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Abstract

The subgaussian constant of a graph arises naturally in bounding the moment
generating function of Lipschitz functions on the graph, with a given probability
measure on the set of vertices. The closely related spread constant of a graph
measures the maximal variance over all Lipschitz functions on the graph. As such
they are both useful (as demonstrated in the works of Bobkov-Houdré-Tetali and
Alon-Boppana-Spencer) for describing the concentration of measure phenomenon
in product graphs. An equivalent formulation of the subgaussian constant using
a transportation inequality, introduced by Bobkov-Götze, is investigated here
in depth, leading to a new way of bounding the subgaussian constant. A tight
concentration result for the discrete torus is given as a concrete application. An
infinite family of graphs is also provided here to demonstrate that typically the
spread and the subgaussian constants differ by an order of magnitude.

1 Introduction

Let G = (V,E) be a connected finite graph with a distance (or cost) function d be-
tween the vertices. Let π be a probability measure on V . The subgaussian constant
σ2

π,d(G) (or just σ2 when the context is understood) is defined as the smallest constant
satisfying:

Eπ[et(f−Eπf)] ≤ eσ2t2/2, for all t ∈ R (1.1)

for every function f on V with Lipschitz constant 1 with respect to d. The subgaussian
constant was formally introduced in the context of graphs and studied in [5] (while it
was perhaps folklore as well as appearing implicitly in the earlier work of [2]) for
measure concentration purposes. It satisfies the tensoring property

σ2(G1�G2) ≤ σ2(G1) + σ2(G2),

with equality when G1 = G2. (In the above, on the Cartesian product graph G1�G2,
we take the product measure π1×π2.) This makes it useful for studying concentration
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in n-fold product graphs, Gn, with a product measure πn. Indeed, the inequality (1.1)
tensorizes to n-dimensions, and yields using the standard Chebyshev argument the
following concentration: for every n ≥ 1, for every Lipschitz f : V n → R, one gets

πn{f − Eπnf ≥ h} ≤ e−h2/(2nσ2(G)). (1.2)

Here f is Lipschitz with respect to the l1-type distance d on Gn.
Bobkov and Götze [4] showed that the subgaussian constant has an equivalent dual

formulation. In fact, they showed that the subgaussian constant is also the smallest
constant c = c(G, d, π) for which a so-called transportation inequality

W 2(ν, π) ≤ 2c D(ν||π) (1.3)

holds for all probability measures ν that are absolutely continuous with respect to π.
Here W (ν, π) is the Wasserstein distance between ν and π and D(ν||π) is the relative
entropy of ν with respect to π (see Section 2 for a full description of these terms).
Such transportation inequalities have received considerable attention in the continuous
settings of Riemannian manifolds etc...

In [2], Alon, Boppana, and Spencer introduced the spread constant c2π,d(G) (or just
c2 when the context is understood), as:

c2π,d(G) = sup
f

Varπ f, (1.4)

where the supremum is over f that are Lipschtiz with constant 1 with respect to d.
A main result of [2] is that c2(G) is the optimal constant governing an asymptotically
tight isoperimetric inequality – more precisely, in bounding the measure of At, for
any set A (of vertices) in Gn of measure at least 1/2, for medium-range enlargements:√
n � t � n. It is further observed in [2] and [5] that for every G and π, one has

σ2 ≥ c2.
While the above motivates the study of σ2 and c2 for various graphs, specific com-

putations and bounds on these constants are known for very few cases, such as the
complete graph and a path graph. The spread constant of a cycle Cl on l ≥ 3 vertices
has been computed (see Proposition 5.6 in [5]), and shown to be :

c2(Cl) =


(l2+8)

48
, if l: even

(l2−1)(l2+3)
48l2

, if l: odd

(1.5)

While the above was done using tedious case analysis, the question of computing the
subgaussian of a cycle was left open (see Conjecture 5.1 of [5]).

In the present work, we develop the transportation approach further, and prove
some general facts about the transportation inequality, and apply these facts towards
establishing a tight inequality for the cycle.

Here is a summary of our main results. In Theorem 3.2, we first show that for any
G, if σ2(G) 6= c2(G), then there is a probability measure ν other than π for which
W 2(ν, π) = 2σ2D(ν||π). We then use this fact (in its contrapositive form) to show that
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for every k ≥ 1, for the even cycle C2k, indeed σ2(C2k) = c2(C2k), under the uniform
probability measure (see Theorem 5.3). To deal with the odd cycle, in Theorem 5.5,
we use the (dual) transportation formulation of the subgaussian constant to show that
c2(C2k+1) < σ2(C2k+1) = c2(C2k+1)(1+ o(1)), for k ≥ 1, where o(1) goes to zero, k goes
to infinity. In the final section we show that the previous results are in some sense
unusual, although perhaps not surprising – that for typical families of graphs {Gn}∞n=1,
we have c2(Gn) � σ2(Gn) – in particular, for bounded degree expander (family of)
graphs Gn on n vertices, we show that σ2 = Ω(log n) while c2 = Θ(1), independent of
n. This is proved as our final Theorem 6.2.

The result on cycles bears some similarity to a recent result of Chen and Sheu [8],
who found the exact value of the log-Sobolev constant ρ of the even cycle. They prove
that for the even cycle, ρ equals the spectral gap λ1, using the fact that the inequality
ρ ≤ λ1 is actually an equality if there is no minimizer – that is, if there is no function
for which the log-Sobolev inequality is satisfied with equality, but is achieved only in
the limit. While we see no formal connection between the two results, our result for the
odd cycle does raise the intriguing question of whether ρ(C2k+1) = λ1(C2k+1)(1+o(1)),
for k ≥ 1, where o(1) disappears as k goes to infinity.

Prior to our work, the subgaussian constant of a 3-cycle C3 with the uniform mea-
sure was shown to be 1/(6 log 2) in [5], which is the smallest graph with the uniform
measure for which σ2 is distinct from the spread constant c2. In [5], the exact val-
ues of the subgaussian for a few other graphs were computed, including the 2-point
space with arbitrary probability measure, and the completely connected graph and the
path of arbitrary length with uniform probability measure. They reduce the problem
of finding σ2(C3) with the uniform measure to finding the subgaussian constant on a
non-uniformly weighted path of length two. While this approach extends to finding
the subgaussian of a completely connected graph on an arbitrary number of vertices,
computing the same on cycles of length larger than four remained open! In this work,
besides establishing various general properties of optimal measures ν arising from (1.3),
we solve the problem of estimating σ2(Cn) asymptotically, irrespective of the parity of
n.

Following and extending seminal work by Bollobás-Leader [6, 7], Riordan [13] com-
pleted solving the isoperimetric problem on the discrete torus consisting of a product
of even cycles, by finding an ordering on the torus for which the initial segments are
sets of smallest surface area. These authors note that their proof cannot extend to
products of cycles of odd length because the extremal sets in powers of an odd cycle
(of the cube of the 3-cycle, for example), are not necessarily nested. Our work is per-
tinent here, since by finding tight bounds on the subgaussian constant of a cycle, and
using tensoring, we get a tight concentration result for the discrete torus without going
through the isoperimetric problem.

The results for the cycle are proved in Section 5, while much of the work for the last
proposition of Section 5 is contained in a collection of lemmas in Section 4. Section 3
contains lemmas concerning the transportation formulation of the subgaussian constant
that are not specific to determining the constant on the cycle, although they are used in
the proofs in Section 5. To start off the process, Section 2 gives the necessary definitions
and facts, and goes through the proof of the equivalence of the two formulations,
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(1.1) and (1.3), of the subgaussian constant. Section 6 describes the result concerning
expander graphs, and we conclude with a brief discussion of some open problems.

2 Preliminaries

For the graph G = (V,E), let Lip(G) denote the set of functions on V with Lipschitz
constant 1 with respect to the distance function d: for f ∈ Lip(G), |f(x) − f(y)| ≤
d(x, y), for all x, y ∈ V . Let P (G) denote the set of probability measures on V . For
ν, π ∈ P (G), let P (ν, π) denote the set of probability measures on V ×V with first and
second marginals ν and π respectively. For fixed ν, π ∈ P (G) let

M(µ) =
∑

x,y∈V

d(x, y)µ(x, y) (2.6)

for any µ ∈ P (ν, π). The problem of minimizing M(µ) over all µ ∈ P (ν, π) is the mass
transportation problem, originally formulated by Monge in the 18th century. We will
refer to this problem simply as Monge’s problem, and any µ ∈ P (ν, π) which minimizes
M(µ) will be referred to as a solution to Monge’s problem with respect to ν and π. In
our discrete setting, Monge’s problem is simply a linear programming problem, so it
has a corresponding dual formulation. Again for fixed ν, π ∈ P (G) let

K(f, g) =
∑
x∈V

f(x)ν(x) + g(x)π(x)

for any functions f and g on V . The problem of maximizing K(f, g) over the set
of functions f and g for which f(x) + g(y) ≤ d(x, y) for all x, y ∈ V is the linear
programming dual of Monge’s problem. We refer to the problem as Kantorovich’s
problem, because in the 1940’s Kantorovich formulated the dual of Monge’s problem
in general (in the continuous setting where it is not simply a linear programming
problem). If the distance function d satisfies the triangle inequality, Kantorovich’s
problem simplifies to minimizing

K(f) =
∑
x∈V

f(x)(ν(x)− π(x)) (2.7)

over f ∈ Lip(G). Throughout the rest of the paper we will assume that d satisfies the
triangle inequality. Hence any single function f ∈ Lip(G) that minimizes K(f) will
be referred to as a solution to Kantorovich’s problem with respect to ν and π. The
joint optimal value of Monge’s and Kantorovich’s problems is called the Wasserstein
distance between ν and π and is denoted by W (ν, π).

The Wasserstein distance is found on the left hand side of the transportation in-
equality (1.3), while the right hand side contains the relative entropy (or informational
divergence) of ν with respect to π, defined by:

D(ν||π) =
∑
x∈V

ν(x) log

(
ν(x)

π(x)

)
=
∑
x∈V

[g(x) log g(x)]π(x),
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where g = ν/π may be considered the (discrete) density of ν with respect to π. To make
sure that the relative entropy is well defined, we only consider ν that are absolutely
continuous with respect to π. In the present discrete setting this simply means that
ν(x) = 0 if π(x) = 0. This ensures that we do not divide by zero, except for the case

of 0
0
. If ν(x) = π(x) = 0, then by convention we let ν(x)

π(x)
= 1. Also by convention,

we define 0 log(0) = 0, so that D(ν||π) is a continuous function of ν on the subset
of measures in P (G) that are absolutely continuous with respect to π. When ν = π
we have equality in the transportation inequality since both sides of the inequality are
zero and so no restriction is placed on σ2. Hence in finding the optimal constant we
may restrict ourselves to considering ν ∈ P (G) \ {π}.

We use a couple of notational conveniences that merit mention. First, recall a
fairly standard notation that, for a positive f , Entπ f := Eπ(f log f)− (Eπf)(log Eπf) .
Observe that when f = dν/dπ, we have Entπ f = D(ν‖π). Second, because E and Ent
will always be taken with respect to the measure π, we will usually omit the π in Eπ

and Entπ.
We will need the following standard complementary slackness theorem for dual

linear programming problems (see for example Theorem 5.2 in [9]).

Lemma 2.1. Let f be a Lipschitz function on V and let µ be a probability measure on
V × V with marginals ν and π. Then

f(x)− f(y) = d(x, y) for every x, y ∈ V with µ(x, y) > 0 (2.8)

if and only if f is a solution to Kantorovich’s problem and µ is a solution to Monge’s
problem both with respect to ν and π.

Solutions to Monge’s problem are in general not unique. The following lemma
shows that we can always consider a solution to Monge’s problem in which mass is
never moved both into a vertex and out of the same vertex (given without proof).
The fact that the following is true, in any metric space setting where we are trying to
minimize the average distance transported, can be inferred from the discussion on the
dual problem in the original paper of Kantorovich [11]; it also follows from Lemma 2.11
of McCann-Gangbo [10].

Lemma 2.2. Suppose ν ∈ P (G). Then there exists a solution µ to Monge’s problem
with respect to ν and π with the following properties for every y ∈ V :

• If ν(y) ≥ π(y) then µ(x, y) > 0 implies that x = y.

• If ν(y) ≤ π(y) then µ(y, z) > 0 implies that z = y.

In the following we rederive the result from [4] in the present discrete context (for
completeness), of the equivalence of the two formulations of the subgaussian inequality,
paying close attention to the state of optimality in both formulations. Proposition 2.3
below states their result and the following Proposition 2.4 is our refinement of it.

Proposition 2.3 (Bobkov-Götze). Let σ be a positive real number. Then the following
two statements are equivalent.
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1. Eπ

[
et(f−Eπ [f ])

]
≤ eσ2t2/2 for every Lipschitz function f and real number t.

2. W 2(ν, π) ≤ 2σ2D(ν||π) for every measure ν absolutely continuous with respect
to π.

Proposition 2.4. Suppose that σ is a positive real number for which the two statements
in Proposition 2.3 are true. Then we have:

(a) Suppose that there exists a Lipschitz function f̃ and real number t̃ > 0 with the

property that E
[
et̃(f̃−E[f̃ ])

]
= eσ2 t̃2/2. Define ν̃ by dν̃ = et̃(f̃−E[f̃ ])−σ2 t̃2/2dπ. Then

we have ν̃ ∈ P (G) with ν̃ 6= π and W 2(ν̃, π) = 2σ2D(ν̃||π). Furthermore, f̃ is a
solution to Kantorovich’s problem with respect to ν̃ and π and t̃2 = 2

σ2D(ν̃||π).

(b) Suppose there exists ν̃ ∈ P (G) with ν̃ 6= π and W 2(ν̃, π) = 2σ2D(ν̃||π). Let
f̃ be a solution to Kantorovich’s problem with respect to ν̃ and π. Then f̃ and

ν̃ are related by dν̃ = et̃(f̃−E[f̃ ])−σ2 t̃2/2dπ for t̃ =
√

2
σ2D(ν̃||π). And we have

E
[
et̃(f̃−E[f̃ ])

]
= eσ2 t̃2/2 .

In the following we prove Proposition 2.4, building on the proof of Proposition 2.3
from [4]. First we observe the following easy, but useful, corollary.

Corollary 2.5. Suppose ν̃ ∈ P (G) with ν̃ 6= π and W 2(ν̃, π) = 2σ2D(ν̃||π). Then up
to translation there exists a unique solution f̃ to Kantorovich’s problem with respect to
ν̃ and π. And for each x, y ∈ V , f̃(x) > f̃(y) if and only if ν̃(x)

π(x)
> ν̃(y)

π(y)
.

Proof of Corollary 2.5. Suppose f̃ and g̃ are solutions to Kantorovich’s problem with
respect to ν̃ and π. Then by Proposition 2.4 they are related by et̃(f̃−E[f̃ ])−σ2 t̃2/2 =
et̃(g̃−E[g̃])−σ2 t̃2/2. Hence f̃ − g̃ = E[g̃ − f̃ ] which is a constant, proving the first part.

The second part follows directly from the fact that ν̃(x)
π(x)

= et̃(f̃(x)−E[f̃ ])−σ2 t̃2/2 for each
x ∈ V .

We start with a couple of well-known inequalities. The first is Young’s inequality
and the second is a fairly standard, but extremely convenient (technically) one which
we prove for completeness.

Young’s inequality : uv ≤ u log u− u+ ev, u ≥ 0, v ∈ R , (2.9)

where equality occurs if and only if u = ev.

Lemma 2.6.

E[eh] ≤ 1 ⇐⇒ E[gh] ≤ Ent[g] for every density g.

And if either side is true, then E[gh] = Ent[g] for some density g if and only if E[eh] = 1
and g = eh.
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Proof. Suppose g is a probability density on V with respect to π and that h : V → R.
For x ∈ V , apply Young’s inequality (2.9) with u = g(x) and v = h(x) to get:

g(x)h(x) ≤ g(x) log g(x)− g(x) + eh(x).

Note that equality holds if and only if g(x) = eh(x). Then we can take expectations of
both sides to get:

E[gh] ≤ Ent[g]− 1 + E[eh]

where there is equality if and only if g = eh (i.e. g(x) = eh(x) for all x ∈ V ).
If E[eh] ≤ 1, then

E[gh] ≤ Ent[g]

with equality if and only if E[eh] = 1 and g = eh. So E[eh] ≤ 1 implies that E[gh] ≤
Ent[g] for every density g, with equality if and only if E[eh] = 1 and g = eh.

Now suppose that for some h we have E[gh] ≤ Ent[g] for every density g. Choose
c > 0 so that E[ceh] = 1. Let g = ceh. Then g is a density and E[gh] ≤ Ent[g] tells us
that

cE[heh] ≤ cE[eh(log c+ h)]

This implies that (log c)E[eh] ≥ 0, so c ≥ 1, and hence E[eh] ≤ 1. Then by the previous
paragraph, we have E[gh] = Ent[g] if and only if E[eh] = 1 and g = eh. Hence the
lemma.

Proof of Proposition 2.4. Part (a). First suppose there exists a positive real number
σ such that for all real t and Lipschitz f we have

E
[
et(f−E[f ])

]
≤ eσ2t2/2

or equivalently

E
[
et(f−E[f ])−σ2t2/2

]
≤ 1.

Now suppose there exists a Lipschitz function f̃ and a real number t̃ > 0 with the
property that

E
[
et̃(f̃−E[f̃ ])−σ2 t̃2/2

]
= 1.

Note that f̃ cannot be a constant function since t̃ 6= 0. Now for any real t and Lipschitz
f , we can use the preliminary result above to get:

E
[(
t(f − E[f ])− σ2t2/2

)
g
]
≤ Ent[g]

for every density g. Let g̃ = et̃(f̃−E[f̃ ])−σ2 t̃2/2. Then there is equality when f = f̃ , t = t̃,
and g = g̃. Simplifying and rearranging, we get that for all Lipschitz f and t > 0:

E [fg − f ] ≤ σ2t

2
+

1

t
Ent[g]

for every density g, with equality when f = f̃ , t = t̃, and g = g̃. Now for a fixed
non-constant density g consider the function

φg(t) =
σ2t

2
+

1

t
Ent[g]
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defined on positive t. Taking derivatives with respect to t shows us that φg(t) has a
unique minimum at

t = t∗(g) =

√
2 Ent[g]

σ
.

Now
φg(t

∗(g)) =
√

2σ2 Ent[g].

So for every Lipschitz f and t > 0 we have

E [fg − f ] ≤
√

2σ2 Ent[g] ≤ σ2t

2
+

1

t
Ent[g].

for every density g, with equality both places when f = f̃ , t = t̃, and g = g̃. Since f̃
is not a constant function and t̃ 6= 0 we get that g̃ is not a constant density. So t∗(g̃)

is the unique minimum of φg̃(t) giving us t̃ = t∗(g̃) =

√
2Ent[g̃]

σ
, since t̃ also minimizes

φg̃(t). Let dν̃ = g̃dπ. Then in terms of probability measures ν instead of densities g,
we have that for all Lipschitz f :∑

x∈V

f(x)(ν(x)− π(x)) ≤
√

2σ2D(ν||π).

for every probability measure ν absolutely continuous with respect to π. There is
equality when f = f̃ and ν = ν̃. Finally this tells us that

W2(ν, π) ≤ 2σ2D(ν||π)

for every ν absolutely continuous with respect to π. There is equality when ν = ν̃ and
in this case f̃ is a solution to Kantorovich’s problem with respect to ν̃ and π. And
t̃2 = 2

σ2D(ν̃||π).

Part (b). We start by assuming that there exists a positive real number σ with the
property that for all probability measures ν absolutely continuous with respect to π
we have

W2(ν, π) ≤ 2σ2D(ν||π).

Next suppose there exists a probability measure ν̃ 6= π with

W2(ν̃, π) = 2σ2D(ν̃||π).

Let f̃ be a solution to Kantorovich’s problem with respect to ν̃ and π. Then we get∑
x∈V

f(x)(ν(x)− π(x)) ≤
√

2σ2D(ν||π)

for every Lipschitz f and ν absolutely continuous with respect to π, with equality if
f = f̃ and ν = ν̃. Let g̃ be the density of ν̃ with respect to π. Note that g̃ is not a
constant function since ν̃ 6= π. Then we can rewrite this in terms of densities g with
respect to π instead of measures ν getting:

E [fg − f ] ≤
√

2σ2 Ent[g] ,
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for every Lipschitz f and density g, with equality if f = f̃ and g = g̃. Equivalently we
can write:

E [(f − E[f ])g] ≤
√

2σ2 Ent[g] ,

for every Lipschitz f and density g, with equality if f = f̃ and g = g̃. Furthermore,

E [(f − E[f ])g] ≤
√

2σ2 Ent[g] ≤ σ2t

2
+

1

t
Ent[g] ,

for every Lipschitz f , density g, and t > 0. Let t̃ =

√
2Ent[g̃]

σ
, and note that t̃ > 0.

Then we have equality everywhere if f = f̃ , g = g̃, and t = t̃. So we get

E

[(
t(f − E[f ])− σ2t2

2

)
g

]
≤ Ent[g] ,

for every Lipschitz f , density g, and t > 0, with equality when f = f̃ , g = g̃, and t = t̃.
Then by our preliminary result we have:

E
[
et(f−E[f ])−σ2t2

2

]
≤ 1 ,

for every Lipschitz f and t > 0, with equality when f = f̃ and t = t̃. And we have

g̃ = et̃(f̃−E[f̃ ])−σ2 t̃2

2 . Finally we have

E
[
et(f−E[f ])

]
≤ e

σ2t2

2

for every Lipschitz f and real number t, with equality when f = f̃ and t = t̃.

3 Facts about the Transportation Formulation

The following lemma is useful for proving that the subgaussian constant and the spread
constant are different.

Lemma 3.1. Let f be a Lipschitz function with E[f ] = 0 and Var[f ] = c2. If E[f 3] 6= 0
then σ2 > c2.

Proof. Let f be a Lipschitz function with E[f ] = 0 and Var[f ] = c2. On the subset of
P (G) for which the denominator is not zero, we define the function F as:

F (ν) =
D(ν||π)(∑

x∈V f(x)(ν(x)− π(x))
)2

Then for each ν for which F (ν) is defined, because f is not necessarily a solution to
Kantorovich’s problem with respect to ν and π, we have

F (ν) ≥ D(ν||π)

W 2(ν, π)
≥ 1

2σ2
. (3.10)
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For positive ε small enough that |εf(x)| < 1 for every x ∈ V , define the measure νε by
dνε = (1 + εf)dπ. Consider the following limit:

lim
ε→0

F (νε) = lim
ε→0

∑
x∈V (1 + εf(x)) log(1 + εf(x))π(x)(∑
x∈V f(x)[(1 + εf(x))π(x)− π(x)]

)2
=

1

2E[f 2]
=

1

2c2
.

Let I be an open interval around 0 small enough so that |εf(x)| < 1 for every x ∈ V
and ε ∈ I. Define H : I → R by

H(ε) =

{
F (νε), ε 6= 0
1

2c2
, ε = 0

As a real-valued function defined over the (real) interval I, note that H is continuous
at 0 by the previous limit. Furthermore we have

d

dε
H(ε)

∣∣∣∣
ε=0

=
−1

6
E[f 3]

E[f 2]2
.

Now suppose E[f 3] 6= 0. Then d
dε
H(ε)

∣∣
ε=0

6= 0, which implies there exists ε 6= 0 with

H(ε) < H(0). This means there exists ν ∈ P (G) with ν 6= π and F (ν) < 1
2c2

. With
(3.10) this gives us σ2 > c2.

The following theorem provides a sufficient condition for obtaining equality in the
transportation inequality, and is of independent interest.

Theorem 3.2. If σ2 6= c2 then there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) =
2σ2D(ν||π).

Proof. Define F : P (G) \ {π} → R by

F (ν) =
D(ν||π)

W 2(ν, π)
,

so that
1

2σ2
= inf

ν∈P (G)\{π}
F (ν).

To prove the theorem we must show that the infimum is attained under our assumption
that σ2 6= c2.

First let us note that F is continuous since D(·||π) and W (·, π) are continuous, and
because W (ν, π) = 0 only if ν = π. At this point, if P (G) \ {π} were compact, we
would be done. We will show that if ν is near π then F (ν) is too large to be relevant
to the infimum. Let us use the l1 norm so that if, for example, we have µ1, µ2 ∈ P (G),
then

‖µ1 − µ2‖ =
∑
x∈V

|µ1(x)− µ2(x)|.
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Since we assume that σ2 6= c2 and we know in general that σ2 ≥ c2, there exists ε > 0
such that σ2 > (1 + ε)c2. Let m = min{π(x) : x ∈ V and π(x) 6= 0}. Then let K and
δ1 be positive real numbers with

1

2
− 3δ1 ≥ K =

1

2(1 + ε)
.

Next let δ2 be a positive real number small enough that m− δ2 > 0 and

δ2
m− δ2

≤ δ1.

Let ν ∈ P (G) \ {π} with ‖ν − π‖ ≤ δ2. Let a(x) = 1 − ν(x)/π(x) for x ∈ V . Then
‖a‖ ≤ 1

m
‖ν − π‖ ≤ δ2

m
. Let f be a solution to Kantorovich’s problem with respect to ν

and π with E[f ] = 0. Then

F (ν) =

∑
x∈V (1− a(x)) log (1− a(x))π(x)(∑

x∈V f(x)a(x)π(x)
)2 .

For each x ∈ V we have |a(x)| ≤ ‖a‖ ≤ δ2
m
< 1, so we may use the Taylor expansion of

log(1− a(x)) to get log(1− a(x)) = −a(x)− 1
2
a(x)2 +R3(−a(x)), where R3(−a(x)) is

the remainder term. From this we obtain |R3(−a(x))| ≤ a(x)2 |a(x)|
1−|a(x)| ≤ a(x)2 δ2

m−δ2
≤

a(x)2δ1. Since 1− a(x) is positive we have:

(1− a(x)) log(1− a(x)) = (1− a(x))[−a(x)− (1/2)a(x)2 +R3(−a(x))]
≥ −a(x) +Ka(x)2 .

Hence:

F (ν) ≥
∑

x∈V (−a(x) +Ka(x)2)π(x)(∑
x∈V f(x)a(x)π(x)

)2
≥ K∑

x∈V f(x)2π(x)
≥ K

c2
=

1

2(1 + ε)c2
. (3.11)

where the first inequality in (3.11) is by Cauchy-Schwarz. Let B(π, δ2) = {µ ∈ P (G) :
‖µ− π‖ < δ2}. Let 〈νi〉∞i=1 be a sequence of measures in P (G) \ {π} with the property
that F (νi) → 1/(2σ2) as i→∞. Now

1

2σ2
<

1

2(1 + ε)c2

so there exists an integer N so that for all integers i ≥ N we have

F (νi) <
1

2(1 + ε)c2

So νi ∈ P (G) \B(π, δ2) for all integers i ≥ N . Hence

inf
ν∈P (G)\B(π,δ2)

F (ν) =
1

2σ2
, (3.12)

Since P (G) \B(π, δ2) is compact and F is continuous on P (G) \B(π, δ2), the infimum
in (3.12) is attained. Hence there exists ν 6= π with W 2(ν, π) = 2σ2D(ν||π).
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The following two lemmas are inspired by Theorem 2.1 of [2], concerning the func-
tion achieving the spread constant.

Lemma 3.3. Suppose that there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π).
Let f be a solution to Kantorovich’s problem with respect to ν and π. Then for every
Q ( V we have:

• If
∑

x∈Q ν(x) ≥
∑

x∈Q π(x) then there exists a vertex x ∈ Q and a vertex y /∈ Q
with f(x)− f(y) = d(x, y).

• If
∑

x∈Q ν(x) ≤
∑

x∈Q π(x) then there exists a vertex x ∈ Q and a vertex y /∈ Q
with f(x)− f(y) = −d(x, y).

We note that if the distance d under consideration is the graph distance, then the
vertices x and y may be taken to be neighbors.

Proof. Let Q ( V , and define the function fε for each real ε by:

fε(x) =

{
f(x), x /∈ Q
f(x) + ε, x ∈ Q

Then recalling the function K from Section 2, we have

K(fε) =
∑
x∈V

f(x)(ν(x)− π(x)) + ε
∑
x∈Q

(ν(x)− π(x))

= K(f) + ε
∑
x∈Q

(ν(x)− π(x)).

First suppose that
∑

x∈Q ν(x) >
∑

x∈Q π(x). Since the coefficient of ε is positive and
f is a solution to Kantorovich’s problem with respect to ν and π (i.e. it maximizes
the function K over Lipschitz functions), we must have that for every positive ε, fε /∈
Lip(G). Hence there exists x ∈ Q and y /∈ Q with f(x) − f(y) = d(x, y). Now
suppose that

∑
x∈Q ν(x) <

∑
x∈Q π(x). The coefficient of ε is now negative, so we

must have that for every negative ε, fε /∈ Lip(G). Hence there exists x ∈ Q and
y /∈ Q with f(x) − f(y) = −d(x, y). Finally suppose that

∑
x∈Q ν(x) =

∑
x∈Q π(x).

Then K(fε) = K(f) for every ε. Hence fε is a solution to Kantorovich’s problem
with respect to ν and π whenever fε ∈ Lip(G). Since Q is a strict subset of V , fε is
not a translation of f for any ε 6= 0. By Corollary 2.5, f is the unique solution to
Kantorovich’s problem up to translation, so we must have that for every non-zero ε,
fε /∈ Lip(G). The conclusion then follows.

For this lemma we assume that we are using the graph distance.

Lemma 3.4. Suppose that there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π).
Let f be any solution to Kantorovich’s problem with respect to ν and π. Then, up to
a possible translation, f is integer-valued and has the property that for some U ⊂ V ,
f(x) = ±d(x, U) for all x ∈ V .
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Proof. Let f be a solution to the Kantorovich problem with respect to ν and π. We
start by showing that a translation of f will be integer valued. Consider the graph Gf

with vertex set V and edge set Ef ⊂ E where {x, y} ∈ Ef if and only if {x, y} ∈ E
and |f(x)− f(y)| = 1. Assume to the contrary that Gf is not connected and let C be
the set of vertices in one of the connected subgraphs. Then Lemma 3.3 applied to the
(original connected) graph G, with C playing the role of the set Q in the lemma, gives
us neighbors x and y with x ∈ C and y ∈ V \ C and f(x) − f(y) = ±d(x, y) = ±1.
Hence {x, y} ∈ Ef contradicting the assertion that Ef contains no edges between C
and V \ C. So Gf is connected. Hence a translation of f will be integer valued.

For the next part we assume f is integer valued and consider the following set:

U =

{
x ∈ V : ν(x) ≥ π(x) and

ν(x)

π(x)
≤ ν(y)

π(y)
for all y ∈ V with ν(y) ≥ π(y)

}
If x, y ∈ U , then ν(x)

π(x)
= ν(y)

π(y)
and hence f(x) = f(y) by Corollary 2.5. By translating

f we may assume that f(x) = 0 for all x ∈ U . Let O = {|f(x)| : x ∈ V }. Then O
contains every integer between 0 and some maximum value.

The proof of the lemma can now be done by induction on |f(x)|. For the base case

let x ∈ V with |f(x)| = 0. Then f(x) = f(u) for some u ∈ U . Hence ν(x)
π(x)

= ν(u)
π(u)

again

by Corollary 2.5. So x ∈ U and d(x, U) = 0, showing that f(x) = d(x, U). Now let
m ∈ O and assume that f(x) = ±d(x, U) for any x ∈ V with |f(x)| ≤ m. Suppose
m+ 1 ∈ O. Let z ∈ V with |f(z)| = m+ 1.

Case (i). Suppose that f(z) > 0. Since f(z) > f(u) for some u ∈ U , we have
ν(z)
π(z)

> ν(u)
π(u)

≥ 1 by Corollary 2.5. By Lemma 3.3, since ν(z) > π(z) there exists a

neighbor x of z with f(z)−f(x) = 1. Then f(x) = m and by the induction hypothesis,
f(x) = d(x, U). So f(z) = d(z, x) + d(x, U) ≥ d(z, U), by the triangle inequality. Let
u ∈ U with d(z, u) = d(z, U). Then since f ∈ Lip(G) we have d(z, U) = d(z, u) ≥
|f(z)− f(u)| = f(z) ≥ d(z, U). Thus f(z) = d(z, U).

Case(ii). Now consider the case that f(z) < 0. Since f(z) < f(u) for some u ∈ U ,

we have by Corollary 2.5 that ν(z)
π(z)

< ν(u)
π(u)

. So ν(z) < π(z) by the definition of U . Hence

there exists a neighbor x of z with f(z) − f(x) = −1. So f(x) = −m and f(x) =
−d(x, U) by the induction hypothesis. This means that f(z) = −(d(z, x) + d(x, U)) ≤
−d(z, U). Let u ∈ U with d(z, u) = d(z, U). Then since f is Lipschitz we have
d(z, U) = d(z, u) ≥ |f(z) − f(u)| = −f(z) ≥ d(z, U). This gives us f(z) = −d(z, U),
concluding the induction step. Hence, f(x) = ±d(x, U) for all x ∈ V , proving the
lemma.

4 Specific Lemmas for the Method

Lemma 4.1. (x + y − 1) log(x + y − 1) ≥ x log(x) + y log(y) for (x, y) ∈ A where
A = {(x, y) ∈ R2 : (x+ y ≥ 1) AND (x, y ≥ 1 OR x, y ≤ 1)} .

Proof. Let f(x, y) = x log(x) + y log(y) − (x + y − 1) log(x + y − 1). We must show
that f(x, y) ≤ 0 on A. Note that f(1, y) = f(x, 1) = 0 for all (x, y) ∈ A. It suffices
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to show that ∂f
∂x

(x, y) ≥ 0 for (x, y) ∈ A with x, y ≤ 1 and ∂f
∂x

(x, y) ≤ 0 for (x, y) ∈ A
with x, y ≥ 1.

∂f

∂x
= log

(
x

x+ y − 1

)
.

So the lemma follows by noting that x
x+y−1

≥ 1 for (x, y) ∈ A with x, y ≤ 1 and
x

x+y−1
≤ 1 for (x, y) ∈ A with x, y ≥ 1.

We will need the following three lemmas for passing from the case of the even
cycle to that of the odd cycle. Let G = (V,E) with z ∈ V and z1, z2 /∈ V . Let π be a
probability measure on V and let π̃ be a probability measure on Ṽ = (V \{z})∪{z1, z2}.
Assume that π̃(x) = kπ(x) for x ∈ V \ {z} and that π̃(z1) = π̃(z2) = kπ(z), where k is
the constant necessary to make π̃ a probability measure. Let us note that k = 1

1+π(z)
,

giving us k = n
n+1

when π is the uniform measure on G.

Lemma 4.2. Let g be a probability density on Ṽ with respect to π̃, with the above
definitions. Define f on V as follows: let f(x) = g(x) for x ∈ V \ {z} and f(z) =
g(z1) + g(z2) − 1. Then f is a probability density on V with respect to π. More over,
if g(z1), g(z2) ≤ 1 or g(z1), g(z2) ≥ 1, then Entπ[f ] ≥ 1

k
Entπ̃[g].

Proof. The fact that f is a probability density with respect to π on V follows from the
choice of k mentioned above, and then the rest of the proof is a direct application of
Lemma 4.1.

Let ν ∈ P (G) and let µ be a solution to Monge’s problem with respect to ν and π.
Assume z has the following properties:

• If ν(z) ≥ π(z) then x ∈ V with µ(x, z) > 0 implies that x = z.

• If ν(z) ≤ π(z) then x ∈ V with µ(z, x) > 0 implies that x = z.

Note that Lemma 2.2 guarantees that we can always find a µ so that these properties are
satisfied for any z. Suppose G̃ = (Ṽ , Ẽ) is a graph with distance function d̃ satisfying
the triangle inequality and the following conditions:

1. d̃(x, y) ≥ d(x, y) for every x, y ∈ V \ {z}.

2. d̃(x, y) = d(x, y) for every x, y ∈ V \ {z} with µ(x, y) > 0.

3. d̃(x, z1) ≥ d(x, z) and d̃(x, z2) ≥ d(x, z) for every x ∈ V \ {z}.

4. d̃(x, z1) = d(x, z) or d̃(x, z2) = d(x, z) for every x ∈ V \ {z}.

Then we get the following result.

Lemma 4.3. There exists ν̃ ∈ P (G̃) satisfying the following properties:

1. W (ν̃, π̃) = kW (ν, π).
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2.
ν̃(x)

π̃(x)
=
ν(x)

π(x)
for every x ∈ V \ {z}.

3.
ν̃(z1)

π̃(z1)
+
ν̃(z2)

π̃(z2)
− 1 =

ν(z)

π(z)

4. If ν(z) ≥ π(z) then ν̃(z1) ≥ π̃(z1) and ν̃(z2) ≥ π̃(z2). If ν(z) ≤ π(z) then
ν̃(z1) ≤ π̃(z1) and ν̃(z2) ≤ π̃(z2).

Proof. Let V1 = {x ∈ V \ {z} : d(x, z) = d̃(x, z1)}. Let V2 = (V \ {z}) \ V1. Then
d(x, z) = d̃(x, z2) for all x ∈ V2 by Condition 4 above. We now construct a joint
distribution µ̃ on Ṽ × Ṽ with marginals π̃ and a measure ν̃, and show that this ν̃
satisfies the properties in the statement of the lemma. The idea behind the following
construction is fairly obvious – for i = 1, 2, vertex zi plays the role of z as far as the
vertices in Vi are concerned; it is inefficient to transport mass between z1 and vertices
in V2, and analogously between z2 and those in V1; on the rest, µ̃ is identical µ, except
for the normalizing factor k.

Define µ̃ : Ṽ × Ṽ → R by

µ̃(x, y) = kµ(x, y) x, y ∈ V \ {z}
µ̃(z1, x) = kµ(z, x) x ∈ V1

µ̃(x, z1) = kµ(x, z) x ∈ V1

µ̃(z1, x) = 0 x ∈ V2

µ̃(x, z1) = 0 x ∈ V2

µ̃(z2, x) = kµ(z, x) x ∈ V2

µ̃(x, z2) = kµ(x, z) x ∈ V2

µ̃(z2, x) = 0 x ∈ V1

µ̃(x, z2) = 0 x ∈ V1

µ̃(z1, z1) = kµ(z, z) + k
∑

x∈V2
µ(x, z)

µ̃(z2, z2) = kµ(z, z) + k
∑

x∈V1
µ(x, z)

µ̃(z2, z1) = 0
µ̃(z1, z2) = 0

By direct calculation it can be seen that π̃ is the second marginal of µ̃. Now define
ν̃ : Ṽ → R by ν̃(x) =

∑
y∈Ṽ µ̃(x, y). By definition ν̃ is the first marginial of µ̃.

Properties 2 and 3, once verified, can be used to show that indeed ν̃ is a probability
measure on Ṽ .

The verification of Properties 2 and 3 is straightforward, but we include the details
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for proving the latter of the two:

ν̃(z1) + ν̃(z2) =
∑
y∈Ṽ

µ̃(z1, y) +
∑
y∈Ṽ

µ̃(z2, y)

=
∑
y∈V1

µ̃(z1, y) +
∑
y∈V2

µ̃(z1, y) + µ̃(z1, z1) + µ̃(z1, z2)

+
∑
y∈V1

µ̃(z2, y) +
∑
y∈V2

µ̃(z2, y) + µ̃(z2, z1) + µ̃(z2, z2)

= k

[∑
y∈V1

µ(z, y) + 0 + µ(z, z) +
∑
x∈V2

µ(x, z) + 0

]

+k

[
0 +

∑
y∈V2

µ(z, y) + 0 + µ(z, z) +
∑
x∈V1

µ(x, z)

]
= k

∑
x∈V

µ(z, x) + k
∑
x∈V

µ(x, z)

= k[ν(z) + π(z)].

This is what we want after dividing both sides by kπ(z) and recalling that π̃(z1) =
π̃(z2) = kπ(z).

Now we will verify Property 4, working only with z1 since the calculations are
similar for z2:

ν̃(z1) = k

[∑
y∈V1

µ(z, y) + µ(z, z) +
∑
x∈V2

µ(x, z)

]

= k

[∑
y∈V1

µ(z, y)−
∑
x∈V1

µ(x, z) + π(z)

]

If ν(z) ≥ π(z), then µ(x, z) > 0 implies that x = z and so

ν̃(z1) = k

[∑
y∈V1

µ(z, y) + π(z)

]
≥ kπ(z) = π̃(z1).

If ν(z) ≤ π(z), then µ(z, y) > 0 implies that y = z and so

ν̃(z1) = k

[
−
∑
x∈V1

µ(x, z) + π(z)

]
≤ kπ(z) = π̃(z1).

We finally verify Property 1. Let f be a solution to Kantorovich’s problem on G
with respect to ν and π. Define f̃ : Ṽ → R by f̃(x) = f(x) for x ∈ Ṽ \ {z1, z2} and
f̃(z1) = f̃(z2) = f(z). First let us verify that f̃ is Lipschitz with respect to d̃. Suppose
x, y ∈ Ṽ \ {z1, z2}. Then by Condition 1 we have:

|f̃(x)− f̃(y)| = |f(x)− f(y)| ≤ d(x, y) ≤ d̃(x, y).
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By Condition 3, for i ∈ {1, 2} and for all x ∈ Ṽ \ {z1, z2} we have:

|f̃(x)− f̃(zi)| = |f(x)− f(z)| ≤ d(x, z) ≤ d̃(x, zi).

Finally |f̃(z1)− f̃(z2)| = 0 ≤ d̃(z1, z2). So f̃ is Lipschitz with respect to d̃. Next we use
Lemma 2.1 to show that f̃ is a solution to Kantorovich’s problem and µ̃ is a solution
to Monge’s problem both with respect to ν̃ and π̃. Suppose x, y ∈ Ṽ \ {z1, z2} with
µ̃(x, y) > 0. Then by the definition of µ̃ we must also have µ(x, y) > 0. So by the
definition of f̃ , Lemma 2.1, and Condition 2 we get:

f̃(x)− f̃(y) = f(x)− f(y) = d(x, y) = d̃(x, y)

If µ̃(x, zi) > 0 for some x ∈ Ṽ \ {z1, z2} and i ∈ {1, 2}, then µ(x, z) > 0 and x ∈ Vi so
that

f̃(x)− f̃(zi) = f(x)− f(z) = d(x, z) = d̃(x, zi).

Similarly, if µ̃(zi, y) > 0 for some y ∈ Ṽ \ {z1, z2} and i ∈ {1, 2}, then µ(z, y) > 0 and
y ∈ Vi so that

f̃(zi)− f̃(y) = f(z)− f(y) = d(z, y) = d̃(zi, y).

Finally we note that µ̃(z1, z2) = µ̃(z2, z1) = 0, and f̃(zi) − f̃(zi) = 0 = d̃(zi, zi) for
i ∈ {1, 2}. Hence for x, y ∈ Ṽ , µ̃(x, y) > 0 implies that f̃(x) − f̃(y) = d̃(x, y). So by
Lemma 2.1, µ̃ is a solution to Monge’s problem and f̃ is a solution to Kantorovich’s
problem, both on G̃ with respect to ν̃ and π̃. And now we can finish the verification
of property 1 (using properties 2 and 3):

W (ν̃, π̃) =
∑
x∈Ṽ

f̃(x)(ν̃(x)− π̃(x))

=
∑

x∈V \{z}

f̃(x)(ν̃(x)− π̃(x)) + f̃(z1)(ν̃(z1)− π̃(z1)) + f̃(z2)(ν̃(z2)− π̃(z2))

=
∑

x∈V \{z}

f(x)(kν(x)− kπ(x)) + f(z)(kν(z) + kπ(z)− kπ(z)− kπ(z))

= k
∑
x∈V

f(x)(ν(x)− π(x)) = kW (ν, π) .

For a solution µ to Monge’s problem with respect to ν and π, define the equivalence
relation ∼µ on V to be the smallest equivalence relation for which x ∼µ y if µ(x, y) > 0
or µ(y, x) > 0. Let {Vi}m

i=1 be the equivalence classes generated by ∼µ. Let Gi =
(Vi, Ei) for i ∈ [m] be the subgraphs of G induced by Vi. Let πi be a probability
measure on Vi defined by πi(x) = kiπ(x) for x ∈ Vi, where ki is the appropriate
constant that makes πi a probability measure. We will note that if π is the uniform
measure on V , then πi is the uniform measure on Vi and ki = n

|Vi| . Let di denote the

distance function on Gi defined by di(x, y) = d(x, y) for x, y ∈ Vi. Define νi ∈ P (Gi)
by νi(x) = kiν(x), for x ∈ Vi. Then we get the following lemma.
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Lemma 4.4.

W (ν, π) =
m∑

i=1

1

ki

W (νi, πi) .

Proof. Let µ be a solution to Monge’s problem with respect to ν and π and let f be a
solution to Kantorovich’s problem with respect to ν and π. Define µi : Vi× Vi → R by

µi(x, y) = kiµ(x, y), for x, y ∈ Vi

and f : Vi → R by
fi(x) = f(x), for x ∈ Vi.

By direct calculation, µi has first and second marginals νi and πi respectively. By
Lemma 2.1, µi is a solution to Monge’s problem and fi is a solution to Kantorovich’s
problem both on Gi with respect to νi and πi. We may now verify the statement of
the lemma:∑

i∈[m]

1

ki

W (νi, πi) =
∑
i∈[m]

1

ki

∑
x,y∈Vi

di(x, y)µi(x, y)

=
∑
i∈[m]

∑
x,y∈Vi

d(x, y)µ(x, y) =
∑

x,y∈V

d(x, y)µ(x, y) = W (ν, π) .

5 Application to the Cycle

For this entire section, we assume that π is the uniform measure on the graph under
consideration, and the distance function is always the graph distance.

Lemma 5.1. Suppose f is an integer valued Lipschitz function on the vertices of a
cycle C = (V,E). Then there exist a, b ∈ V and a permutation p of V that satisfy the
following properties:

• f(p(x)) is Lipschitz.

• f(p(x)) is non-decreasing along the two internally disjoint paths from a to b.

Proof. Let m = minx∈V f(x) and M = maxx∈V f(x). Let w1, w2 ∈ V with f(w1) = m
and f(w2) = M . Let [m,M ] denote the integers between and includingm andM . Since
f is integer valued and Lipschitz, and because C is a connected graph, f(V ) = [m,M ].
Suppose c is an integer with m < c < M and let x1 ∈ V with f(x1) = c. Since C − x1

(which is the graph C with vertex x1 and all edges incident with x1 deleted) is still
a connected graph and f is Lipschitz on C − x1, we also have f(V \ {x1}) = [m,M ]
and so there exists x2 ∈ V \ {x1} with f(x2) = c. Hence we can find V1, V2 ⊂ V
with V1 ∪ V2 = V , V1 ∩ V2 = {w1, w2}, and f(V1) = f(V2) = [m,M ]. From this we
can form paths P1 and P2 (not necessarily subgraphs of C) using vertex sets V1 and
V2 respectively with the property that f is non-decreasing on each path from w1 to
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w2. It also follows that f is Lipschitz on each path. We can then form the cycle
J = (V,E(P1)∪E(P2)), which has the property that f is Lipschitz and non-decreasing
on the two internally disjoint paths from w1 to w2. Let p be an isomorphism between
C and J , and let a = p−1(w1) and b = p−1(w2). Then a, b and p are the desired vertices
and permutation.

Lemma 5.2. Let C = (V,E) be a cycle and suppose there exists ν ∈ P (C) with ν 6= π
and W 2(ν, π) = 2σ2D(ν||π). Then there exists z ∈ V with the property that one of
the functions f(x) = d(x, z) or f(x) = −d(x, z) is a solution to Kantorovich’s problem
with respect to ν and π.

Proof. By Lemma 3.4, let f be an integer valued solution to Kantorovich’s problem
with respect to ν and π. Then there exist vertices a and b and a permutation p of V
satisfying the properties of Lemma 5.1. Let f̃(x) = f(p(x)). Let ν̃(x) = ν(p(x)). Since
the image of V under ν̃ is equal as a multiset to the image of V under ν (and since π
is the uniform measure), we have D(ν̃||π) = D(ν||π). Also,

W (ν, π) =
∑
x∈C

f(x)(ν(x)− π(x)) =
∑
x∈C

f(p(x))(ν(p(x))− π(p(x)))

=
∑
x∈C

f̃(x)(ν̃(x)− π(x)) ≤ W (ν̃, π).

This leads us to:
1

2σ2
=

D(ν||π)

W 2(ν, π)
≥ D(ν̃||π)

W 2(ν̃, π)
≥ 1

2σ2
.

And so the inequalities must actually be equalities. This means that ν̃ gives equality in
the transportation inequality and f̃ is a solution to Kantorovich’s problem with respect
to ν̃ and π.

Let P1 and P2 be the two internally disjoint paths from a to b. Since f̃ is non-
decreasing along P1 and P2 from a to b, we have f̃(a) ≤ f̃(x) ≤ f̃(b) for every x ∈ V .
Since f̃ is Lipschitz, for any integer c with f̃(a) < c < f̃(b) there must exist a (unique)
x1 ∈ P1 and a (unique) x2 ∈ P2 with f̃(x1) = f̃(x2) = c.

Suppose to the contrary that there exist vertices x′ and x′′ both in the same path
Pi (for i = 1 or 2) with f̃(x′) = f̃(x′′) = c. Since f̃ is non-decreasing along Pi, there
exist adjacent x′ and x′′ with this property. By Corollary 2.5, ν̃(x′) = ν̃(x′′) since
f̃(x′) = f̃(x′′). Let v′ be the neighbor of x′ other than x′′ and let v′′ be the neighbor
of x′′ other than x′, so that the vertices between a and b in Pi appear in the order,
a · · · v′x′x′′v′′ · · · b, as shown in Figure 1. Then f̃(v′) ≤ f̃(x′) = f̃(x′′) ≤ f̃(v′′) since f̃
is non-decreasing along Pi. If ν̃(x′) = ν̃(x′′) ≥ π(x′′) then by Lemma 3.3 there must
exist a neighbor y′′ of x′′ with f(y′′) < f(x′′). But x′′ has only two neighbors, so this
is a contradiction. Similarly, if π(x′) ≥ ν̃(x′) = ν̃(x′′) then there exists a neighbor
y′ of x′ with f(y′) > f(x′) which is again a contradiction. Hence for every integer c
with f̃(a) < c < f̃(b), for each i ∈ {1, 2}, there exists exactly one vertex x ∈ Pi with
f̃(x) = c.

Next assume that there exist three adjacent vertices r ∼ s ∼ t ∈ V with f̃(r) =
f̃(s) = f̃(t), noting that this is only possible if this joint value is f̃(a) or f̃(b). By
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Figure 1: Distance from a Point

Lemma 3.3 (applied with Q = {s}), we derive that s must have a neighbor x with
f̃(x) > f̃(s) or f̃(x) < f̃(s), which is a contradiction.

Now there are an even number of vertices for which f̃ attains values strictly between
f̃(a) and f̃(b), and there are at most two vertices which attain the maximum value,
f̃(b), and at most two which attain the minimum value, f̃(a). So if |V | is odd, there
exists only one vertex on which the maximum value of f̃ is attained or one vertex on
which the minimum value of f̃ is attained. By translating f̃ so that respectively either
the maximum or minimum value is zero, we get that f̃(x) = −d(x, b) or f̃(x) = d(x, a).

If |V | is even then we must show there cannot be two vertices on which f̃ attains
the maximum value and two vertices on which f̃ attains the minimum value. Let P
be a path in C along which f̃ is strictly increasing, starting from one of the vertices
on which f̃ attains the minimum value and ending on one of the vertices on which
f̃ attains the maximum value. Then by Lemma 3.3 (applied with the vertices of P
playing the role of Q in the lemma) one of the following must be true: either the vertex
of P which attains the maximum value of f̃ must have a neighbor outside P with a
different value of f̃ or the vertex of P which attains the minimum value of f̃ must
have a neighbor outside P with a different value of f̃ . Hence there can only be one
vertex on which f̃ attains the maximum value or one vertex on which f̃ attains the
minimum value. But since |V | is even, f̃ attains both the maximum and minimum
values at only one vertex. By translating f̃ we can choose to get either f̃(x) = −d(x, b)
or f̃(x) = d(x, a).

Now f(V ) is equal to f̃(V ) as a multiset. But up to rotations of the cycle and
translations of the function, there is only one integer valued Lipschitz function on C
with this image as a multiset. So f is just a translation and a rotation of f̃ . Hence
after a possible translation, our original function f must satisfy either f(x) = d(x, z)
for some vertex z ∈ V or f(x) = −d(x, z) for some vertex z ∈ V .

We now prove the main results on the subgaussian constant of even and odd cycles.
The first proof benefits from some observations made in [5] in the course of showing
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σ2(C4) = c2(C4).

Theorem 5.3. If C is a cycle with an even number of vertices, then σ2(C) = c2(C).

Proof. Let C = (V,E) be a cycle on 2n vertices. Let π be the uniform measure on
V so that π(x) = 1

2n
for every x ∈ V . Assume to the contrary that σ2 6= c2. Let x0

be an arbitrary vertex in V . Let f(x) = d(x, x0). From Theorem 3.2, Lemma 5.2 and
Proposition 2.4 we know that there exists a t 6= 0 such that E

[
et(f−Ef)

]
= eσ2t2/2. So

σ2(C) is actually the smallest constant s so that for this particular f , E
[
et(f−Ef)

]
≤

est2/2 for every real number t. Let Lf (t) = log E
[
et(f−Ef)

]
. Now E[f ] = n/2. So

Lf (t) = log

[
1

2n

(
et(0−n/2) + 2

n−1∑
i=1

et(i−n/2) + et(n−n/2)

)]
(5.13)

=

 log

[
1
2n

(
e

nt
2 + e−

nt
2 − 2e−

nt
2 (et−ent)
et−1

)]
t 6= 0

0 t = 0 .
(5.14)

Consider the function

φ(t) = Lf (t)−
st2

2
.

Then σ2(C) is the smallest constant s for which φ(t) ≤ 0 for every real number t. We
will consider the following derivatives of φ:

φ′(t) = L′f (t)− s2t, φ′′(t) = L′′f (t)− s2, and φ′′′(t) = L′′′f (t)

Since Lf (t) is an even function, φ(t) is also an even function, so φ′(t) is an odd function
and φ′(0) = 0. We also have that φ(0) = 0. Then in order to have φ(t) ≤ 0 for all real
t, we must have φ′′(0) ≤ 0, implying s ≥ L′′f (0). But, in fact, we will show that if we
set s = L′′f (0) then φ(t) ≤ 0 for all real t. So the smallest constant s for which φ(t) ≤ 0
for all real t is L′′f (0), meaning that σ2(C) = L′′f (0).

To show that φ(t) ≤ 0 for all real t when s = L′′f (0) we first restrict ourselves to
t ≥ 0 since φ(t) is an even function. Then we show that L′′f (t) < L′′f (0) for every t > 0.
Hence φ′′(0) = 0 and φ′′(t) < 0 for all t > 0, giving us φ′(0) = 0 and φ′(t) < 0 for all
t > 0, finally giving us φ(0) = 0 and φ(t) < 0 for all t > 0.

Now to show that φ′′(t) < φ′′(0) for all t > 0, we note that φ′′′(0) = 0 again because
φ(t) is an even function. Then we show that φ′′′(t) < 0 for all t > 0. Now for t 6= 0 we
have:

φ′′′(t) = L′′′f (t) =
1

(et − 1)3(et + 1)3(ent − 1)3
· A(t, n),

where

A(t, n) =
(
2et + 12e3t + 2e5t + 36e(3+2n)t + 6e(5+2n)t + 6e(1+2n)t

+3n3e(2+2n)t + 3n3e(4+2n)t + n3e(6+2n)t + n3e(6+n)t

−12e(3+3n)t − 36e(3+n)t − 6e(5+n)t − 2e(5+3n)t − 6e(1+n)t

−2e(1+3n)t − n3ent − n3e2nt − 3n3e(4+2n)t − 3n3e(4+n)t
)
.
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Although we are only interested in positive integers n ≥ 2, for a fixed t, if we allow n
to take on any positive real value then φ(t) is a differentiable function of n. Now for
n = 2 we have:

φ′′′(t) = −2et(et − 1)

(et + 1)3
,

and so φ′′′(t) < 0 for any t > 0 in this case. Finally we show that for every t > 0

∂

∂n
φ′′′(t) < 0,

for all n ≥ 2. Hence φ(t) < 0 for all integers n ≥ 2 and real t > 0.
So for t > 0 we calculate:

∂

∂n
φ′′′(t) =

−n2

8 (sinh(nt/2))4 (nt(2 + cosh(nt))− 3 sinh(nt))

To show that ∂
∂n
φ′′′(t) < 0 for every real n ≥ 2 and t > 0 it suffices to show that

ψ(t) = nt(2 + cosh(nt))− 3 sinh(nt) > 0 ,

for every real n ≥ 2 and t > 0. We’ll start by taking some derivatives:

d
dt
ψ(t) = n(2− 2 cosh(nt) + nt sinh(nt)) ,

d2

dt2
ψ(t) = n2(nt cosh(nt)− sinh(nt)) ,

d3

dt3
ψ(t) = n4t sinh(nt)) .

Now ψ(t), d
dt
ψ(t), and d2

dt2
ψ(t) are zero when t = 0, and d3

dt3
ψ(t) is strictly positive for

t > 0. Hence d2

dt2
ψ(t), d

dt
ψ(t) and ψ(t) are all strictly positive for t > 0.

Now that we have shown that σ2(C) = L′′f (0) we may take our pick of contradictions.
First, we have shown that φ(t) < 0 for t 6= 0 when s = σ2(C) = L′′f (0). This contradicts

the fact that there exists a t 6= 0 for which E
[
et(f−Ef)

]
= eσ2t2/2. Or we could note that

L′′g(0) = Var[g] for any g. From [5], it is known that Var[f ] = c2(C) for our particular
function f . Hence we have shown that σ2(C) = c2(C), yielding another contradiction.

Thus we may safely conclude that, in fact, σ2(C) = c2(C).

Proposition 5.4. If C is a cycle with an odd number of vertices, then σ2(C) > c2(C).

Proof. Let C be a cycle with 2n+ 1 vertices. It is known from [5] that for any vertex
x0, the function f(x) = d(x, x0) is optimal for the spread constant of this graph,

meaning that Var[f ] = c2(C). Now E[f ] = n(1+n)
1+2n

. If we set g(x) = f(x) − E[f ], then

Var[g] = c2(C) and E[g] = 0, but E[g3] = −n2(1+n)2

2(1+2n)2
6= 0. So by Lemma 3.1 we have

σ2(C) > c2(C).
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Figure 2: Bounding the Subgaussian of the Odd Cycle

Theorem 5.5. Suppose that C is a cycle with an odd number n of vertices. Then
σ2(C) = c2(C)(1 +O(1/n)).

Proof. Let C = (V,E) be a cycle on n vertices, where n ≥ 3 is an odd integer. From
Proposition 5.4 we know that σ2(C) 6= c2(C). Hence, by Theorem 3.2, there exists
ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π). Let µ be a solution to Monge’s
problem with respect to ν and π given to us by Lemma 2.2. By Lemma 5.2, there
exists z ∈ V so that either the function f(x) = d(x, z) or the function f(x) = −d(x, z)
is a solution to Kantorovich’s problem with respect to ν and π. Let v1 and v2 be the
two neighbors of z. For z1, z2 /∈ V , let C̃ = (Ṽ , Ẽ) be the graph obtained from C by

• Ṽ = (V \ {z}) ∪ {z1, z2}.

• Ẽ retains all edges of E, except for the edges {v1, z} and {z, v2}. Additionally,
we have new edges {z1, v1}, {z2, v2} ∈ Ẽ.

We will verify that C̃ satisfies the conditions before Lemma 4.3.
For Condition 1, suppose x, y ∈ V \ {z}. If the distance between x and y in C̃ is

infinite, then we are done. Otherwise suppose P is a shortest path between x and y in
C̃. Since z1 and z2 each have only one neighbor and they are not the endpoints of P ,
they cannot appear in P . Hence P only contains edges and vertices that appear in C,
meaning P is a path in C between x and y. So d̃(x, y) ≥ d(x, y).

For Condition 2 suppose that x, y ∈ V \ {z} with µ(x, y) > 0. Let P be a shortest
path in C between x and y. We will show that P is also a path in C̃. Since µ(x, y) > 0
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we have f(x) − f(y) = d(x, y). Suppose to the contrary that z is a vertex in P . We
need to consider two possible cases.

First suppose f(·) = d(·, z). Then we would have f(x) − f(y) < f(x) − f(z) ≤
d(x, z). But then we have d(x, y) < d(x, z) contradicting the fact that z is a vertex in
the shortest path from x to y. Next assume f(·) = −d(·, z), then we would have
f(x) − f(y) < f(z) − f(y) ≤ d(z, y). But then we have d(x, y) < d(z, y) again
contradicting the fact that z ∈ P . So in fact z /∈ P , and P only contains vertices
that are also vertices of C̃. Because f is Lipschitz and d(x, y) = f(x) − f(y) we get
that for every edge {s, t} in P , |f(s)−f(t)| = 1. This means that {s, t} is also an edge
of C̃. So P is also a path in C̃.

Finally we verify Conditions 3 and 4. Let x ∈ V \ {z}. C̃ has two connected
components, one containing z1 and the other containing z2. By construction, if x is in
the component containing z1 then d̃(x, z1) = d(x, z) and d̃(x, z2) = ∞. Likewise, if x
is in the component containing z2 then d̃(x, z1) = ∞ and d̃(x, z2) = d(x, z).

So Lemma 4.3 gives us a probability measure ν̃ satisfying the four properties of the
lemma. If we look at the equivalence relation ∼µ̃ defined before Lemma 4.4, we obtain
the two graphs C̃1 = (Ṽ1, Ẽ1) and C̃2 = (Ṽ2, Ẽ2), which are both paths on (n + 1)/2
vertices. Next, we may apply Lemmas 4.2, 4.3, and 4.4 to help complete the proof of
the theorem. Note that in the computation below, while making use of Lemmas 4.2
and 4.3, we recall that k = n

n+1
, while in making use of Lemma 4.4, we use k1 = k2 = 2:

W 2(ν, π) =

[
n+ 1

n
W (ν̃, π̃)

]2

=

(
n+ 1

n

)2(
1

2
W (ν̃1, π̃1) +

1

2
W (ν̃2, π̃2)

)2

≤
(
n+ 1

n

)2(
1

2
W 2(ν̃1, π̃1) +

1

2
W 2(ν̃2, π̃2)

)
≤

(
n+ 1

n

)2 (
σ2(C̃1)D(ν̃1||π̃1) + σ2(C̃2)D(ν̃2||π̃2)

)
=

(
n+ 1

n

)2

σ2
(
Pn+1

2

)
(D(ν̃1||π̃1) +D(ν̃2||π̃2))

=

(
n+ 1

n

)2

σ2
(
Pn+1

2

)
∑

x∈Ṽ1

ν̃1(x)

π̃1(x)
log

(
ν̃1(x)

π̃1(x)

)
π̃1(x) +

∑
x∈Ṽ2

ν̃2(x)

π̃2(x)
log

(
ν̃2(x)

π̃2(x)

)
π̃2(x)


= 2

(
n+ 1

n

)2

σ2
(
Pn+1

2

)
D(ν̃||π̃) ≤ 2

(
n+ 1

n

)
σ2(Pn+1

2
)D(ν||π) .

Hence

σ2(Cn) ≤ σ2(Pn+1
2

)

(
n+ 1

n

)
=
n2 + 3n− 1− 3

n

48

= c2(Cn)

(
1 +

3n3 − 3n2 − 3n+ 3

n4 + 2n2 − 3

)
= c2(Cn)

(
1 +O

( 1

n

))
.
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Remark. We could have gotten a slightly easier, but weaker, bound :

W 2(ν, π) =

[
n+ 1

n
W (ν̃, π̃)

]2

≤
(
n+ 1

n

)2

2σ2(Cn+1)D(ν̃||π̃) ≤ 2
n+ 1

n
σ2(Cn+1)D(ν||π),

(5.15)

resulting in σ2(Cn) ≤ n+1
n
σ2(Cn+1). The bound is weaker since σ2

(
Pn+1

2

)
< σ2(Cn+1).

6 Subgaussian and Spread Constant of Expanders

Here we show that the above result, σ2(Cv) = c2(Cv)(1 + o(1)) for the cycles Cv

on v vertices, is in some sense unusual. We begin with a family of graphs {Gn =
(Vn, En)}∞n=1. For each graph Gn we associate a probability measure πn on Vn, and
we let vn denote the number of vertices in Gn. We now discover circumstances under
which c2(Gn) � σ2(Gn), starting with a lemma bounding σ2 from below in a manner
similar to the lower bound on the spectral gap λ1 by Alon and Milman in [3].

Lemma 6.1. Suppose G = (V,E) is a graph with an associated probability measure
π. Suppose further that π∗ = minx∈V π(x) is strictly positive. Then σ2(G) ≥ D2

32 log 1
π∗

,

where D is the diameter of G.

Proof. Let x, y ∈ V with d(x, y) = D. Let

Ax = {v ∈ V : d(x, v) ≤ d(v, y)} and Ay = {v ∈ V : d(x, v) ≥ d(v, y)}

Then π(Ax) ≥ 1
2

or π(Ay) ≥ 1
2
. Without loss of generality suppose π(Ax) ≥ 1

2
. Let

v∗ ∈ Ax with the property that d(y, Ax) = d(y, v∗). Then

D = d(x, y) ≤ d(x, v∗) + d(v∗, y) ≤ 2d(v∗, y) = 2d(y, Ax)

giving d(y, Ax) ≥ D/2. So {v ∈ V : d(v, Ax) ≥ D/2} is not empty. Then by a standard
application (see, for example, Proposition 1.7 of [12]) of (1.2), with n = 1, and f being
the distance to the set Ax, we get:

π∗ ≤ π({v ∈ V : d(v, Ax) ≥ D/2}) ≤ e−
(D/2)2

8σ2 .

Solving for σ2 gives the result.

Theorem 6.2. There exist graphs Gn on n vertices, for which σ2(Gn) = Ω(log n),
while c2(Gn) = Θ(1), independent of n.

Proof. Applying the above lemma to our family of graphs, letting Dn be the diameter
of Gn and assuming that π(·) is the uniform measure, we get:

σ2(Gn) ≥ D2
n

32 log vn

.
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If Dn �
√

log vn, then σ2(Gn) goes to infinity with n.
Following [1], recall that there exist (explicit constructions of) bounded degree

expander graphs on n vertices, for n arbitrarily large, with diameter Θ(log n). Thus
the subgaussian constant grows at least logarithmically with n for these graphs.

On the other hand, it is easy to see that the spread constant is bounded from above
by a constant, independent of n. One way to see this is by observing that the spectral
gap λ(Gn) of any random walk with uniform stationary distribution π(·) on the vertices
of such a graph is at most inverse of the spread constant: Indeed, letting P (x, y) denote
the probability on edge {x, y} ∈ E of such a walk, we recall that the spectral gap may
be written as:

λ(Gn) = inf
f :Eπf=0

∑
x,y∈E

(
(f(x)− f(y)

)2

π(x)P (x, y)

Varπ f

≤ inf
f :Eπf=0

f :Lipschitz

∑
x,y∈E

(
(f(x)− f(y)

)2

π(x)P (x, y)

Varπ f

≤ inf
f :Eπf=0

f :Lipschitz

1

Varπ f
=

1

c2(Gn)
.

Since the expander graphs have spectral gap bounded from below by a constant inde-
pendent of n, this concludes the proof.

7 Conclusion

We hope the transportation approach developed in the discrete context here finds
several more applications in future. Some concrete questions remain unsolved; the
exact value of the subgaussian constant of odd cycles is a natural open problem. In [5]
tight bounds (up to a factor of four) have been provided for the subgaussian constant
of the graph (Sn, ρ) on the set Sn of permutations of n elements, under transposition
metric ρ – with adjacency defined by transpositions; it seems a challenging problem to
determine the precise value here. A tight transportation inequality for this example
or for the closely related one, with ρ replaced by Hamming distance, as studied by
Maurey and others (see [5] for comments and references therein), will be quite useful.
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