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Gyarmati, Matolcsi, and Ruzsa recently noted [2] that Han-type inequalities can be applied
to sumsets in much the same way that they can be applied to characteristic functions of sets of
random variables (the usual situation). While it is not true (in general) that sumsets satisfy a log-
submodular relation in an obvious way, it is natural to ask whether they permit a weaker property,
by way of fractional subadditivity. It is classical (and recently reviewed in [4]) that fractional
subadditivity is weaker than log-submodularity and more general than Han’s inequalities. Here,
we extend an argument of [2] (more precisely, an idea in the proof of Theorem 1.2 in their paper),
make further use of entropy, and show general fractional subadditivity properties for sumsets that
imply some of the results and conjectures in[2] as easy corollaries.

It should be noted that some of the ideas in this paper were discovered independently by
Balister and Bollobás [1] who, following the works of [2] and [4], also developed a hierarchy of
entropy inequalities. This paper, however, constains some new ideas that can be used to extend
the results in [1] beyond sumsets in ways that were not considered in that paper.

1 Definitions

The important property of sumsets that we wish to exploit is that, for a fixed element a, the sum
a+ b depends only on b (no further knowledge about how a and b relate is needed). This idea leads
to a more general class of functions.

Definition 1. Let X1, X2, . . . , Xk be finite sets. Any subset S ⊂ [k] corresponds to a different
product space XS =

∏
i∈S Xi. For sets S ⊆ T ⊆ [k], we define the projection function πS : XT →

XS in the natural way: for x ∈ T , let πS(x) = (xi1 , . . . , xi|S|) where ij ∈ S. When the meaning is
clear, we will write πi(x) for π{i}(x).

We will denote Q(X1, X2, . . . , Xk) to be the space that is a disjoint union of each of the spaces
XS , for S ⊆ [k]. Formally,

Q(X1, X2, . . . , Xk) =
⋃

S∈[k]

{
(xi1 , . . . , xi|S|) : xi ∈ Xi, S = {i1, . . . , i|S|}

}
Let Y be any space and f : Q(X1, . . . , Xk) → Y be any function. Then, for a set S ⊂ [k], we define
fS : XS → Y to be the restriction of f to only those inputs that came from XS . We will abuse
notation by writing, for S ⊆ T and x ∈ T , fS(x) to mean fS(πS(x)).
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Let f be such a function and let G be a collection of subsets of [k]. We will say that f is
deterministic with respect to G if for all S ∈ G and for all x, y ∈ X[k] we have that f(x) = f(y)
whenever both fS(x) = fS(y) and fS(x) = fS(y) (here, S = [k] \ S).

In essence the definition above is designed to capture the property of sumsets that was mentioned
earlier. For a function f to be deterministic with respect to a single set S ⊂ [k], it must be that
fS(x) and fS(x) uniquely determine the value of f(x). Then, being deterministic with respect to
a collection G, is nothing more than being deterministic with respect to all G ∈ G. The following
examples show that both Cartesian products of sets and linear combinations of sets (and so, in
particular, sumsets) are deterministic with respect to G for any G.

Example 1. Let V be a vector space over the reals with basis vectors {v1, . . . , vk}. Let X1, . . . , Xk ⊆
R and define f : Q(X1, . . . , Xk) → V such that fS(x) =

∑
i∈S πi(x)vi. Then f is deterministic

with respect to G for all G ⊆ [k].

Proof. Let x ∈ XT for some T ⊆ [k] and let G ∈ G. Then

f(x) =
∑
i∈T

πi(x)vi =
∑

i∈(G∩T )

πi(x)vi +
∑

i∈(G∩T )

πi(x)vi = fG(x) + fG(x).

Thus knowing fG(x) and fG(x) uniquely determines f(x). Since this is true for any G ∈ G, f is
deterministic with respect to G.

Example 2. Let A be an Abelian group and X1, . . . , Xk ⊆ A and let c1, . . . , ck ∈ Z. Define
f : Q(X1, . . . , Xk) → A such that fS(x) =

∑
i∈S ciπi(x). Then f is deterministic with respect to G

for all G ⊆ [k].

Proof. The proof is identical to Example 1, only replacing ci with vi.

2 Proof

Our goal is to prove Theorem 1, stated below. Note that Example 1, which shows that the char-
acteristic function is deterministic, shows that Theorem 1 is, in fact, a generalization of normal
subadditivity.

Theorem 1. Let X1, X2, . . . , Xk be finite sets, G = {(αG, G)} be a fractional covering of [k],
and f be a function on Q(X1, . . . , Xk) that is deterministic with respect to G. Then for any set
R ⊆ f(X[k]),

|R| ≤
∏
G∈G

∣∣∣fG

(
f−1
[k] (R)

)∣∣∣αG

Proof. We first choose an arbitrary linear order on
⋃

Xi. Now let R be given, and for each r ∈ R,
let xr be the first element of f−1

[k] (R) ⊆ X[k] in lexicographical order, and let XR = {xr : r ∈ R}.
Let Z be a random variable chosen uniformly from XR, and for i ∈ [k], let Zi = πi(Z). Then by
fractional additivity,

log(|R|) = H(Z) = H(Z1, . . . , Zk) ≤
∑
G∈G

αGH(ZG) (1)
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where ZG = {Zi1 , . . . , Zi|G|}, where G = {ij} ⊆ [k]. Hence ZG = πG(Z) and by the chain rule of
entropy, for each G ∈ G, we have that:

H(πG(Z)|fG(Z)) + H(fG(Z)) = H (ZG, f(ZG)) = H(fG(Z)|πG(Z)) + H(πG(Z)). (2)

Here, H(fG(Z)|πG(Z)) = 0 since fG is a deterministic function, and so plugging in to the above
equation gives:

log (|R|) ≤
∑
G∈G

αGH (ZG) =
∑
G∈G

αG

(
H(fG(Z))−H(πG(Z)|fG(Z))

)
.

Now the key point is the following somewhat surprising claim, whose proof is more or less obvious;
this is also the essence (in addition to Han’s inequality) of the proof of Theorem 1.2 in [2].
Claim: H(πG(Z)|fG(Z)) = 0 for all G ∈ G.

Proof. It suffices to show that, for every G, fG is a one-to-one function when the domain is restricted
to πG(Z). Assume not. Then there are two elements a 6= b ∈ XG such that fG(a) = fG(b) and
both Pr(ZG = a) and Pr(ZG = b) are non-zero. Thus there must be “preimages” A,B ∈ XR such
that πG(A) = a and πG(B) = b and A 6= B (since otherwise a = b).

Without loss of generality, let A < B in lexicographical order on XG, and consider b′ = πG(B) ∈
XG. Let A′ ∈ X[k] be the vector

A′(i) =
{

ai for i ∈ G
b′(i) for i /∈ G

Clearly A′ < B in lexicographical order, and since

fG(A′) = fG(a) = fG(b) = fG(B) and fG(A′) = fG(b′) = fG(B)

we have that f(A′) = f(B). This is a contradiction, however, since we assumed B to be the smallest
such element in X[k] in lexicographical order.

So Equation (2) reduces to H(πG(Z)) = H(fG(Z)). Plugging this into Equation (1) yields:

log (|R|) ≤
∑
G∈G

αGH (fG(Z)) ≤
∑
G∈G

αG log
(∣∣fG

(
XR

)∣∣) ≤ ∑
G∈G

αG log
(∣∣∣fG(f−1

[k] (R))
∣∣∣)

where the last inequality is due to the fact that XR ⊆ f−1
[k] (R)), and so our claimed result is

true.

3 Corollaries

The following corollaries are a slight variant on Theorem 1 in that they do not directly define R;
rather, they pick a subset S of the image of one of the subspaces, then lift the preimage of S up to
the top space.

Corollary 1. Let A,B1, B2, . . . , Bk ⊆ R and define Bi = B1 + . . . + Bi−1 + Bi+1 + . . . + Bk for
i = 1, . . . , k and B = B1 + . . . + Bk. Then for any S ⊆ B, we have that

|A + S|k ≤ |S|
k∏

i=1

|A + Bi|
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Proof. Set X1 = A and Xi = Bi−1 for i = 2, . . . , k + 1, and X = X1, . . . , Xk+1. By Example 2,
the collection of functions fS(x) =

∑
i∈S xi is deterministic with respect to any G. Note that

S ⊆ f{1}(X), so let Q = f−1

{1}
(S), and set R = {f(a, b1, . . . , bk)} for all a ∈ A and all (b1, . . . , bk) ∈ Q.

Now choose

G =
{(

1
k
, {i}

)}
i∈[k+1]

.

By Theorem 1, we have that
|R| ≤

∏
G∈G

∣∣∣fG

(
f−1
[k] (R)

)∣∣∣αG

and we use that

f{1}

(
f−1
[k] (R)

)
= S and f{i}

(
f−1
[k] (R)

)
⊆ A + Bi−1

for i = 2, . . . , k + 1. The inequality follows.

Corollary 2. Let A,B1, B2, . . . , Bk ⊆ R. Then for any S ⊆ B, we have that

|A + S|k ≤ |S|k−1
k∏

i=1

|A + Bi|

Proof. The proof is the same as Corollary 2, just with a different covering:

G =
{(

1
k
, {1, i}

)}
i∈[k+1]

.

Remark. Clearly, various other covering families yield similar corollaries. We mention these only
because they offer direct generalizations of Theorem 1.5 in [2] and are independent of the results
in [1].

4 Further Research and Acknowledgments

While the results in this chapter provide an entire collection of inequalities for sumsets, a number
of known inequalities are not known to be implied by this method (see [5]). It would be interesting
to see if these inequalities can be deduced by the fractional subadditivity (or other properties) of
entropy. In particular, recent work of Madiman [3] derived sumset inequalities from the entropy
power inequality. Another possible direction of research would be to consider similar results in
nonabelian groups. Our results do not immediately extend to nonabelian groups, but perhaps a
more thorough analysis would give similar results.

We thank Imre Ruzsa for sharing the preprint [2], for helpful discussions, and finally for inform-
ing us of the independent and recent work of Balister–Bollobás. We also thank Béla Bollobás for
promptly sending us the preprint [1], which contains results of independent interest.
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