , . . . , xik−1

)
. Then, any satisfying assignment χ : [n] \ {l} → {±1} of

C2 ∧ · · · ∧ Cm can be extended to a satisfying assignment χ̄ : [n] → {±1} of C1 ∧ C2 ∧ · · ·Cm, by setting
χ̄ (l) to the appropriate value (due to feasibility), such that f (χ̄ (l) , χ (i1) , . . . , χ (ik−1)) = 1.

Notice that using iteratively a pure literal reduction squeme, we can find a satisfying assignment for the
formula if we can iteratively find a variable contained once in the formula, eliminate the clause containing
the variable and proceed again with the new formula, until obtaining an empty formula. This procedure is
equivalent to such of finding the 2-core of the associated hypergraph [M05], and in fact, it is the case that
if the associated hypergraph has an empty 2-core, then this pure literal reduction scheme will be successful
in finding a satisfying assignment.

The approach we will use to prove Lemma C.2 goes along the lines of [AC08, Lemma 13], with some
variations that follow the work of Creignou and Daude in [CD02], [CD04] and [CD09] . As is standard in
these proofs, in the sequel we will assume the existence of α, Φ, n and m satisfying T1-T3 and to conclude
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that the property AB has a sharp threshold, we will prove that T4 cannot hold. Notice that we can always
assume that n is large enough, by choosing n0 appropriately. We will divide the core of the proof in three
steps: In the first one we determine the correct scaling of m. In the second step we prove that the small
formula Φ is indeed satisfiable. And, in the last step, we proceed in concluding that T4 does not hold,
completing the contradiction argument.

(1) Scaling of m:
Lower bound: Notice that for m ≡ ǫn/k, necessarily (1 − ǫ)n variables do not appear in Fk (n,m), so

that if Fk (n,m) is satisfiable, it contains at least 2(1−ǫ)n satisfying assignments. But, following [M05], there
is a constant c∗ such that if m < c∗n, then the hypergraph associated to Fk (n,m) w.h.p. does not have a
2-core, and as mentioned before, the pure literal reduction is successful in finding a satisfying assignment.
This proves, by choosing ǫ small enough, that for m ≡ ǫn/k, w.h.p., Fk (n,m) has at least 2(1−ǫ)n ≥ 1

2B
n

satisfying assignments. Therefore, by T2, it should be the case that m = Ω (n).
Upper bound: From the first moment estimates in the present paper, we have that there is a constant

Cp (depending only on p), such that w.h.p, a random formula Fk (n,Cpn) is not satisfiable. Therefore (by
T2), due to the monotonicity of AB it should be the case that m = O (n).

(2) Satisfiability of Φ: Given a formula Φ, define v (Φ) to be the number of variables in Φ, and w (Φ) to
be the number of clauses in Φ. By an easy counting, for any t ≥ 1, if m = O (n), then the probability that a
random formula Fk (n,m) contains a subformula Φ with w (Φ) ≤ t and such that v (Φ) ≤ (k − 1)w (Φ)−1,
goes to zero as n→ +∞. Now, if Φ is unsatisfiable, then it contains a minimal unsatisfiable formula ψ with
w (ψ) ≤ t, and therefore, by the previous conclusion, by T2 and T3, we have that v (ψ) > (k − 1)w (ψ)
w.h.p. Then, using [CD02, Lemma 5.2], ψ has either a constraint with k−1 variables appearing only once,
or it is unicyclic. In either case, for k ≥ 3, there is at least one variable appearing only once in the formula,
therefore the pure literal reduction operates, contradicting the minimality of ψ.

(3) Contradicting T4:

Step 3a: By T3 and the conclusion of step (1), Φ is w.h.p. satisfiable. Let {y1, . . . , yl} be the variables
appearing in Φ, and let σ : {1, . . . , l} → {±1} be a fixed satisfying assignment of Φ. We say that a
satisfying assignment χ of F is compatible with a tuple (z1, . . . , zl) ∈ [n]l if χ (zi) = σ (i) for all i = 1, . . . , l.
Furthermore, we say that the tuple (z1, . . . , zk) is bad if F has fewer than 1

2B
n satisfying assignments

compatible with (z1, . . . , zl). Notice that by T1, there are at least (1 − α)nl bad tuples.

Step 3b: By the Erdos-Simonovits theorem [ES82], if l k-tuples
(
w1

1, . . . , w
k
1

)
, . . . ,

(
w1

l , . . . , w
k
l

)
are

chosen uniformly at random and independently from nk, then with probability at least γ′, for every function

f : [l] → [k], the tuple
(
w

f(1)
1 , . . . , w

f(l)
l

)
is a bad tuple. In particular we have that with probability at

most
(
1 − pl

gγ
′)(log n)/l

, a random formula Fk (n, log n) will not contain l clauses C1, . . . , Cl satisfying

(i) Ci = g
(
v1
i , . . . , v

k
i

)
for i = 1, . . . , l, where g is the boolean function whose existence is implied by

condition 5.

(ii) For every function f : [l] → [k], the l-tuple
(
v

f(1)
1 , . . . , v

f(l)
l

)
is bad.

Therefore, by choosing n large enough, the probability that a random formula Fk (n, log n) contains
clauses satisfying (i) and (ii) is at least 1 − α.
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Step 3c: Let C1, . . . Cl be clauses satisfying (i) and (ii), and let χ : [n] → {±1} be a satisfying
assignment of F ∧ C1 ∧ . . . ∧ Cl. Then note that for every i = 1, . . . , l, there exists an f (i) such that

χ
(
v

f(i)
i

)
= σ (i). Otherwise, for some i, and all j = 1, . . . , k, χ

(
vj
i

)
= −σ (i), which implies that χ does not

satisfy Ci, which is a contradiction. It now follows that χ is compatible with
(
v

f(1)
1 , . . . , v

f(l)
l

)
. Therefore,

we conclude that every satisfying assignment of F ∧ C1 ∧ . . . ∧ Cl is compatible with
(
v

f(1)
1 , . . . , v

f(l)
l

)
for

some function f : [l] → [k]. But, by condition (ii), every one of these l-tuples is bad, and therefore, each one
does not have more than 1

2B
n satisfying assignments compatible with them. As a result, F ∧C1 ∧ . . . ∧Cl

does not have more than 1
2k

lBn satisfying assignments. Moreover, combining Step 2b and Step 2c, we
conclude that with probability at least 1−α, F ∧F ∗ contains at most 1

2k
lBn satisfying assignments, where

F ∗ is a random Fk (n, log n) formula.

Step 3d: Given a satisfying assignment χ : [n] → {±1}, with probability at least 21−k, the clause
g (v1, . . . vk), where (v1, . . . , vk) is chosen uniformly are random from [n]k, will not be satisfied by χ. In
particular a random clause will be satisfied by χ with probability at most 1 − pg2

1−k. More generally,

a random Fk (n, log n) will be satisfied by χ with probability at most
(
1 − pg2

1−k
)log n ≤ 1

nck , where
ck = pg2

1−k. Therefore, if F ∗∗ is a Fk (n, log n) random formula independent of F ∗, we have that

E
[
#sat. assign. of F ∧ F ∗ ∧ F ∗∗ | # sat. assign. of F ∧ F ∗ ≤ 1

2
klBn

]
≤ 1

2nck
klBn,

and therefore, by Markov’s inequality

P
[
#sat. assign. of F ∧ F ∗ ∧ F ∗∗ ≥ 1

2
Bn | # sat. assign. of F ∧ F ∗ ≤ 1

2
klBn

]
≤ kl

nck
,

which is less than α/2 for n large enough. Thus, combining the conclusion of Step 2c and the previous
formula, we obtain

P
[
#sat. assign. of F ∧ F ∗ ∧ F ∗∗ ≥ 1

2
Bn
]
≥ 3α/2,

and this contradicts T4, thereby proving that property AB has a sharp threshold.
�
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