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Abstract

An embedding of a graph in 3-space is linkless if for every two disjoint
cycles there exists an embedded ball that contains one of the cycles
and is disjoint from the other. We prove that every bipartite linklessly
embeddable (simple) graph on n ≥ 5 vertices has at most 3n−10 edges,
unless it is isomorphic to the complete bipartite graph K3,n−3.

1 Introduction

All graphs in this paper are finite and simple. Paths and cycles have no
“repeated” vertices. An embedding of a graph in 3-space is linkless if for
every two disjoint cycles there exists an embedded ball that contains one of
the cycles and is disjoint from the other. We prove the following theorem.

Theorem 1.1. Every bipartite linklessly embeddable graph on n ≥ 5 vertices
has at most 3n − 10 edges, unless it is isomorphic to the complete bipartite
graph K3,n−3.

The question whether linklessly embeddable bipartite graphs on n ≥ 5 ver-
tices have at most 3n−9 edges is stated as [15, Problem 2], and Theorem 1.1
is implied by [5, Conjecture 4.5].

The following are equivalent conditions for a graph to be linklessly em-
beddable. A graph H is obtained from a graph G by a Y ∆ transformation
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if H is obtained from G by deleting a vertex v of degree three and joining
every pair of non-adjacent neighbors of v by an edge. Conversely, G is ob-
tained from H by means of a ∆Y transformation if G is obtained from H
by deleting the edges of a cycle of length three (“a triangle”) and adding a
vertex of degree three joined to the vertices of the triangle. The Petersen
family is the set of seven graphs obtained from the complete graph K6 by
means of Y ∆ and ∆Y transformations. The Petersen graph is a member of
the family, and hence the name. The Petersen family is depicted in Figure 1.
A graph is a minor of another if the first can be obtained from a subgraph of
the second by contracting edges. An H minor is a minor isomorphic to H.
We denote by µ(G) the graph invariant introduced by Colin de Verdière [3].
We omit its definition, because we do not need it.

Theorem 1.2. For a graph G the following conditions are equivalent:

(i) G has an embedding in 3-space such that every two disjoint cycles have
even linking number.

(ii) G is linklessly embeddable.

(iii) G has an embedding in 3-space such that every cycle bounds an open
disk disjoint from the embedding of G.

(iv) G has no minor isomorphic to a member of the Petersen family.

(v) µ(G) ≤ 4.

Here (iii)⇒(ii) and (ii)⇒(i) are trivial, (i)⇒(iv) was shown by Sachs [13, 14],
(iv)⇒(iii) was shown by Robertson, Seymour and the second author [12],
(v)⇒(iv) was shown by Bacher and Colin de Verdière [1], and (iii)⇒(v) was
shown by Lovász and Schrijver [8].

Let us now put Theorem 1.1 in perspective. For graphs that are not
necessarily bipartite the correct bound on the number of edges is 4n − 10,
which follows from the following more general result of Mader [9].

Theorem 1.3. For every integer p = 2, 3, . . . , 7, a graph on n ≥ p−1 vertices
and no minor isomorphic to Kp has at most (p− 2)n−

(
p−1
2

)
edges.

Theorem 1.3 is such a nice result that it raises the question of whether
it can be generalized to all values of p. But there are some depressing news:
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Figure 1: The Petersen family.

for large p a graph must have at least Ω(p
√

log pn) edges in order to guar-
antee a Kp minor, because, as noted by several people (Kostochka [6, 7],
and Fernandez de la Vega [4] based on Bollobás, Catlin and Erdös [2]), a
random graph with no Kp minor may have average degree of order p

√
log p.

Kostochka [6, 7] and Thomason [16] proved that this is indeed the correct
order of magnitude, and in a remarkable result [17] Thomason was able to
determine the constant of proportionality. Thus it may seem that an effort
to generalize Theorem 1.3 will be in vain, but there are still the following
possibilities. The random graph examples provide only finitely many coun-
terexamples for any given value of p. Of course, more counterexamples can
be obtained by taking disjoint unions or even gluing counterexamples along
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small cutsets, but we know of no construction of highly connected infinite
families of counterexamples. More specifically, Seymour and the second au-
thor conjecture the following.

Conjecture 1.4. For every integer p ≥ 2 there exists a constant N = N(p)
such that every (p− 2)-connected graph on n ≥ N vertices and no Kp minor
has at most (p− 2)n−

(
p−1
2

)
edges.

In a slightly different direction the first author conjectures [10] the fol-
lowing.

Conjecture 1.5. For every integer p ≥ 3, a graph G on n ≥ p− 1 vertices
and µ(G) ≤ p− 2 has at most (p− 2)n−

(
p−1
2

)
edges.

Whether Conjecture 1.5 holds is stated as [15, Problem 1]. Conjecture 1.5 is
implied by [11, Conjecture 1.5].

In this paper we are concerned with bipartite graphs, but before we turn
our attention to them we formulate the following conjectured generalization
of Theorem 1.1.

Conjecture 1.6. Every triangle-free linklessly embeddable graph on n ≥ 5
vertices has at most 3n − 10 edges, unless it is isomorphic to the complete
bipartite graph K3,n−3.

A possible approach to Conjecture 1.6 is to prove the following conjecture:

Conjecture 1.7. Every linklessly embeddable graph on n ≥ 7 vertices with t
triangles has at most 3n− 9 + t/3 edges.

Let us turn to bipartite graphs now. Motivated by Theorem 1.1 and the
equivalence of (ii) and (v) in Theorem 1.2 we conjecture the following.

Conjecture 1.8. For every integer p ≥ 3, a bipartite graph G on n ≥ 2p−3
vertices and µ(G) ≤ p has at most (p− 1)n− (p− 1)2 edges.

Let us remark that the bound in Conjecture 1.8, if true, is tight, because of
the graphs Kp−1,n−p+1. For p = 3 Conjecture 1.8 follows from the fact that
graphs G with µ(G) ≤ 3 are precisely planar graphs [3], and for p = 4 it
follows from Theorems 1.1 and 1.2.

Let us repeat that for not necessarily bipartite graphs the bound on the
number of edges for linklessly embeddable graphs and graphs with no K6

minors coincide. Not so for bipartite graphs. We conjecture the following.
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Conjecture 1.9. For every integer p = 2, 3, . . . , 8, a bipartite graph on n ≥
2p−5 vertices and no minor isomorphic to Kp has at most (p−2)n−(p−2)2

edges.

Again, the bound in Conjecture 1.9, if true, is tight, because of the graphs
Kp−2,n−p+2. For p ≤ 4 Conjecture 1.9 is easy, and for p = 5 it follows from
Wagner’s characterization of graphs with no K5 minor [18]. It is open for
all p = 6, 7, 8. Conjecture 1.9 may very well hold for a few more values
of p beyond 8, but it certainly does not hold for all p, because a graph
with Ω(p

√
log pn) edges and no Kp minor has a bipartite subgraph with

Ω(p
√

log pn) edges and no Kp minor.
One could speculate whether Conjectures 1.8 and 1.9 hold for triangle-free

graphs, but we do not have enough evidence to formally conjecture that.
The paper is organized as follows. In the next section we introduce def-

initions and notation. In Section 3 we state Theorem 3.1, which implies
Theorem 1.1 and prove half of it, proving some useful lemmas and disposing
of vertices of degree five. In Section 4 we complete the proof of Theorem 3.1
by disposing of vertices of degree four.

2 Notation and Definitions

For positive integers n1, n2, . . . , nk with k ≥ 2, we let Kn1,n2,...,nk
denote the

complete multipartite graph with k independent sets of sizes n1, n2, . . . , nk.
We let K−

4,4 denote the graph obtained from K4,4 by deleting an edge. We
also let K∆Y

6 denote the graph obtained from K6 by performing a ∆Y trans-
formation.

For a graph G we write V (G) for the vertex set of G and E(G) for the
edge set of G. We write δ(G) for the minimum degree of G and ∆(G) for
the maximum degree of G. Suppose v is a vertex of G and S is a subset of
V (G). Then we write G[S] for the induced subgraph of G with vertex set
S and G − S for the induced subgraph of G with vertex set V (G) − S. We
write G− v for G− {v}. We write dG(v), or d(v) if the graph is understood
from context, for the degree of v in G. We write NG(S) for the set of all
vertices in V (G) − S that are adjacent to some vertex in S. We write N(S)
if the graph is understood from context, and we write N(v) for N({v}). We
use N [v] to denote N(v) ∪ {v}.

If G is a graph with S and T disjoint subsets of V (G), we say an edge
uv ∈ E(G) is between S and T if S ∩ {u, v} ̸= ∅ and T ∩ {u, v} ̸= ∅. If S
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consists of a single vertex v, we may talk about the edges between v and T .
Given a graph G, we say that X0 and X1 is a bipartition of G if X0 and X1

is a partition of V (G) so that all edges of G are between X0 and X1.
We define a separation of a graph G to be a pair of sets (A,B) with union

V (G) such that G has no edge between A − B and B − A. The order of a
separation (A,B) is |A ∩ B|. We also say that a separation of order k is a
k-separation. A separation (A,B) is non-trivial if both A − B and B − A
are non-empty. We say that a separation (A,B) is minimal if there does not
exist a non-trivial separation (A′, B′) of G with A′ ∩B′ ( A ∩B.

It is convenient for us to give the following related definition. We say a
super-separation of a graph G is a pair of graphs (G0, G1) such that V (G) ⊆
V (G0)∪V (G1), and E(G) ⊆ E(G0)∪E(G1), and both G0 and G1 are minors
of G. We say a super-separation (G0, G1) of G is non-trivial if |V (G0)| <
|V (G)| and |V (G1)| < |V (G)|. We say that the order of a super-separation
(G0, G1) of G is |V (G0)|+|V (G1)|−|V (G)|. Finally we say a super-separation
(G0, G1) is bipartite if both G0 and G1 are bipartite. Note that if (A,B) is a
(non-trivial) separation of G of order k, then (G[A], G[B]) is a (non-trivial)
super-separation of G of order k. Furthermore if G is bipartite then the
super-separation (G[A], G[B]) is bipartite.

Finally, if G is a bipartite graph with bipartition X0 and X1 and S ⊆
V (G), then we will write G[S] for the bipartite complement of G[S]. That is,
G[S] is the graph on vertex set S where uv is an edge of G[S] if and only if
uv is an edge between X0 and X1 and uv /∈ E(G).

3 Proof of Main Theorem: Vertices of Degree

Five

By Theorem 1.2, the following theorem implies Theorem 1.1.

Theorem 3.1. Every bipartite graph on n ≥ 5 vertices with no K6, K1,3,3,
K−

4,4, or K∆Y
6 minor has at most 3n − 10 edges, unless it is isomorphic to

the complete bipartite graph K3,n−3.

Proof. Let G be a counterexample with minimum number of vertices. Write
n := |V (G)|, and let X0 and X1 be a bipartition of G.

We begin by giving a brief outline of our proof strategy. First we will
show an easy lemma, and that 4 ≤ δ(G) ≤ 5. Then we show that G cannot
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have certain separations and super-separations of small order. It follows that
G has no subgraph isomorphic to K3,3: otherwise it either has a K1,3,3 minor
or a separation of small order. Next we show that if v is a vertex of degree
four or five and x and y are neighbors of v, then x and y have several common
neighbors other than v. Then it is fairly easy to show that G has no vertex
v of degree five: for every pair of distinct neighbors x and y of v, let vx,y
be a vertex other than v that is adjacent to both x and y. If all ten vx,y
are distinct, then G has a K6 minor. Otherwise we find a K3,3 subgraph
or another forbidden minor. In Section 4 we will deal with the case that
δ(G) = 4.

We begin with two easy lemmas:

Lemma 3.2. n ≥ 7

Proof. Otherwise, we have n ∈ {5, 6}. Then ⌈n/2⌉ = 3 and ⌊n/2⌋ = n − 3.
If G is a subgraph of K3,n−3, then since by assumption G is not isomorphic
to K3,n−3, we have |E(G)| < |E(K3,n−3)| = 3n− 9, a contradiction. So G is
not a subgraph of K3,n−3. Then we have

3n− 10 < |E(G)| ≤ |X0||X1| ≤ (⌈n/2⌉ + 1)(⌊n/2⌋ − 1) = 4(n− 4)

This gives us n > 6, a contradiction.

Lemma 3.3. 4 ≤ δ(G) ≤ 5

Proof. Let v be a vertex of minimum degree. Since n ≥ 6 by Lemma 3.2,
either G − v is isomorphic to K3,n−4 and |E(G − v)| = 3(n − 1) − 9, or
|E(G− v)| ≤ 3(n− 1) − 10. If d(v) ≤ 2, then

|E(G)| = |E(G− v)| + d(v) ≤ 3(n− 1) − 9 + 2 = 3n− 10

a contradiction. Now suppose d(v) = 3. If G−v is not isomorphic to K3,n−4,
then similarly we have |E(G)| ≤ 3n− 10, and we are done.

So G−v is isomorphic to K3,n−4. Without loss of generality suppose that
v ∈ X0. If N(v) = X1, then G is isomorphic to K3,n−3, a contradiction. So
there exists a vertex u ∈ X1−N(v). Then |X0−{v}| = 3, and G[X0∪{u}∪
N(v)] is isomorphic to K−

4,4, a contradiction. So δ(G) = d(v) ≥ 4.
Next note that |E(G)| = |E(G−v)|+d(v) ≤ 3(n−1)−9+(n−1) = 4n−13.

So δ(G) ≤ 7. Then |E(G)| ≤ 3(n − 1) − 9 + d(v) ≤ 3n − 5. So δ(G) ≤ 5,
completing the proof of the lemma.
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Next we prove three lemmas on separations and super-separations of G.
Observe that since δ(G) ≥ 4 by Lemma 3.3, if (A,B) is a non-trivial separa-
tion of G, then (G[A], G[B]) is a non-trivial bipartite super separation of G
such that |V (G[A])|, |V (G[B])| ≥ 5. We will frequently apply the following
lemma to such a case.

Lemma 3.4. Let (G0, G1) be a non-trivial bipartite super-separation of G
of order k such that |V (G0)|, |V (G1)| ≥ 5. Write e := |E(G0)| + |E(G1)| −
|E(G)|, and let l be the number of the graphs G0 and G1 that are isomorphic
to K3,t for some t. Then 3k + l − e ≥ 11.

Proof. Suppose otherwise. So 3k + l − e− 10 ≤ 0. By the conditions of the
lemma and since G is a vertex-minimum counterexample, we have:

|E(G)| = |E(G0)| + |E(G1)| − e ≤ 3(|V (G0)| + |V (G1)|) − 20 + l − e

= 3(n + k) − 20 + l − e = 3n− 10 + (−10 + 3k + l − e) ≤ 3n− 10

a contradiction.

We will use the next short lemma to show that for certain separations
(A,B) of G, the graph G[A] is not isomorphic to K3,t for any t.

Lemma 3.5. Suppose (A,B) is a separation of G and i ∈ {0, 1} is such that
(A−B) ∩X1−i ̸= ∅. Then |A ∩Xi| ≥ 4.

Proof. Let v be a vertex in (A − B) ∩ X1−i. Then |A ∩ Xi| ≥ |N(v)| ≥ 4
since d(v) ≥ 4 by Lemma 3.3.

Next we show that G does not have certain separations of small order.

Lemma 3.6. Let (A,B) be a non-trivial separation of G such that for every
i ∈ {0, 1}, |A ∩B ∩Xi| ≤ 3. Then |A ∩B| = 6 and ∆(G[A ∩B]) ≤ 1.

Proof. Suppose otherwise for some separation (A,B). Note that any non-
trivial separation (A′, B′) of G with A′∩B′ ( A∩B also violates the lemma.
Thus we may assume that (A,B) is minimal.

First we show that both A and B have at least four vertices in each side
of the bipartition of G. Let v ∈ A−B, and without loss of generality assume
that v ∈ X0. Then |X1 ∩ A| ≥ |N(v)| ≥ 4 since δ(G) ≥ 4 by Lemma 3.3.
Also, since |A∩B ∩X1| ≤ 3, there exists a vertex u ∈ N(v)− (A∩B). Then
similarly |X0 ∩ A| ≥ |N(u)| ≥ 4. The same argument shows that B has at
least four vertices in each side of the bipartition of G.
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Now for convenience write S := A ∩ B. Let z ∈ S so that dG[S](z)

is maximum, where G[S] is the bipartite complement of G[S]. Let GA be
the graph formed from G[A] by adding edges between z and every vertex in
NG[S](z). We can see that GA is a minor of G by contracting some component

of G[B−A] to z and by the minimality of (A,B). Furthermore GA is bipartite,
has fewer vertices than G, and has at least four vertices in each side of the
bipartition of G. So GA is not isomorphic to K3,t for any t. Define GB

analogously, by adding edges between z and every vertex in NG[S](z) to G[B].

We have shown that (GA, GB) is non-trivial bipartite super-separation of
G so that GA and GB both have at least five vertices, and neither GA nor
GB is isomorphic to K3,t for any t. Furthermore, the order of (GA, GB) is |S|
and

|E(GA)| + |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 2dG[S](z) − |E(G)|
= |E(G[S])| + 2dG[S](z)

So by Lemma 3.4 applied to the super-separation (GA, GB), we have
3|S| − |E(G[S])| − 2dG[S](z) ≥ 11. If |S| ≤ 3, then 9 ≥ 3|S| ≥ 3|S| −
|E(G[S])| − 2dG[S](z) ≥ 11, a contradiction. Thus either 4 ≤ |S| ≤ 5, or

|S| = 6 and ∆(G[S]) ≥ 2.
Without loss of generality assume that |X0 ∩ S| ≤ |X1 ∩ S|. Let z′ ∈

X0 ∩ S with dG[S](z
′) minimum. Note that if |S| = 6 we may assume that

dG[S](z
′) = 3 − ∆(G[S]). We have:

3(|S| − 3) ≤ |X0 ∩ S||X1 ∩ S| =
∑

x∈X0∩S

|X1 ∩ S|

=
∑

x∈X0∩S

(
dG[S](x) + |X1 ∩ S| − dG[S](x)

)
=

∑
x∈X0∩S

(
dG[S](x) + dG[S](x)

)
≤

( ∑
x∈X0∩S

dG[S](x)

)
+ (|X0 ∩ S| − 1)dG[S](z) + dG[S](z

′)

= |E(G[S])| + (|X0 ∩ S| − 1)dG[S](z) + dG[S](z
′)

If 4 ≤ |S| ≤ 5, then |X0 ∩ S| ≤ 2 and so from above, we have 3|S| −
9 ≤ |E(G[S])| + 2dG[S](z). This is a contradiction since 3|S| − |E(G[S])| −
2dG[S](z) ≥ 11. If |S| = 6 and ∆(G[S]) ≥ 2, then dG[S](z

′) ≤ 1 and so

3|S| − 9 ≤ |E(G[S])| + 2dG[S](z) + 1. This is again a contradiction since

3|S| − |E(G[S])| − 2dG[S](z) ≥ 11.
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Next we observe that G has no K3,3 subgraph, and then we show that
common neighbors of a vertex of degree four or five in fact share several
common neighbors.

Lemma 3.7. G does not have a subgraph isomorphic to K3,3.

Proof. Suppose H is a subgraph of G isomorphic to K3,3. Since n ≥ 7
by Lemma 3.2, the graph G − V (H) is non-empty. Let C be the vertex
set of some component of G − V (H). By Lemma 3.6, the separation (C ∪
N(C), V (G)−C) is trivial. Then C ∪N(C) = V (G), and so N(C) = V (H).
So the graph obtained by contacting C to a single vertex is isomorphic to
K1,3,3, a contradiction.

Lemma 3.8. Let v ∈ V (G) be a vertex of degree four or five. Let x and y
be distinct vertices in N(v). Then x and y share at least 7 − d(v) common
neighbors other than v.

Proof. Suppose otherwise, and write c := |N(x) ∩ N(y)| − 1. That is, c
is the number of common neighbors of x and y other than v. So we have
c ≤ 6 − d(v). Without loss of generality suppose that v ∈ X0. Let G′ be the
graph formed from G by deleting y and v, and adding edges between x and
all vertices in N(y)−N(x). We can see that G′ is a minor of G by contracting
y and v to x. Furthermore, G′ is bipartite and since n ≥ 7 by Lemma 3.2,
the graph G′ has at least five vertices. Let l be 1 if G′ is isomorphic to K3,t

for some t, and 0 otherwise. Then we have:

3n− 10 < |E(G)| = |E(G− v)| + d(v) = |E(G′)| + c + d(v)

≤ 3(n− 2) − 10 + l + c + d(v) = 3n− 10 + l + (c− 6 + d(v))

It follows that l = 1 and c = 6 − d(v). If d(v) = 4, then c = 2 and
G[N(v) ∪ (N(x) ∩ N(y))] is isomorphic to K3,4. This is a contradiction
since by Lemma 3.7, the graph G has no K3,3 subgraph. If d(v) = 5, then
|X1 ∩ V (G′)| ≥ d(v) − 1 = 4, and so |X0 ∩ V (G′)| = 3. Then G[(X0 ∩
V (G′)) ∪ (N(v) − {x, y})] is isomorphic to K3,3, again a contradiction to
Lemma 3.7.

Now we are ready to show:

Lemma 3.9. G has no vertex of degree five.
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Proof. Suppose v ∈ V (G) is a vertex of degree five. Let

W := {w ∈ V (G) −N [v] : |N(w) ∩N(v)| = 2}

and let
U0 := {u ∈ V (G) −N [v] : |N(u) ∩N(v)| > 2}.

Let G0 be the graph formed from G[N [v] ∪ W ∪ U0] by contracting, for
every vertex w ∈ W , an arbitrary edge with one end w and the other end
in N(w) ∩ N(v). By Lemma 3.8, every pair of vertices in N(v) are either
adjacent in G0 or share at least two common neighbors in U0.

First we show the following claim:

Claim 3.9.1. There exist a set U1 ⊆ U0 and a graph G1 so that:

(i) The graph G1 is formed from G0 by contracting edges with one end in
U0 − U1 and the other end in N(v).

(ii) Every pair of distinct vertices in N(v) are either adjacent in G1 or
share a common neighbor in U1.

(iii) Every vertex in U1 has degree exactly three in G0, and δ(G1[N(v)]) ≥ 1.

Proof. Observe that U0 is non-empty since otherwise G0 is isomorphic to K6.
Fix a vertex z ∈ U0 with dG0(z) maximum. First suppose dG0(z) = 5. Then
since G has no K3,3 subgraph by Lemma 3.7, every pair of vertices in N(v)
are adjacent in G0. Then G0[N [v]] is isomorphic to K6, a contradiction. So
dG0(z) ≤ 4.

Now observe that every vertex in U0 other than z has degree exactly three
in G0. This is clear if dG0(z) = 3, and follows since G has no K3,3 subgraph
if dG0(z) = 4.

Let x ∈ N(v) − NG0(z). If dG0(z) = 3, let x′ be the vertex other than x
in N(v) −NG0(z). If dG0(z) = 4, let x′ be any vertex in N(v) other than x.

First suppose that x and x′ are adjacent in G0. Then let G1 be the
graph formed from G0 by contracting z to one of its neighbors in G0, and let
U1 := U0 − {z}. Then G1 and U1 satisfy the conditions of the claim.

So we may assume that x and x′ are not adjacent in G0. Then they
have a common neighbor z′ ∈ U0 − {z}. Let G1 be the graph formed from
G0 by contracting z to a vertex in NG0(z) − NG0(z

′) and z′ to x′. Write
U1 := U0 − {z, z′}. Then G1 and U1 satisfy the conditions of the claim.
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Fix G1 and U1 as in the claim. Choose a graph G2 and a set U2 ⊆ U1 so
that:

(i) The graph G2 is formed from G1 by contracting edges with one end in
U0 − U1 and the other end in N(v).

(ii) Every pair of distinct vertices in N(v) are either adjacent in G2 or share
a common neighbor in U2.

(iii) Subject to the above, |U2| is minimum.

Such a choice is possible because G2 := G1 and U2 := U1 satisfy (i) and
(ii). Observe that G2 is a minor of G. We first show that for all u ∈ U2, the
graph G2[NG2(u)] has no edges. Since every vertex in U1 has degree exactly
three in G0 by the claim, the vertex u also has degree exactly three in G2.
Write NG2(u) = {x, x′, x′′} and suppose xx′ ∈ E(G2). Then let G′

2 be the
graph formed from G2 by contracting u to x′′, and let U ′

2 := U2 − {u}. Then
G′

2 and U ′
2 show a contradiction to our choice of G2 and U2.

Then by the last paragraph and condition (ii), if |U2| ≤ 1, then G2 is
isomorphic to either K6 or K∆Y

6 . So there exist distinct vertices u, u′ ∈ U2.
Both u and u′ have degree exactly three in G2. We go by cases.

Case: |NG2(u) ∩NG2(u
′)| = 3

Then G[NG2(u) ∪ {v, u, u′}] is isomorphic to K3,3, a contradiction to
Lemma 3.7.

Case: |NG2(u) ∩NG2(u
′)| = 2

Then let x be the unique vertex in NG2(u) − NG2(u
′). Let G′

2 be the graph
formed from G2 by contracting u to x, and let U ′

2 := U2 −{u}. Then G′
2 and

U ′
2 show a contradiction to our choice of G2 and U2.

Case: |NG2(u) ∩NG2(u
′)| = 1

Let x be the unique vertex in NG2(u) ∩ NG2(u
′). Then x is adjacent to

no vertices in N(v) in the graph G2. But this is a contradiction since
δ(G2[N(v)]) ≥ δ(G1[N(v)]) ≥ 1 by part (iii) of Claim 3.9.1. This is the
final case and completes the proof of the lemma.
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4 Proof of Main Theorem: Vertices of Degree

Four

Now that we have shown G has no vertices of degree five and that 4 ≤ δ(G) ≤
5 by Lemma 3.3, the remainder of the proof deals with vertices of degree four.
First we will show that if v is any vertex of degree four, then G has no vertex
u such that |N(u)∩N(v)| ≥ 4. We then use this fact to show that G does not
have additional kinds of separations of small order. Finally we fix a vertex v
of degree four and a certain set U ⊆ V (G) −N [v] of three or fewer vertices
that each have neighbors in N(v). We show that G− (N [v]∪U) is connected
and has a cut vertex a. We then use the fact that G − (N [v] ∪ U ∪ {a}) is
disconnected to find a separation showing a contradiction to Lemma 3.4.

Lemma 4.1. Suppose v ∈ V (G) is a vertex of degree four. Then there does
not exist a vertex u ∈ V (G) −N [v] so that |N(u) ∩N(v)| = 4.

Proof. Suppose otherwise. Without loss of generality assume that v ∈ X0.
Write N(v) = {v1, v2, v3, v4}. For every i, j ∈ {1, 2, 3} with i < j, let
ui,j ∈ V (G) − {v, u} be a vertex that is adjacent to both vi and vj. Such
vertices exist since by Lemma 3.8, vi and vj have at least three common
neighbors other than v. Since G has no K3,3 subgraph by Lemma 3.7 and
|N(u) ∩ N(v)| = 4, the vertices u1,2, u1,3, and u2,3 are distinct. Write
U := {u1,2, u1,3, u2,3}, and H := G[N [v] ∪ U ∪ {u}]. Then dH(v4) < 3 since
G has no K3,3 subgraph. So since δ(G) ≥ 4 by Lemma 3.3, there exists a
component of G − V (H) with neighbor v4. Let C be the vertex set of such
a component. Observe that N(C) ⊆ N(v) ∪ U ∪ {u}.

Now we show that either N(v) ⊆ N(C) or U ∪ {u} ⊆ N(C). Suppose
otherwise. Then for all i ∈ {0, 1}, we have |Xi∩N(C)| ≤ 3. Then by Lemma
3.6 applied to the separation (C∪N(C), V (G)−C), it follows that |N(C)| = 6
and ∆(G[N(C)]) ≤ 1. Then since |N(C)∩N(v)| = 3 and |N(u)∩N(v)| = 4,
we have u /∈ N(C). Then U ⊆ N(C). But |N(C) ∩ {v1, v2, v3}| ≥ 2,
which is a contradiction since ∆(G[N(C)]) ≤ 1. We have shown that either
N(v) ⊆ N(C) or U ∪ {u} ⊆ N(C).

If N(v) ⊆ N(C), let G′ be the graph formed from G by contracting C
to a single vertex with neighborhood N(v) and deleting all other vertices in
G− V (H). Let G′′ be the graph formed from G′ by contracting ui,j to vi for
all i, j ∈ {1, 2, 3} with i < j. Then G′′ is isomorphic to K∆Y

6 , a contradiction.
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So we may assume that U ∪ {u} ⊆ N(C). Remember also that by the
choice of C, we have v4 ∈ N(C). Now let G′ be the graph formed by con-
tracting C to a vertex with neighborhood U ∪ {u, v4} and deleting all other
vertices in G − V (H). Let G′′ be the graph formed from G′ by contracting
v4 to v and by contracting ui,j to vi for all i, j ∈ {1, 2, 3} with i < j. Then
G′′ is isomorphic to K6, a contradiction.

We are now ready to show that G does not have additional kinds of
separations of small order.

Lemma 4.2. Let (A,B) be a non-trivial separation of G. If there exists
i ∈ {0, 1} such that |Xi ∩ A ∩ B| ≤ 4 and |X1−i ∩ A ∩ B| ≤ 2, then either
|A−B| = 1 or |B − A| = 1.

Proof. Suppose otherwise. Let (A,B) be a separation of minimum order
that violates the lemma. Write S := A ∩B for convenience. Without loss of
generality we assume that |X0 ∩ S| ≤ 4 and |X1 ∩ S| ≤ 2. By Lemma 3.6,
we have |X0 ∩ S| = 4.

First we will show that there exists a component of G[A−B] with neigh-
borhood S. Suppose otherwise. Let C be the vertex set of any component
of G[A − B]. If |C| ≥ 2 and N(C) ̸= S, then (C ∪ N(C), V (G) − C) is
a separation violating the lemma of smaller order, a contradiction to our
choice of (A,B). So |C| = 1 and thus since δ(G) ≥ 4 by Lemma 3.3, we have
N(C) = X0 ∩ S. Then since |A − B| ≥ 2, the graph G[A − B] has another
component with vertex set C ′ also consisting of a single vertex with neigh-
borhood X0 ∩ S. But this is a contradiction to Lemma 4.1. This shows that
there exists a component of G[A − B] with neighborhood S. By symmetry
the same holds for G[B − A]. We now proceed by cases.

Case: Either |S| = 4, or |S| = 5 and |E(G[S])| = 4

Let GA be the graph formed from G[A] by adding a single vertex, call it
a, with neighborhood X0 ∩ S. We can see that GA is a minor of G by
contracting a component of G[B−A] with neighborhood S to a single vertex.
Furthermore, GA is bipartite, has fewer vertices than G since by assumption
|B − A| > 1, and has at least five vertices since A ⊆ V (GA). Define GB

analogously, by adding a single vertex with neighborhood S ∩X0 to G[B].
Suppose GA is isomorphic to K3,t for some t. Then since NGA

(a) = S∩X0

and |S∩X0| = 4, there exist two vertices u and v in GA−NGA
[a] with degree

exactly four in GA. Then since |S| ≤ 5, we have |S−NGA
[a]| ≤ 1, so at least
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one of the vertices, say v, is in A − S. Then v has degree four in G, and
|N(u) ∩ N(v)| = 4, a contradiction to Lemma 4.1. By symmetry, we have
shown that neither GA nor GB is isomorphic to K3,t for any t. Furthermore,
the order of the super-separation (GA, GB) is |S| + 2, and

|E(GA)| + |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 8 − |E(G)|
= |E(G[S])| + 8

So by Lemma 3.4 applied to the super-separation (GA, GB), we have 3(|S|+
2)−|E(G[S])|−8 ≥ 11. So 13 ≤ 3|S|−|E(G[S])|. But this is a contradiction
since either |S| ≤ 4, or |S| = 5 and |E(G[S])| = 4.

Case: Either |S| = 5 and |E(G[S])| < 4, or |S| = 6

This case is similar to the proof of Lemma 3.6. Let z ∈ X1 ∩ S so that
dG[S](z) is maximum. Let GA be the graph formed from G[A] by adding edges

between z and every vertex in NG[S](z). We can see that GA is a minor of G

by contracting a component of G[B −A] with neighborhood S to the vertex
z. The graph GA is bipartite, has fewer vertices than G, and has at least
four vertices in each side of the bipartition of G by Lemma 3.5 applied to
the separation (A,B) since V (GA) = A. Define GB analogously, by adding
edges between z and every vertex in NG[S](z) to G[B].

The order of the super-separation (GA, GB) is |S|, and

|E(GA)| + |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 2dG[S](z) − |E(G)|
= |E(G[S])| + 2dG[S](z)

Then by Lemma 3.4, we have 3|S| − |E(G[S])| − 2dG[S](z) ≥ 11. Ob-

serve that 4|X1 ∩ S| =
∑

x∈X1∩S

(
dG[S](x) + dG[S](x)

)
. So if |S| = 5 and

|E(G[S])| ≤ 3, then dG[S](z) ≥ 1 and so |E(G[S])| + 2dG[S](z) ≥ 5. This is

a contradiction. So |S| = 6. But then |E(G[S])| + 2dG[S](z) ≥ 8, which is
again a contradiction.

By Lemmas 3.3 and 3.9, the graph G has a vertex of degree four. Fix
v ∈ V (G) a vertex of degree four, and write N(v) = {v1, v2, v3, v4}. Without
loss of generality assume that v ∈ X0. Choose a set U ⊆ V (G) − N [v] of
minimum cardinality such that either:

(i) U consists of a single vertex u with |N(u) ∩N(v)| = 3, or
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(ii) U = {u1,2, u1,3, u2,3} and for all i, j ∈ {1, 2, 3} with i < j, N(ui,j) ∩
N(v) = {vi, vj}.

First we show that such a set exists. If there exists a vertex u ∈ V (G)−N [v]
such that |N(u) ∩N(v)| ≥ 3, then by Lemma 4.1 in fact |N(u) ∩N(v)| = 3
and we are done. So we may assume that for all u ∈ V (G) − N [v] we have
|N(u)∩N(v)| < 3. Then for all i, j ∈ {1, 2, 3} with i < j, let ui,j be a vertex
not in N [v] that is adjacent to both vi and vj. Such a vertex exists since vi
and vj have at least three common neighbors other than v by Lemma 3.8.
By assumption u1,2, u1,3, and u2,3 are distinct and N(ui,j) ∩N(v) = {vi, vj}.
So such a set exists.

Write H := G[N [v] ∪ U ]. Next we show one short lemma.

Lemma 4.3. There do not exist disjoint sets A,B ⊆ V (G)−V (H) such that
G[A] and G[B] are connected, and N(v) ⊆ N(A) and N(v) ⊆ N(B).

Proof. Let G′ be the graph obtained from G by contracting A to a single
vertex with neighborhood N(v), contracting B to a single vertex with neigh-
borhood N(v), and deleting all other vertices in G− V (H).

If |U | = 1, then G′ is isomorphic to K−
4,4, a contradiction. If |U | = 3, then

let G′′ be the graph formed from G′ by contracting ui,j to vi for all i, j ∈
{1, 2, 3} with i < j. Then G′′ is isomorphic to K∆Y

6 , a contradiction.

In the next lemma we show that G − V (H) is connected and has a 1-
separation satisfying certain properties.

Lemma 4.4. The graph G − V (H) is connected. Furthermore, there exist
{a0, a′0, a1, a′1} ⊆ V (G)−V (H) and a 1-separation (A0, A1) of G−V (H) such
that for every i ∈ {0, 1}, we have ai, a

′
i ∈ Ai and ai and a′i are both adjacent

to v2i+1 and v2i+2.

Proof. First we will show that G−V (H) is connected. Otherwise, by Lemma
4.3, there exists a component of G−V (H) with vertex set C so that N(v) *
N(C). So by Lemma 3.6 applied to the separation (C ∪ N(C), V (G) − C),
we find that |N(C)| = 6 and ∆(G[N(C)]) ≤ 1. It follows that |U | = 3
and U ⊆ N(C). This is a contradiction since |N(C) ∩ {v1, v2, v3}| ≥ 2 and
∆(G[N(C)]) ≤ 1. So G− V (H) is connected.

Now for every i ∈ {0, 1}, let ai and a′i be distinct vertices in V (G)−V (H)
that are adjacent to both v2i+1 and v2i+2. Such vertices exist since by Lemma
3.8 the vertices v2i+1 and v2i+2 share at least three common neighbors other
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than v, and by the definition of U they share no more than one common neigh-
bor in U . Furthermore by Lemma 4.1, in fact a0, a

′
0, a1, a

′
1 are all distinct.

By Menger’s Theorem, either the desired 1-separation exists, or G − V (H)
contains vertex-disjoint paths P and P ′ so that both P and P ′ have one end
in {a0, a′0} and one end in {a1, a′1}. But then by choosing A := V (P ) and
B := V (P ′) we have a contradiction to Lemma 4.3.

Fix {a0, a′0, a1, a′1} ⊆ V (G) − V (H) and a 1-separation (A0, A1) of G −
V (H) as in the lemma. Let a be the unique vertex in A0∩A1, and for conve-
nience write H ′ := G[V (H) ∪ {a}]. Let C be the vertex set of a component
of G−V (H ′) so that 1 ≤ |N(C)∩N(v)| < 4. Subject to this, choose C such
that |N(C)| is minimum.

To see that such a component exists, for every i ∈ {0, 1}, let Ci be the
vertex set of a component of G[Ai −{a}] with Ci ∩ {ai, a′i} ̸= ∅. Then G[C0]
and G[C1] are distinct components of G − V (H ′). By Lemma 4.3, either
N(v) * N(C0) or N(v) * N(C1). So such a component exists. We first
show:

Lemma 4.5. |U | = 3

Proof. Suppose |U | = 1. Let u be the unique vertex in U . Without loss of
generality we may assume that N(u) ∩N(v) = {v1, v2, v3}. Remember that
v ∈ X0. If a ∈ X0, then for every i ∈ {0, 1}, we have |N(C) ∩Xi| ≤ 3. But
we have |N(C)| ≤ 5, which is a contradiction to Lemma 3.6. Thus we have
a ∈ X1. We prove the following claim:

Claim 4.5.1. Let C ′ be the vertex set of a component of G− V (H ′) so that
N(v) * N(C ′). Then C ′ consists of a single vertex of degree four that is only
adjacent to vertices in N(v) ∪ {a}.

Proof. Let C ′ be the vertex set of such a component. Then |N(C ′) ∩X1| =
|N(C ′) ∩ (N(v) ∪ {a})| ≤ 4 and |N(C ′) ∩X0| = |N(C ′) ∩ U | ≤ 1. Note that
|V (G) − V (C ′)| ≥ |N [v] − V (C ′)| ≥ 2. Then by Lemma 4.2 applied to the
separation (C ′ ∪ N(C ′), V (G) − C ′), the set C ′ consists of a single vertex.
Then since δ(G) ≥ 4 by Lemma 3.3, the vertex in C ′ is only adjacent to
vertices in N(v) ∪ {a}.

Now define the set

W := {w ∈ V (G) − V (H ′) : dG(w) = 4 and N(w) ⊆ N(v) ∪ {a}}.
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Since G − V (H) is connected by Lemma 4.1, every vertex w ∈ W is
adjacent to a.

Now we show that |W | ≥ 2. By the claim and the choice of C, we have
|C| = 1. Since a ∈ X1 while {a0, a′0, a1, a′1} ⊆ X0, for every i ∈ {0, 1} we
have |Ai − ({a} ∪ C)| ≥ |{ai, a′i} − C| ≥ 1. So G− V (H ′) has at least three
components. So by Lemma 4.3 and by the claim, we have |W | ≥ 2.

Next we show that G − (V (H ′) ∪ W ) has a component with vertex set
D so that N(v) ∪ {a} ⊆ N(D). By Lemma 3.8, the vertices v1 and v2 have
at least three common neighbors besides v. Since G has no K3,3 subgraph
by Lemma 3.7 and by the definition of W , the vertices v1 and v2 have a
common neighbor in V (G) − (V (H ′) ∪W ). So V (G) − (V (H ′) ∪W ) is non-
empty. Let D be the vertex set of any component of G− (V (H ′)∪W ). Since
G − V (H) is connected, we have a ∈ N(D). If N(v) * N(D), then by the
claim, D consists of a single vertex of degree four that is only adjacent to
vertices in N(v) ∪ {a}. But this is a contradiction to the choice of W . So
N(v) ∪ {a} ⊆ N(D).

Let w and w′ be distinct vertices in W . Since G has no K3,3 subgraph,
we may assume without loss of generality that N(w) = {v1, v2, v4, a} and
N(w′) = {v1, v3, v4, a}. Then let G′ be the graph formed from G by contract-
ing D to a single component with neighborhood N(v) ∪ {a} and deleting all
other vertices except V (H ′)∪{w,w′}. Then let G′′ be the graph formed from
G′ by contracting w to v2, u to v3, v to v4, and w′ to a. Then G′′ is isomorphic
to K6, a contradiction. This completes the proof of the lemma.

So |U | = 3. Write U = {u1,2, u1,3, u2,3} so that for all i, j ∈ {1, 2, 3}
with i < j, N(ui,j) ∩ N(v) = {vi, vj}. By the choice of U , no vertex other
than v is adjacent to three or more vertices in N(v). For convenience write
T := NG[N(C)](a) ∪ NG[N(C)](a). That is, T is the set of all vertices in N(C)
that are in the other side of the bipartition of G as the vertex a. Let x be
some vertex in N(v) − N(C). Such a vertex exists since by the choice of C
we have |N(C) ∩N(v)| < 4.

Now we give an overview of the rest of the proof. The goal is to show
a contradiction to Lemma 3.4 on super-separations of G. Note that since
|N(C) ∩ N(v)| < 4, we have N(C) ( N(v) ∪ U ∪ {a}. So |N(C)| ≤ 7.
The previous lemmas on separations of G, Lemmas 3.6 and 3.6, apply only
to separations of order six or less, so some casework is required to show a
contradiction. We will frequently construct a super-separation (GC , G

′) so
that G[C ∪N(C)] is a subgraph of GC and G− C is a subgraph of G′.

18



We first show a straightforward lemma that will help with constructing
such super-separations. We are then able to show the harder lemma that
a ∈ X1 and that G− (V (H ′ ∪C)) is connected. Then it is easy to show that
v4 /∈ N(C), or else G has a K6 minor. A final lemma shows that certain
vertices in U have no neighbor in V (G) − (V (H ′) ∪ C). We then construct
one last super-separation of G that gives a contradiction to Lemma 3.4,
completing the proof. We begin with the following lemma.

Lemma 4.6. The following hold:

(i) The set C has at least two vertices. Both the set C ∪ N(C) and the
set V (G) − C have at least four vertices in each side of the bipartition
of G.

(ii) Every neighbor of v is adjacent to a vertex in V (G) − (V (H ′) ∪ C).

(iii) |N(C) ∩N(v)| = 3 and |T | = 3

Proof. First we show that |C| > 1 and |V (G) − (V (H ′) ∪ C)| > 1. We have
|V (G) − (C ∪ N(C))| ≥ |N [v] − (C ∪ N(C))| ≥ 2. Suppose |C| = 1. Since
|N(C) ∩ N(v)| ≥ 1 by the choice of C, it follows that N(C) ⊆ N(v) ∪ {a}.
But then since δ(G) ≥ 4 by Lemma 3.3, we have |N(C) ∩ N(v)| ≥ 3, a
contradiction to the choice of U .

Next we show (i). The set V (G) − C has at least four vertices in each
side of the bipartition of G since V (H) ⊂ V (G)−C. Since |C| > 1 and G[C]
is connected, the set C is not contained in one side of the bipartition of G.
Thus C ∪N(C) has at least four vertices in each side of the bipartition of G
by Lemma 3.5.

Now we show (ii). Let y be any vertex in N(v) − {x}. By Lemma 3.8,
the vertices x and y share at least three common neighbors other than v. By
the choice of U , they share no more than two common neighbors in U ∪{a}.
So x and y have a common neighbor in V (G) − (V (H ′) ∪ C).

Finally we show (iii). If a ∈ X0 and |N(C) ∩ N(v)| < 3, this is a con-
tradiction to Lemma 4.2 applied to the separation (C ∪ N(C), V (G) − C).
If a ∈ X1 and |N(C) ∩N(v)| < 3, then by Lemma 3.6, we have |N(C)| = 6
and ∆(G[N(C)]) ≤ 1. This is a contradiction since then U ⊆ N(C) and
|N(C) ∩N(v)| = 2, but every vertex in {v1, v2, v3} has two neighbors in U .

If a ∈ X0, then T = N(C) ∩N(v) and so |T | = 3 by the last paragraph.
If a ∈ X1 and |T | < 3, then this is a contradiction to Lemma 4.2 applied to
the separation (C ∪N(C), V (G) − C).
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Next we show the following lemma.

Lemma 4.7. a ∈ X1. Furthermore, G− (V (H ′) ∪ C) is connected.

Proof. Suppose otherwise. That is, suppose that either a ∈ X0 or G −
(V (H ′) ∪ C) is not connected. Then:

Claim 4.7.1. If a ∈ X1, then there exists a component of G− (V (H ′) ∪ C)
with vertex set C ′ so that U ⊆ N(C ′) and |N(C ′) ∩N(v)| = 3.

Proof. Suppose a ∈ X1. Then G − (V (H ′) ∪ C) is not connected, and so
by Lemma 4.3, it has a component with vertex set C ′ such that N(v) *
N(C ′). Then by the choice of C, we have |N(C ′)| ≥ |N(C)|. By part (iii) of
Lemma 4.6, since a ∈ X1, we have |N(C)| = 7. Then |N(C ′)| ≥ 7, and so
U ⊆ N(C ′) and |N(C ′) ∩N(v)| = 3.

Recall that by (iii) of Lemma 4.6, we have |N(C) ∩ N(v)| = 3. If v4 /∈
N(C), then let GC denote the graph obtained from G[C ∪N(C)] by adding
edges between a and every vertex in NG[N(C)](a). If v4 ∈ N(C), then let GC

denote the graph obtained from G[C ∪ N(C)] by adding edges between a
and every vertex in NG[N(C)](a), and by adding edges between v4 and every

vertex in N(x) ∩ U ∩N(C).
Observe that in either case the graph GC is bipartite and has fewer ver-

tices than G. Furthermore, by part (i) of Lemma 4.6, the graph GC is not
isomorphic to K3,t for any t, and has at least five vertices. We now show two
claims about the graph GC .

Claim 4.7.2. The graph GC is a minor of G.

Proof. Recall that G−V (H) is connected by Lemma 4.4. So every component
of G− (V (H ′) ∪ C) has the vertex a as a neighbor.

First suppose that a ∈ X0. By part (ii) of Lemma 4.6, every vertex in
N(v) has a neighbor in V (G) − (V (H ′) ∪ C). Then we can see that GC is a
minor of G by contracting every component of G− (V (H ′)∪C) to the vertex
a, and if v4 ∈ N(C), by contracting x and v to v4.

So we may assume that a ∈ X1. Then by Claim 4.7.1, there exists a
component of G − (V (H ′) ∪ C) with vertex set C ′ so that U ⊆ N(C ′) and
|N(C ′)∩N(v)| = 3. Then we can see that GC is a minor of G by contracting
C ′ to the vertex a, and if v4 ∈ N(C), by contracting x and v to v4.

Next we prove that the following inequality holds.
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Claim 4.7.3. |E(GC)| + |E(G− C)| − |E(G)| ≥ 3 + 2|N(C) ∩ U |

Proof. First suppose that |N(C)∩U | = 3. Observe that then if v4 ∈ N(C) we
have |N(x)∩U ∩N(C)| = |N(x)∩U | = 2. Let 1v4∈N(C) be one if v4 ∈ N(C)
and zero otherwise. Then we have:

|E(GC)| + |E(G− C)| − |E(G)|
= dG[N(C)](a) + 21v4∈N(C) + |E(G[C ∪N(C)])| + |E(G− C)| − |E(G)|
= dG[N(C)](a) + 21v4∈N(C) + |E(G[N(C)])|
= 21v4∈N(C) + |T | + |E(G[N(C) − {a}])|

In either case, since |T | = 3 by part (iii) of Lemma 4.6, we have

21v4∈N(C) + |T | + |E(G[N(C) − {a}])| = 9 = 3 + 2|N(C) ∩ U |

which completes the case that |N(C) ∩ U | = 3.
So we may assume that |N(C)∩U | ≤ 2. Then since |T | ≥ 3, it follows that

a ∈ X0. Then by Lemma 3.6 applied to the separation (C∪N(C), V (G)−C),
we have |N(C)∩U | = 2 and ∆(G[N(C)]) ≤ 1. By symmetry between pairs of
vertices in U , we may assume that N(C)∩U = {u1,2, u1,3}. Then v1 /∈ N(C).
Then |N(x)∩U ∩N(C)| = |N(v1)∩U ∩N(C)| = 2 and similarly to the last
case we find that

|E(GC)| + |E(G− C)| − |E(G)| = |T | + 2 + |E(G[N(C) − {a}])|
= |T | + 4 = 3 + 2|N(C) ∩ U |

which completes the proof of the claim.

The final claim we show is:

Claim 4.7.4. ∆(G[N(C)]) ≤ 1

Proof. Suppose that ∆(G[N(C)]) ≥ 2. Let z ∈ N(C) be a vertex with
maximum degree in G[N(C)]. Then let G′ be the graph obtained from G−C
by adding an edge between z and every vertex in NG[N(C)](z). We can see
that G′ is a minor of G on strictly fewer vertices by contracting C to the
vertex z. Furthermore, G′ is bipartite, and by part (i) of Lemma 4.6, has at
least five vertices and is not isomorphic to K3,t for any t. By Claim 4.7.2, the
graph GC is a minor of G. So since (C ∪N(C), V (G)−C) is a separation of
G, it follows that (GC , G

′) is a super-separation of G.
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In fact we have shown that (GC , G
′) is a non-trivial bipartite super-

separation of G so that both GC and G′ have at least five vertices and are
not isomorphic to K3,t for any t. Since |N(C)∩N(v)| = 3 and a ∈ N(C), the
order of the super-separation (GC , G

′) is 4 + |N(C) ∩ U |. Then by Lemma
3.4 and the inequality from the last claim, we have

1 + 3|N(C) ∩ U | = 3(4 + |N(C) ∩ U |) − 11 ≥ |E(GC)| + |E(G′)| − |E(G)|
≥ |E(GC)| + 2 + |E(G− C)| − |E(G)|
≥ 5 + 2|N(C) ∩ U |

But then |N(C) ∩ U | ≥ 4, which is a contradiction since |U | = 3.

We are now ready to complete the proof of the lemma. We go by cases.

Case: a ∈ X0

By the last claim, we have dG[N(C)](a) ≤ 1. Then since |N(C) ∩ N(v)| = 3,

the vertex a is adjacent to at least two vertices in N(v). So by the choice of
U , the vertex a is adjacent to exactly two vertices in N(v). So there exists
a vertex y ∈ N(C) ∩ N(v) that is not adjacent to a. By the last claim,
dG[N(C)](y) ≤ 1. So since y is not adjacent to a, the vertex y is adjacent to

every vertex in N(C) ∩ U .
Then U * N(C). Then by Lemma 3.6 applied to the separation (C ∪

N(C), V (G) − C), we have |N(C) ∩ U | = 2 and ∆(G[N(C)]) ≤ 1. But then
1 ≥ dG[N(C)](y) = 3 − dG[N(C)](y) ≥ 2, a contradiction.

Case: a ∈ X1

Then since |T | = 3, we have U ⊆ N(C). Suppose there exists u ∈ U such
that ua /∈ E(G). Then since |N(C)∩N(v)| = 3 and u is adjacent to exactly
two vertices in N(v), it follows that dG[N(C)](u) ≥ 2, a contradiction to the

last claim. So U ⊆ N(a). Also by the last claim applied to the vertex v4, we
have v4 /∈ N(C). So N(C) = U ∪ {v1, v2, v3, a}.

By Claim 4.7.1, there exists a component of G− (V (H ′)∪C) with vertex
set C ′ so that U ⊆ N(C ′) and |N(C ′)∩N(v)| = 3. By symmetry between the
vertices v1, v2, and v3, we may assume that v1 ∈ N(C ′). Then let G′

C be the
graph formed from G[C ∪N(C)] by adding an edge between v1 and u2,3. We
can see that G′

C is a minor of G with strictly fewer vertices by contracting
C ′ to the vertex v1. By part (i) of Lemma 4.6, the graph G′

C has at least five
vertices and is not isomorphic to K3,t for any t.
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Let G′ be the graph formed from G − C by adding an edge between v1
and u2,3. We can see that G′ is a minor of G on strictly fewer vertices by
contacting C to the vertex v1. By part (i) of Lemma 4.6, the graph G′ has
at least five vertices and is not isomorphic to K3,t for any t.

Then (G′
C , G

′) is a non-trivial bipartite super-separation of G such that
neither G′

C nor G′ is isomorphic to K3,t for any t. So by Lemma 3.4 and since
U ⊆ N(a) and N(C) = U ∪ {v1, v2, v3, a}, we have:

10 = 3(7) − 11 ≥ |E(G′
C)| + |E(G′)| − |E(G)|

= 2 + |E(G[C ∪N(C)])| + |E(G− C)| − |E(G)|
= 2 + |E(G[N(C)])| = 11

a contradiction. This completes the proof of the lemma.

We have shown that a ∈ X1 and that G− (V (H ′)∪C) is connected. For
convenience write D := V (G) − (V (H ′) ∪C). By part (ii) of Lemma 4.6, we
have N(v) ⊆ N(D). Also since |T | = 3, we have U ⊆ N(C). The final two
lemmas show that certain vertices are not neighbors of C or D.

Lemma 4.8. v4 /∈ N(C)

Proof. Suppose v4 ∈ N(C). Remember that U ∪ {a} ⊆ N(C). Then let
G′ be the graph formed from G by contracting D to a single vertex with
neighborhood N(v) ∪ {a} and by contracting C to a single vertex, call it c,
with neighborhood U ∪ {v4, a}. Then let G′′ be the graph formed from G′

by contracting u1,2 to v1, u2,3 to v2, u1,3 to v3, v to v4, and finally c to a.
Then G′′ is isomorphic to K6, a contradiction.

Lemma 4.9. If u ∈ U ∩N(D), then ua ∈ E(G).

Proof. Suppose otherwise. Let GC be the graph formed from G[C∪N(C)] by
adding edges between u and all vertices in NG[N(C)](u). We can see that GC

is a minor of G by contracting D to the vertex u, since N(v)∪ {a} ⊆ N(D).
Let G′ be the graph formed from G− C by adding edges between a and all
vertices in NG[N(C)](a). We can see that G′ is a minor of G by contracting C

to the vertex a. Then (GC , G
′) is a non-trivial bipartite super-separation of G

of order |N(C)| = 7. By part (i) of Lemma 4.6, both GC and G′ have at least
four vertices on each side of the bipartition of G. So neither is isomorphic
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to K3,t for any t. So by Lemma 3.4 and since u is adjacent to exactly two
vertices in N(v), we have

10 = 3(7) − 11 ≥ |E(GC)| + |E(G′)| − |E(G)|
= dG[N(C)](u) + dG[N(C)](a) + |E(G[N(C)])|
≥ 2 + |N(C) ∩ U | + |E(G[N(C) − {a}])|

Since v4 /∈ E(G) by Lemma 4.8, we have |E(G[N(C) − {a}])| = 6. But then
2 + |N(C) ∩ U)| + |E(G[N(C) − {a}])| = 11, a contradiction.

Write U ′ := U ∩N(D). Let GC be the graph formed from G[C ∪N(C)]
by adding a vertex with neighborhood {v1, v2, v3, a}. We can see that GC is
a minor of G on strictly fewer vertices by contracting D to a single vertex
and since |D| > 1 by the choice of U . Also, by part (i) of Lemma 4.6, the
graph GC has at least four vertices in each side of the bipartition of G.

Let G′ be the graph formed from G[D ∪N(D) ∪ {v}] by adding a vertex
with neighborhood {v1, v2, v3, a}. We can see that G′ is a minor of G on
strictly fewer vertices by contracting C to a single vertex and since |C| > 1
by part (i) of Lemma 4.6. Furthermore, G′ is not isomorphic to K3,t for any
t since va /∈ E(G′).

Now we show that every edge of H ′ is an edge of either GC or G′. Let e
be an edge of H ′. If e is incident to v, then e is an edge of G′. If e is incident
to a vertex in U , then e is an edge of the graph GC . Furthermore, if e is
incident to a vertex in U ′, then e is also an edge of G′.

So (GC , G
′) is a non-trivial bipartite super-separation of G. Furthermore,

neither GC nor G′ is isomorphic to K3,t for any t, and the order of the super-
separation (GC , G

′) is 6 + |U ′|. Remember also that by Lemma 4.9, every
vertex u ∈ U ′ is adjacent to the vertex a. Then by Lemma 3.4 we have

7 + 3|U ′| = 3(6 + |U ′|) − 11 ≥ |E(GC)| + |E(G′)| − |E(G)| = 8 + 3|U ′|,

a contradiction. This completes the proof of the theorem.
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