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ABSTRACT

A brick is a 3-connected graph such that the graph obtained from it by
deleting any two distinct vertices has a perfect matching. The importance
of bricks stems from the fact that they are building blocks of the matching
decomposition procedure of Kotzig, and Lovász and Plummer. We prove
a “splitter theorem” for bricks. More precisely, we show that if a brick H
is a “matching minor” of a brick G, then, except for a few well-described
exceptions, a graph isomorphic to H can be obtained from G by repeatedly
applying a certain operation in such a way that all the intermediate graphs
are bricks and have no parallel edges. The operation is as follows: first delete
an edge, and for every vertex of degree two that results contract both edges
incident with it. This strengthens a recent result of de Carvalho, Lucchesi
and Murty.
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1. INTRODUCTION

All graphs in this paper are finite and simple; that is, may not have loops or multiple

edges. The following well-known theorem of Tutte [15] describes how to generate all 3-

connected graphs, but first a definition. Let v be a vertex of a graph H, and let N1, N2

be a partition of the neighbors of v into two disjoint sets, each of size at least two. Let G

be obtained from H\v (we use \ for deletion and − for set-theoretic difference) by adding

two vertices v1 and v2, where vi has neighbors Ni ∪ {v3−i}. We say that G was obtained

from H by splitting a vertex. Thus for 3-connected graphs splitting a vertex is the inverse

of contracting an edge that belongs to no triangle. A wheel is a graph obtained from a

cycle by adding a vertex joined to every vertex of the cycle.

(1.1) Every 3-connected graph can be obtained from a wheel by repeatedly applying the

operations of adding an edge between two nonadjacent vertices and splitting a vertex.

A graph is a minor of another if the first can be obtained from a subgraph of the

second by contracting edges. Seymour [14] extended (1.1) as follows.

(1.2) Let H be a 3-connected minor of a 3-connected graph G such that H is not isomor-

phic to K4 and G is not a wheel. Then a graph isomorphic to G can be obtained from H

by repeatedly applying the operations of adding an edge between two nonadjacent vertices

and splitting a vertex.

Our objective is to prove an analogous theorem for bricks, where a brick is a 3-

connected bicritical graph, and a graph G is bicritical if G\u\v has a perfect matching for

every two distinct vertices u, v ∈ V (G). A related notion is that of a brace, by which we

mean a connected bipartite graph such that every matching of size at most two is contained

in a perfect matching. Bricks and braces are important, because they are the building

blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer [7],

which we now briefly review.

Let G be a graph, and let X ⊆ V (G). We use δ(X) to denote the set of edges with

one end in X and the other in V (G)−X. A cut in G is any set of the form δ(X) for some

X ⊆ V (G). A cut C is tight if |C ∩ M | = 1 for every perfect matching M in G. Every
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cut of the form δ({v}) is tight; those are called trivial, and all other tight cuts are called

nontrivial. Let δ(X) be a nontrivial tight cut in a graph G, let G1 be obtained from G by

identifying all vertices in X into a single vertex and deleting all resulting parallel edges,

and let G2 be defined analogously by identifying all vertices in V (G) − X. Then many

matching-related problems can be solved for G if we are given the correspoding solutions

for G1 and G2. As an example, consider lat(G), the matching lattice of a graph G, defined

as the set of all integer linear combinations of characteristic vectors of perfect matchings

of G. It is not hard to see that a description of lat(G) can be read off from descriptions of

lat(G1) and lat(G2). We will return to the matching lattice shortly.

The above decomposition process can be iterated, until we arrive at graphs with no

nontrivial tight cuts. Lovász [8] proved that the list of indecomposable graphs obtained

at the end of the procedure does not depend on the choice of tight cuts made during

the process. These indecomposable graphs were characterized by Edmonds, Lovász and

Pulleyblank [2, 3]:

(1.3) Let G be a graph such that every edge of G belongs to a perfect matching. Then

G has no nontrivial tight cut if and only if G is a brick or a brace.

Coming back to the matching lattice, Lovász [6] proved that if G is a brace, then

lat(G) consists of all integral vectors w ∈ ZE(G) such that w(δ(v)) = w(δ(v′)) for every

two vertices v, v′ ∈ V (G). This is not true for bricks, because the Petersen graph is a

counterexample. However, Lovász [8] proved the following deep result.

(1.4) Let G be a brick other than the Petersen graph. Then lat(G) consists precisely of

all vectors w ∈ ZE(G) such that w(δ(v)) = w(δ(v′)) for every two vertices v, v′ ∈ V (G).

Our motivation for generating bricks came from Pfaffian orientations [4]. An orien-

tation D of a graph G is Pfaffian if every even cycle C such that G\V (C) has a perfect

matching has an odd number of edges directed in either direction of the cycle. A graph is

Pfaffian if it has a Pfaffian orientation. This is an important concept, because the number

of perfect matchings in a Pfaffian graph can be computed efficiently [4]. No polynomial-

time algorithm to recognize Pfaffian graphs is known, even though there is one for bipartite
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graphs [11, 13], using a structure theorem obtained in [9, 13]. The above-mentioned tight

cut decomposition procedure can be used to reduce the Pfaffian graph decision problem

to bricks and braces [5, 16]. Thus it remains to understand which bricks have a Pfaffian

orientation, but that seems to be a much harder problem than the corresponding question

for braces. Using the main theorem of this paper we managed to shed some light on this

perplexing question, but the structure of Pfaffian graphs remains a mystery. We will report

on these findings elsewhere. A characterization of Pfaffian graphs in terms of drawings in

the plane (with crossings) has been recently obtained by the first author [12].

Let us now describe our theorem. We need a few definitions first. Let G be a graph,

and let v0 be a vertex of G of degree two incident with the edges e1 = v0v1 and e2 = v0v2.

Let H be obtained from G by contracting both e1 and e2 and deleting all resulting parallel

edges. We say that H was obtained from G by bicontracting or bicontracting the vertex

v0, and write H = G/v0. Let us say that a graph H is a reduction of a graph G if H can

be obtained from G by deleting an edge and bicontracting all resulting vertices of degree

two. By a prism we mean the unique 3-regular planar graph on six vertices. The following

is a generation theorem of de Carvalho, Lucchesi and Murty [1].

(1.5) If G is a brick other than K4, the prism, and the Petersen graph, then some reduction

of G is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be repeated

until we reach K4 or the prism. By reversing the process (1.5) can be viewed as a gen-

eration theorem. It is routine to verify that (1.5) implies (1.4), and that demonstrates

the usefulness of (1.5). Our main theorem strengthens (1.5) in two respects. (We have

obtained our result independently of [1], but later. We are indebted to the authors of [1]

for bringing their work to our attention.) The first strengthening is that the generation

procedure can start at graphs other than K4 or the prism, as we explain next. Let a graph

J be a subgraph of a graph G. We say that J is a central subgraph of G if G\V (J) has a

perfect matching. We say that a graph H is a matching minor of G if H can be obtained

from a central subgraph of G by repeatedly bicontracting vertices of degree two. Thus if

H can be obtained from G by repeatedly taking reductions, then H is isomorphic to a
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matching minor of G. We will denote the fact that G has a matching minor isomorphic

to H by writing H ↪→ G. This is consistent with our notation for embeddings, to be

introduced in Section 4. Since every brick has a matching minor isomorphic to K4 or the

prism by [7, Theorem 5.4.11], the following implies (1.5).

(1.6) Let G be a brick other than the Petersen graph, and let H be a brick that is a

matching minor of G. Then a graph isomorphic to H can be obtained from G by repeatedly

taking reductions in such a way that all the intermediate graphs are bricks not isomorphic

to the Petersen graph.

We say that a graph H is a proper reduction of a graph G if it is a reduction in

such a way that the bicontractions involved do not produce parallel edges. We would

like to further strengthen (1.6) by replacing reductions by proper reductions; such an

improvement is worthwhile, because in applications it reduces the number of cases that

need to be examined. Unfortunately, (1.6) does not hold for proper reductions, but all the

exceptions can be conveniently described. Let us do that now.

Let C1 and C2 be two vertex-disjoint cycles of length n ≥ 3 with vertex-sets {u1, u2, . . . , un}

and {v1, v2, . . . , vn} (in order), respectively, and let G1 be the graph obtained from the

union of C1 and C2 by adding an edge joining ui and vi for each i = 1, 2, . . . , n. We say

that G1 is a planar ladder. Let G2 be the graph consisting of a cycle C with vertex-set

{u1, u2, . . . , u2n} (in order), where n ≥ 2 is an integer, and n edges with ends ui and un+i

for i = 1, 2, . . . , n. We say that G2 is a Möbius ladder. A ladder is a planar ladder or a

Möbius ladder. Let G1 be a planar ladder as above on at least six vertices, and let G3

be obtained from G1 by deleting the edge u1u2 and contracting the edges u1v1 and u2v2.

We say that G3 is a staircase. Let t ≥ 2 be an integer, and let P be a path with vertices

v1, v2, . . . , vt in order. Let G4 be obtained from P by adding two distinct vertices x, y

and edges xvi and yvj for i = 1, t and all even i ∈ {1, 2, . . . , t} and j = 1, t and all odd

j ∈ {1, 2, . . . , t}. Let G5 be obtained from G4 by adding the edge xy. We say that G5 is

an upper prismoid, and if t ≥ 4, then we say that G4 is a lower prismoid. A prismoid is a

lower prismoid or an upper prismoid. We are now ready to state our main theorem.
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(1.7) Let H, G be bricks, where H is isomorphic to a matching minor of G. Assume

that H is not isomorphic to K4 or the prism, and G is not a ladder, wheel, staircase or

prismoid. Then a graph isomorphic to H can be obtained from G by repeatedly taking

proper reductions in such a way that all the intermediate graphs are bricks not isomorphic

to the Petersen graph.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder, wheel,

staircase or prismoid, then H itself is a ladder, wheel, staircase or prismoid, and can be

obtained from a graph isomorphic to G by taking (improper) reductions in such a way that

all intermediate graphs are bricks. Thus (1.7) implies (1.6). (Well, this is not immediately

clear if the graph H from (1.6) is a K4 or a prism, but in those cases the implication follows

with the aid of the next theorem.)

As a counterpart to (1.7) we should describe the starting graphs for the generation

process of (1.7). Notice that K4 is a wheel, a Möbius ladder, a staircase and an upper

prismoid, and that the prism is a planar ladder, a staircase and a lower prismoid. Later

in this section we show

(1.8) Let G be a brick not isomorphic to K4, the prism or the Petersen graph. Then G

has a matching minor isomorphic to one of the following seven graphs: the graph obtained

from the prism by adding an edge, the lower prismoid on eight vertices, the staircase on

eight vertices, the staircase on ten vertices, the planar ladder on ten vertices, the wheel on

six vertices, and the Möbius ladder on eight vertices.

McCuaig [10] proved an analogue of (1.7) for braces. To state his result we need

another exceptional class of graphs. Let C be an even cycle with vertex-set v1, v2, . . . , v2t

in order, where t ≥ 2 is an integer and let G6 be obtained from C by adding vertices v2t+1

and v2t+2 and edges joining v2t+1 to the vertices of C with odd indices and v2t+2 to the

vertices of C with even indices. Let G7 be obtained from G6 by adding an edge v2t+1v2t+2.

We say that G7 is an upper biwheel, and if t ≥ 3 we say that G6 is a lower biwheel. A

biwheel is a lower biwheel or an upper biwheel. McCuaig’s result is as follows.
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(1.9) Let H, G be braces, where H is isomorphic to a matching minor of G. Assume

that if H is a planar ladder, then it is the largest planar ladder matching minor of G, and

similarly for Möbius ladders, lower biwheels and upper biwheels. Then a graph isomorphic

to H can be obtained from G by repeatedly taking proper reductions in such a way that

all the intermediate graphs are braces.

Actually, (1.9) follows from a version of our theorem stated in Section 11.

Let us now introduce terminology that we will be using in the rest of the paper. Let

H, G, v0, v1, v2, e1, e2 be as in the definition of bicontraction. Assume that both v1 and v2

have degree at least three and that they have no common neighbors except v0; then no

parallel edges are produced during the contraction of e1 and e2. Let v be the new vertex

that resulted from the contraction. If both v1 and v2 have degree at least three, then we

say that G was obtained from H by bisplitting the vertex v. We call v0 the new inner

vertex and v1 and v2 the new outer vertices.

Let H be a graph. We wish to define a new graph H ′′ and two vertices of H ′′.

Either H ′′ = H and u, v are two nonadjacent vertices of H, or H ′′ is obtained from H by

bisplitting a vertex, u is the new inner vertex of H ′′ and v ∈ V (H ′′) is not adjacent to u, or

H ′′ is obtained by bisplitting a vertex of a graph obtained from H by bisplitting a vertex,

and u and v are the two new inner vertices of H ′′. Finally, let H ′ = H ′′ + (u, v). We say

that H ′ is a linear extension of H. By the cube we mean the graph of the 1-skeleton of the

3-dimensional cube. Notice that the cube and K3,3 are bipartite, and hence are not bricks.

Using this terminology (1.7) can be restated in a mildly stronger form. It is easy to check

that if G′ is obtained from a brick G by bisplitting a vertex into new outer vertices v1 and

v2, then {v1, v2} is the only set X ⊆ V (G′) such that |X| ≥ 2 and G′\X has at least |X|

odd components. Thus a linear extension of a brick is a brick, and hence (1.10) implies

(1.7).

(1.10) Let G be a brick other than the Petersen graph, and let H be a 3-connected

matching minor of G not isomorphic to K4, the prism, the cube, or K3,3. If G is not

isomorphic to H and G is not a ladder, wheel, biwheel, staircase or prismoid, then a linear

extension of H is isomorphic to a matching minor of G.
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The main step in the proof of (1.10) is the following.

(1.11) Let G be a brick other than the Petersen graph, and let H be a 3-connected

matching minor of G. Assume that if H is a planar ladder, then there is no strictly

larger planar ladder L with H ↪→ L ↪→ G, and similarly for Möbius ladders, wheels, lower

biwheels, upper biwheels, staircases, lower prismoids and upper prismoids. If H is not

isomorphic to G, then some matching minor of G is isomorphic to a linear extension of

H.

It is routine to verify that if G is a ladder, wheel, biwheel, staircase or prismoid, G′

is a linear extension of G, and H is a 3-connected matching minor of G not isomorphic

to K4, the prism, the cube, or K3,3, then G′ has a matching minor isomorphic to a linear

extension of H. Thus (1.11) implies (1.10), and we omit the details. The proof of (1.11)

will occupy the rest of the paper. However, assuming (1.11) we can now deduce (1.8).

Proof of (1.8), assuming (1.11). Let G be a brick not isomorphic to K4, the prism or the

Petersen graph. By [7, Theorem 5.4.11], G has a matching minor M isomorphic to K4 or

the prism. Since M is not bipartite, it is not a biwheel, a planar ladder on 4k vertices, or a

Möbius ladder on 4k+2 vertices. Thus if a prismoid, wheel, ladder or staircase larger than

M is isomorphic to a matching minor of G, then G has a matching minor as required for

(1.8). Thus we may assume that the hypothesis of (1.11) is satisfied, and hence a matching

minor of G is isomorphic to a linear extension of M . But K4 does not have any linear

extensions, and the prism has, up to isomorphism, exactly one, namely the graph obtained

from it by adding an edge. This proves (1.8).

Here is an outline of the paper. First we need to develop some machinery; that is

be done in Sections 2, 3, and 4. In Section 5 we prove a first major step toward (1.11),

namely that the theorem holds provided a graph obtained from H by bisplitting a vertex

is isomorphic to a matching minor of G. Then in Section 6 we reformulate our key lemma

in a form that is easier to apply, and introduce several different types of extensions. In

Section 7 we use the 3-connectivity of G to show that at least one of those extensions of H

is isomorphic to a matching minor of G, and in Sections 8–10 we gradually eliminate all the
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additional extensions. Theorem (1.11) is proved in Section 10. Finally, in Section 11 we

state a strengthening of (1.11) that can be obtained by following the proof of (1.11) with

minimal changes. We delegate the stregthening to the last section, because the statement

is somewhat cumbersome and perhaps of lesser interest. Its applications include (1.11),

(1.9) and a generation theorem for a subclass of factor-critical graphs.

A word about notation. If H is a graph, and u, v ∈ V (H) are distinct nonadjacent

vertices, then H + (u, v) or H + uv denotes the graph obtained from H by adding an edge

with ends u and v. Now let u, v ∈ V (H) be adjacent. By bisubdividing the edge uv we

mean replacing the edge by a path of length three, say a path with vertices u, x, y, v, in

order. Let H ′ be obtained from H by this operation. We say that x, y (in that order) are

the new vertices. Thus y, x are the new vertices resulting from subdividing the edge vu (we

are conveniently exploiting the notational asymmetry for edges). Now if w ∈ V (H)−{u},

then by H + (w, uv) we mean the graph H ′ + (w, x). Notice that the graphs H + (w, uv)

and H + (w, vu) are different. In the same spirit, if a, b ∈ V (H) are adjacent vertices of H

with {u, v} 6= {a, b}, then we define H + (uv, ab) to be the graph H ′ + (x, ab).

2. OCTOPI AND FRAMES

Let H be a graph with a perfect matching, and let X ⊆ V (H) be a set of size k. If H\X

has at least k odd components, then X is called a barrier in H. The following is easy and

well-known.

(2.1) A brick has no barrier of size at least two.

Now if H and X are as above and H is a subgraph of a brick G, then X cannot be a

barrier in G. If H is a central subgraph of G, then we get the following useful outcome.

(2.2) Let G be a brick and let H be a subgraph of G. Let M be a perfect matching of

G\V (H) and let V (H) be a disjoint union of X, R1, R2, . . . , Rk, where k ≥ 2, |X| ≤ k and

|Ri| is odd for every i ∈ {1, 2, . . . , k}. Then there exist distinct integers i, j ∈ {1, 2, . . . , k}

and an M -alternating path joining a vertex in Ri to a vertex in Rj .
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Proof. Suppose for a contradiction that the lemma is false, and let H be a maximal

subgraph of G that satisfies the hypothesis of the lemma, but not the conclusion.

By (2.1) there exists an edge e1 ∈ E(G) with one end v ∈ Ri for some i ∈ {1, 2, . . . , k}

and the other end u ∈ V (G) − Ri − X. Without loss of generality we may assume that

i = 1. If u ∈ V (H) then the path with edge-set {e1} is as required. Thus u 6∈ V (H),

and hence u is incident with an edge e2 ∈ M . Let w be the other end of e2; then clearly

w 6∈ V (H). Let X ′ = X ∪ {u}, Rk+1 = {w}, M ′ = M − {e2} and construct H ′ by adding

the vertices u and w and edges e1 and e2 to H. By the maximality of H the graph H ′,

matching M ′ and sets X ′, R1, R2, . . . , Rk+1 satisfy the conclusion of the lemma. Thus for

some distinct integers i, j ∈ {1, 2, . . . , k + 1} there exists an M ′-alternating path P joining

a vertex in Ri to a vertex in Rj. Since H does not satisfy the conclusion of the lemma we

may assume that j = k + 1. Let P ′ be the graph obtained from P by adding the edges e1

and e2. If i > 1, then P ′ is a path and satisfies the conclusion of the lemma.

Thus we may assume that i = 1. Let H ′′ = H ∪ P ′, M ′′ = M − E(P ′) and R′
1 =

R1 ∪V (P ′). Then the graph H ′′, matching M ′′ and sets X, R′
1, R2, . . . , Rk also satisfy the

conclusion of the lemma by the maximality of H. Thus we may assume that there is an

M ′′-alternating path Q joining a vertex in R′
1 to a vertex in Rj for some j ∈ {2, 3, . . . , k}.

If neither of the ends of Q lies in V (P ′) then Q is a required path for H. If one of them,

say x, is in V (P ′), we add to Q one of the subpaths of P ′ with end x to obtain a required

path.

In applications we will need a stronger conclusion and H will have a special structure,

which we now introduce. Let H be a graph, let C be a subgraph of H with an odd number

of vertices, and let P1, P2, ..., Pk be odd paths in H. For i = 1, 2, ..., k let ui and vi be the

ends of Pi. If for i = 1, 2, ..., k we have ui ∈ V (C) and V (Pi)∩ (V (C)∪
⋃

j 6=i V (Pj)) = {ui}

we say that Ω = (C, P1, P2, . . . , Pk) is an octopus in H. We say that the paths P1, P2, ..., Pk

are the tentacles of Ω, C is the head of Ω and vi are the ends of Ω. We define the graph

of Ω to be C ∪ P1 ∪ P2 ∪ · · · ∪ Pk, and by abusing notation slightly we will denote this

graph also by Ω. We say that a matching M in G is Ω-compatible if every tentacle is

M -alternating and no vertex of C is incident to an edge of M . See Figure 1.
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Figure 1. An octopus Ω and an Ω-compatible matching.

Let G be a graph, and let k ≥ 1 be an integer. We say that the pair (F , X) is a frame

in G if X ⊆ V (G) and F = {Ω1, Ω2, . . . , Ωk} satisfy

(1) Ω1, Ω2, . . . , Ωk are octopi,

(2) for i = 1, 2, . . . , k the ends and only the ends of Ωi belong to X,

(3) for distinct i, j ∈ {1, 2, . . . , k}, V (Ωi) ∩ V (Ωj) ⊆ X,

(4) |X| ≤ k.

We say that Ω1, Ω2, . . . , Ωk are the components of (F , X). We define the graph of

(F , X) to be Ω1∪Ω2∪ . . .∪Ωk, and denote it by F , again abusing notation. The following

is the main result of this section. We say that a graph H is M -covered if a subset of M is

a perfect matching of H.

(2.3) Let G be a brick, let M be a matching in G, and let (F , X) be a frame in G such

that G \ (V (F) ∪ X) is M -covered and M is Ω-compatible for each Ω ∈ F . Then there

exists an M -alternating path P joining vertices of the heads of two different components

Ω1, Ω2 of (F , X). Moreover, there is an edge e ∈ E(P )−M such that the two components

of P \e can be numbered P1 and P2 in such a way that V (Pi)∩V (F) ⊆ V (Ωi) for i = 1, 2.

Proof. We say that a subpath Q of a path P is an F -jump in P if the ends of Q belong to

different components of F and Q is otherwise disjoint from F . Let F = {Ω1, Ω2, . . . , Ωk}

and let Ci denote the vertex-set of the head of Ωi. By (2.2) applied to X, C1, C2, . . . , Ck

there exists an M -alternating path joining vertices of the heads of two different components

of (F , X). Choose such path P with the minimal number of F -jumps in it. We prove that

P satisfies the requirements of the theorem.
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Let v1 ∈ C1 and v2 ∈ C2 be the ends of P . Since P is M -alternating and M is

Ωi-compatible for all i = 1, 2, . . . , k, it follows that no internal vertex of P belongs to Ci.

Suppose that P ∩T 6= ∅ for some tentacle T of Ωi, where i ≥ 3. Let {v0} = V (T )∩Ci and

let v ∈ V (P ) ∩ V (T ) be chosen so that T [v, v0] is minimal. For some j ∈ {1, 2} the path

P [vj , v]∪ T [v, v0] is M -alternating and contradicts the choice of P . Thus V (P ) ∩ V (F) ⊆

V (Ω1) ∪ V (Ω2).

Define a linear order on V (P ) so that v � v′ if and only if v′ ∈ P [v1, v]. Let P0

be an F -jump in P with ends u1 ∈ V (Ω1) and u2 ∈ V (Ω2) chosen so that u1 � u2 and

P [v1, u2] is minimal. Equivalently we can define P0 as a second F -jump we encounter if

we traverse P from v1 to v2. If such an F -jump P0 in P does not exist then P contains a

unique F -jump. Let e 6∈ M be an edge of this unique F -jump; then P and e satisfy the

requirements of the theorem. Therefore we may assume the existence of P0.

For i ∈ {1, 2} let Ti be the tentacle of Ωi such that ui ∈ V (Ti) and let {wi} =

V (Ti) ∩ Ci. Let s1 ∈ V (T1) ∩ V (P ) be chosen so that s1 � u1 and T1[s1, w1] is minimal.

Note that s1 6= w1, because the only vertex in V (P ) ∩ C1 is v1 and s1 � u1 � v1. Let

s1t1 be the edge of M incident to s1. We have s1t1 ∈ E(T1 ∩ P ) as both T1 and P

are M -alternating, s1 ∈ T1[t1, w1] by the choice of s1 and s1 � t1 as otherwise the path

T1[w1, s1]∪P [s1, v2] contradicts the choice of P . Let s2 ∈ V (T2)∩V (P ) be chosen so that

s2 ≺ s1 and T2[s2, w2] is minimal. Let s2t2 be the edge of M incident to s2. We again

have s2t2 ∈ T2 ∩P , s2 ∈ T2[t2, w2] and s2 ≺ t2, as otherwise the path P [v1, s2]∪ T2[s2, w2]

contradicts the choice of P .

Consider P ′ = P [s2, s1]. By the choice of s1 we have V (P [u2, s1]) ∩ V (T1[s1, w1]) =

{s1}. Also if s2 ≺ u2 we have V (P [s2, u2]∩ V (Ω1) = ∅ by the choice of P0. It follows that

V (P ′) ∩ V (T1[s1, w1]) = {s1}. By the choice of s2 we have V (P ′) ∩ V (T2[s2, w2]) = {s2}.

Therefore T2[w2, s2] ∪ P ′ ∪ T1[w1, s1] is an M -alternating path contradicting the choice of

P .

3. TWO PATHS MEETING

In this section we study the following problem. Let G be a graph, let M be a matching,
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and let P1 and P2 be two M -alternating paths. In the applications we will be permitted

to replace the matching M by a matching M ′ saturating the same set of vertices, and to

replace the paths P1 and P2 by a pair of M ′-alternating paths with the same ends. Thus

we are interested in graphs that are minimal in the sense that there is no replacement as

above upon which an edge of G may be deleted. The main result of this section, theorem

(3.3) below, asserts that there are exactly four types of minimally intersecting pairs of

M -alternating paths, three of which are depicted in Figure 2. We start with two auxiliary

lemmas.

(3.1) Let M be a matching in G, let P be an M -alternating path with ends x and y, let

C be an M -alternating cycle such that x and y have degree at most two in P ∪ C and let

M ′ = M4E(C). Then there exists an M ′-alternating path Q with ends x and y satisfying

E(Q) ⊆ E(P )4E(C).

Proof. Let H be the subgraph of G with vertex-set V (G) and edge-set E(P )4E(C). Then

x, y have degree one in H, every other vertex of H has degree zero or two, and if it has

degree two, then it is incident with an edge of M ′. Thus some component of H is an

M ′-alternating path joining x and y, as desired.

(3.2) Let M be a matching in G, let P be an M -alternating path with ends w and v, and

let R be a path with ends v and z such that R \ v is M -covered, v is incident with no edge

of M , and w 6∈ V (R). Let M ′ = M4E(R). Then there exists an M ′-alternating path Q

with ends w and z satisfying E(Q) ⊆ E(P )4E(R).

Proof. This follows similarly as (3.1) by considering the graph with edge-set E(P )4E(R).

Let G be a graph, let M be a matching in G, and let P and Q be two M -alternating

paths in G. For the purpose of this definition let a segment be a maximal subpath of

P ∩Q, and let an arc be a maximal subpath of Q with no internal vertex or edge in P . We

say that P and Q intersect transversally if either they are vertex-disjoint, or there exist

vertices q0, q1, . . . , q7 ∈ V (Q) such
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(1) q0, q1, . . . , q7 occur on Q in the order listed, and q0 and q7 are the ends of Q,

(2) q2, q1, q3, q4, q6, q5 all belong to P and occur on P in the order listed,

(3) if q0 ∈ V (P ), then q0 = q1 = q2 = q3, and otherwise Q[q0, q1] is an arc,

(4) if q7 ∈ V (P ), then q7 = q6 = q5 = q4, and otherwise Q[q6, q7] is an arc,

(5) Q[q3, q4] is a segment,

(6) either q1 = q2 = q3, or q1, q2, q3 are pairwise distinct, Q[q1, q2] is a segment, Q[q2, q3]

is an arc and q2 is not an end of P , and

(7) either q4 = q5 = q6, or q4, q5, q6 are pairwise distinct, Q[q5, q6] is a segment, Q[q4, q5]

is an arc and q5 is not an end of P .

It follows that the definition is symmetric in P and Q. There are four cases of transversal

intersection depending on the number of components of P ∩ Q; the three cases when P

and Q intersect are depicted in Figure 2, where matching edges are drawn thicker. We

shall prove the following lemma.

Figure 2. Three cases of transversal intersection.

(3.3) Let M be a matching in a graph G and let P1 and P2 be two M -alternating paths,

where Pi has ends si and ti. Assume that s1, s2, t1 and t2 have degree at most two in
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P1∪P2. Then there exist a matching M ′ saturating the same set of vertices as M and two

M ′-alternating paths Q1 and Q2 such that M4M ′ ⊂ E(P1) ∪ E(P2), Qi has ends si and

ti and Q1 and Q2 intersect transversally.

Unfortunately, for later application we need a more general, but less nice result, the

following. Please notice that it immediately implies (3.3) on taking r = t2.

(3.4) Let M be a matching in a graph G and let P1 and P2 be two M -alternating paths,

where Pi has ends si and ti. Assume that s1, s2, t1 and t2 have degree at most two in

P1 ∪ P2. Let r ∈ V (P2), and let P ′
2 = P2[s2, r]. Then one of the following conditions hold:

(1) There exist a matching M ′ saturating the same set of vertices as M and two M ′-

alternating paths Q1 and Q2 such that Qi has ends si and ti, M4M ′ ⊆ E(P1)∪E(P ′
2),

Qi has ends si and ti, Q1 ⊆ P1 ∪ P ′
2, and Q1 ∪ Q2 is a proper subgraph of P1 ∪ P2,

(2) r 6= t2, and there exists an M -alternating path R ⊆ P1 ∪ P ′
2 with ends s2 and t1 such

that R and P1 intersect transversally,

(3) P ′
2 intersects P1 transversally.

Proof. We may assume that G = P1 ∪ P2 and (1) does not hold. We shall refer to this as

the minimality of G.

We claim that P1 ∪ P ′
2 contains no M -alternating cycles. Suppose for a contradiction

there exists an M -alternating cycle C ⊆ P1 ∪ P ′
2. Let M ′ = M4E(C) and let Q1, Q2

be the two M ′-alternating paths obtained by applying (3.1) to P1 and P2, respectively.

Since P1 and P2 are M -alternating and their union includes C, they either share an edge

of M ∩ E(C), say e, or P1 and P2 have the same ends. In the later case replacing P2 by

P1 contradicts the minimality of G, and so we may assume the former. Now Q1 ⊆ P1 ∪P ′
2

and Q1 ∪ Q2 is a subgraph of (P1 ∪ P2) \ e, contradicting the minimality of G.

For the purpose of this proof let us define an arc as a maximal subpath of P ′
2 that has

at least one edge or contains an end of P ′
2 and has no internal vertex or edge in P1. Define

segment as a maximal subpath of P1 ∩ P2. We say that two vertices of P1 have the same

biparity if their distance on P1 is even, and otherwise we say they have opposite biparity.

We claim that the ends of every arc have the same biparity. To see that, let P ′
2[s, t] be an

arc with ends of opposite biparity. There are two cases. Either both end-edges of P1[s, t]
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belong to M , or both of them do not. If they do, then P1[s, t]∪P ′
2[s, t] is an M -alternating

cycle, and if they do not, then P ′
1, P2 contradict the minimality of G, where P ′

1 is obtained

from P1 by replacing the interior of P1[s, t] by P ′
2[s, t]. (Notice that the edge of P1[s, t]

incident with s does not belong to P ′
1 or P2.) This proves our claim that the ends of every

arc have the same biparity.

We may assume that there is an arc with both ends on P1, for otherwise (3) holds.

Let P ′
2[u0, v0] be such an arc. Since u0, v0 have the same biparity, exactly one end-edge of

P1[u0, v0] belongs to M , say the one incident with u0. Then the unique segment incident

with u0, say P1[u0, v1] = P ′
2[u0, v1] has the property that v1 lies between u0 and v0 on P1.

Let P ′
2[v1, u1] be the unique arc incident with v1. Then either u1 is an end of P ′

2, or u1, v1

have the same biparity, opposite to the biparity of u0, v0.

We claim that either u1 is an end of P ′
2, or u1 lies between v1 and v0 on P1. To prove

this claim we need to prove that neither u0 nor v0 lie between u1 and v1 on P1. To this

end suppose first that u0 lies between u1 and v1 on P1. Then P ′′
1 and P2 contradict the

minimality of G, where P ′′
1 is obtained from P1 by replacing the interior of P1[u1, v0] by

P ′
2[u1, v0] (the edge of P1[v1, v0] incident with v1 does not belong to P ′′

1 ∪ P2). Suppose

now that v0 lies between u1 and v1 on P1. Then P ′
2[v0, u1]∪P1[u1, v0] is an M -alternating

cycle, a contradiction. This proves that either u1 is an end of P ′
2, or u1 lies between v1

and v0 on P1.

Now assume that P ′
2[u0, v0] is chosen so that P1[u0, v0] is maximal, and let u1, v1 be

as in the previous paragraph. If u1 is an end of P ′
2 we stop, and so assume that it is not.

Recall that u1, v1 have opposite biparity from u0, v0. Thus the unique segment incident

with u1, say P1[u1, v2] = P ′
2[u1, v2] has the property that v2 lies between v1 and u1 on

P1. Now let P ′
2[v2, u2] be the unique arc incident with v2. By the result of the previous

paragraph either u2 is an end of P ′
2, or u2 lies between v2 and v1 on P1. By arguing in

this manner we arrive at a sequence of vertices u0, v0, . . . , uk+1, vk+1 such that

(i) u0, v1, u2, v3, . . . , vk+1, . . . , u3, v2, u1, v0 occur on P1 in the order listed,

(ii) uk+1 is an end of P ′
2,

(iii) P ′
2[ui, vi] are arcs for i = 0, 1, . . . , k + 1, and

(iv) P1[ui, vi+1] are segments for i = 0, 1, . . . , k.
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It follows that ui, vi have the same biparity and that their biparity depends on the parity

of i. Let P1[v0, v
′
0] be the unique segment incident with v0. Then v0 lies between v′

0 and

u0 on P1. Let P ′
2[v

′
0, u

′
0] be the unique arc incident with v′

0. The maximality of P1[u0, v0]

and the result of the previous paragraph imply that either u′
0 is an end of P ′

2, or that

u0, v0, v
′
0, u

′
0 occur on P1 in the order listed. In the latter case by an analogous argument

there exists a sequence of vertices u′
0, v

′
0, . . . , u

′
k′+1, v

′
k′+1 such that

(i) u′
0, v

′
1, u

′
2, v

′
3, . . . , v

′
k′+1, . . . , u

′
3, v

′
2, u

′
1, v

′
0 occur on P1 in the order listed,

(ii) u′
k′+1 is an end of P2,

(iii) P ′
2[u

′
i, v

′
i] are arcs for i = 0, 1, . . . , k′ + 1, and

(iv) P1[u
′
i, v

′
i+1] are segments for i = 0, 1, . . . , k′.

Suppose r = t2. Then k = 0, for otherwise P1 and and the path obtained from P2 by

replacing the interior of P2[v0, u1] by P1[v0, u1] contradict the minimality of G. Similarly,

either u′
0 is an end of P2 or k′ = 0. Thus (3) holds.

Therefore we may assume r 6= t2. Suppose s2 6= u′
0. Then without loss of generality we

assume s2 = uk+1. We define R1 = P ′
2[s2, uk] ∪ P1[uk, t1] and R2 = P ′

2[s2, vk] ∪ P1[vk, t1].

For some i ∈ {1, 2} Ri ⊆ P1 ∪ P ′
2 is an M -alternating path with ends s2 and t1 such that

Ri and P1 intersect transversally. Thus (2) holds.

It remains to consider the case when s2 = u′
0 and uk+1 = r. Suppose k ≥ 1. We

claim that E(P1[vk+1, vk] ∩ P2) = ∅. Suppose for a contradiction P2[x, y] ⊆ P1[vk+1, vk] is

a segment, and let P2[x, y] be chosen so that P2[y, t2] is minimal. If x ∈ V (P1[vk, y]) define

Q2 = P2[s2, vk]∪P1[vk, x]∪P2[x, t2], and otherwise define Q2 = P2[s2, vk+1]∪P1[vk+1, x]∪

P2[x, t2]. As E(P1[vk+1, vk]∩P ′
2) = ∅ we see that Q2 is an M -alternating path. We replace

P2 with Q2 to contradict the minimality of G.

Now we claim E(P1[vk−1, uk] ∩ P2) = ∅. Again suppose P2[x, y] ⊆ P1[vk−1, uk] is a

segment, and let P2[x, y] be chosen so that P2[y, t2] is minimal. If x ∈ V (P1[vk−1, y]) define

Q2 = P2[s2, vk−1]∪P1[vk−1, x]∪P2[x, t2], and otherwise define Q2 = P2[s2, vk]∪P1[vk, x]∪

P2[x, t2]. As E(P1[vk+1, vk] ∩ P2) = ∅ we see that Q2 is an M -alternating path. Again we

replace P2 with Q2 to contradict the minimality of G.

Now let Q2 = P2[s2, vk−1] ∪ P1[vk−1, uk] ∪ P2[uk, t2]. As E(P1[vk−1, uk] ∩ P2) = ∅ we

see that Q2 is an M -alternating path and replacing P2 with Q2 we once again contradict
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the minimality of G. Thus k = 0 and (3) holds.

We deduce several corollaries of (3.4). Let Ω be an octopus in a graph G, where Ω

consists of two tentacles and a head C with V (C) = {v}. Then the graph of Ω is a path.

We say that Ω is a path octopus with head v. The head of a path octopus can be moved

along Ω in the sense that if v′ ∈ V (Ω) is at even distance from v in Ω, then there is another

path octopus with the same graph and head v′. The next lemma will use this fact.

(3.5) Let G be a graph, let Ω be a path octopus in G with head v and ends v1 and

v2, let z be the neighbor of v1 in Ω, let M be an Ω-compatible matching, and let P be

an M -alternating path in G\v1\v2 with ends v and w 6∈ V (Ω). Then there exist a path

octopus Ω′ with head z and ends v1 and v2, an Ω′-compatible matching M ′, and a path

P ′ with ends z and w such that E(Ω′) ⊆ E(Ω∪P ), zv1 ∈ E(Ω′), v1 6∈ V (P ′), M coincides

with M ′ on G \ (V (P )∪ V (Ω)), Ω∪P \ V (Ω′ ∪P ′) is M ′-covered, and P ′ intersects Ω′\v1

transversally.

Proof. Since M is Ω-compatible, v is incident with no edge of M . Let R = Ω[z, v], let

M ′ = M4E(R), and let Ω′ be the octopus with graph Ω and head z. Then M ′ is an

Ω′-compatible matching. By (3.2) there exists an M ′-alternating path P ′ with ends z and

w such that E(P ′) ⊆ E(P )4E(R). By (3.3) we may assume, by replacing the tentacle

Ω′[z, v2] and path P ′, that P ′ intersects Ω′\v1 = Ω′[z, v2] transversally, as desired.

Let P1, P2, P3 be odd paths in a graph H. For i = 1, 2, 3 let ui and vi be the ends of

Pi. If u1 = u2 = u3 and otherwise P1, P2, P3 are pairwise disjoint, then we say that the

octopus with tentacles P1, P2 and P3 and a head the graph with vertex-set {u1} is a triad

in H. Assume now that P1, P2, P3 are pairwise disjoint, and let Q1, Q2, Q3 be three odd

paths such that for {i, j, k} = {1, 2, 3} the ends of Qk are ui and uj . Assume further that

P1, P2, P3, Q1, Q2, Q3 are pairwise disjoint, except for common ends in the set {u1, u2, u3}.

In those circumstances we say that an octopus with tentacles P1, P2 and P3 and head

Q1 ∪ Q2 ∪ Q3 is a tripod in H.



S. Norine and R. Thomas, Generating bricks 19

(3.6) Let G be a graph. Let T be a triad or tripod in G with ends v1, v2 and v3. Let M

be a T -compatible matching, and let P be an M -alternating path in G \ v1 \ v2 with one

end in the head of T and another end w 6∈ V (T ). Assume that the edge of P incident with

w does not belong to M . Then there exists a triad or tripod T ′ ⊆ T ∪ P with ends v1, v2

and w and a T ′-compatible matching M ′ such that M is identical to M ′ on G \ V (P ∪ T )

and (T ∪ P ) \ V (T ′) is M ′-covered.

Proof. If T is triad then the result follows immediately from (3.5). If T is a tripod, then

for i ∈ {1, 2, 3} let Pi, Qi, ui, vi be as in the definition of tripod. Extend M to Q1, Q2 and

Q3 in such a way that Q1 ∪ Q2 ∪ Q3 \ u1 is M -covered. Let T ′′ be the path octopus with

tentacles P1 and P2 ∪ Q1 ∪ Q2. Extend P along Q1 ∪ Q2 ∪ Q3 to a path P ′′ so that P ′′ is

an M -alternating path with ends w and u1. It remains to apply (3.5) to P and T ′′ .

Let Q be an even path with ends u1 and u3, let u2 = u1 and u4 = u3, and for

i = 1, 2, 3, 4 let Pi be an odd path with ends ui and vi, disjoint from Q except for ui, and

such that the paths Pi are pairwise disjoint, except that P1 and P2 share a common end

u1 = u2 and P3 and P4 share a common end u3 = u4. In those circumstances we say that

the octopus with head Q and tentacles P1, P2, P3, P4 is a quadropod.

Now let P1, P2, P3, Q1, Q2, Q3 be as in the definition of tripod, except that Q2 and Q3

are allowed to intersect beyond the vertex u1. Suppose there exists a perfect matching M

of Q2∪Q3 \u1 \u2 \u3 such that Q2 and Q3 are M -alternating and intersect transversally.

Then we say that the octopus Ω with tentacles P1, P2 and P3 and a head Q1 ∪ Q2 ∪ Q3 is

a quasi-tripod in H. Clearly every tripod is a quasi-tripod. It follows from the definition

of transversal intersection that Q2∩Q3 consists of one or two paths, one of which contains

the vertex u1. By shortening both Q2 and Q3 and extending P1 we may assume that one of

the components of Q2 ∩Q3 has vertex-set {u1}. If that is the only component of Q2 ∩Q3,

then Ω is a tripod; otherwise Ω looks as depicted in Figure 3.

(3.7) Let G be a graph. Let T be a triad or tripod in G with ends v1, v2 and v3. Let

M be a T -compatible matching, and let P be an M -alternating path in G \ {v1, v2, v3}
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Figure 3. A quasi-tripod.

with one end in the head of T and another end w 6∈ V (T ). Assume that the edge of P

incident with w does not belong to M . Then there exists an octopus T ′ ⊆ T ∪ P and a

T ′-compatible matching M ′, such that M is identical to M ′ on G \ V (P ∪ T ), the graph

(T ∪ P ) \ V (T ′) is M ′-covered and either T ′ is a quasi-tripod with ends vi, vj and w, for

some distinct indices i, j ∈ {1, 2, 3}, or T ′ is a quadropod with ends v1, v2, v3 and w.

Proof. We may assume that G = T ∪ P and that there do not exist a triad or tripod T ′

with ends v1, v2 and v3, a T ′-compatible matching M ′ and an M ′-alternating path P ′ in

G \ {v1, v2, v3} with one end in the head of T ′ and the other end w such that w 6∈ V (T ′),

(T ∪P ) \V (T ′ ∪P ′) is M ′-covered and P ′ ∪T ′ is a proper subgraph of G. We refer to this

as the minimality of G.

Let the tentacles of T be P1, P2, P3, where Pi has one end vi, and let ui be the other

end of Pi. If T is a tripod, then let Qi be as in the definition of tripod, and otherwise let

Qi be the null graph. We say that a vertex v of Pi is inbound if Pi[v, ui] is even and we

say that v is outbound otherwise.

Let u0 ∈ V (P ∩ T ) be chosen to minimize P [w, u0]. If T is a triad and u0 is inbound,

then T ∪ P [w, u0] is a required quadropod. If T is a tripod and u0 ∈ V (Pi) is inbound

then by replacing Pi[vi, u0] by P [w, u0] in T we obtain a required quasi-tripod. If T is a

tripod and u0 ∈ V (Qi), then we may assume from the symmetry that Qi[u0, uj ] is even,

in which case by replacing Pj by P [w, u0] we obtain a required quasi-tripod.
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Therefore for the rest of the proof we may assume that u0 ∈ V (P1) and that u0 is

outbound. Let r ∈ V (T ) ∩ V (P ) − V (P1) be chosen to minimize P [w, r] and if no such

r exists let r 6= w be the end of P . Apply (3.4) to P1 and P with s1 = v1, t1 = u1 and

s2 = w. Outcome (3.4)(1) does not hold by the minimality of G. If (3.4)(2) holds, then by

considering the path guaranteed therein we obtain a desired quasi-tripod or quadropod.

Thus we may assume (3.4)(3) holds, and hence P1 intersects P [w, r] transversally.

Let v0 be such that P [v0, u0] is a component of P ∩P1, and let u be such that P [v0, u]

is a maximal path with no internal vertex or edge in T . If u ∈ V (P1), then by the definition

of transversal intersection the vertices v1, v0, u0, u, u1 occur on P1 in the order listed and

u is inbound. By considering T ∪ P [w, u] and deleting P3\u3 and the interior of Q3 we

obtain a required quasi-tripod. Thus we may assume that u 6∈ V (P1), and hence u = r. If

r is not outbound, then a similar argument gives a required quasi-tripod.

It follows that for the remainder of the proof we may assume that r ∈ V (P2), and

that r is outbound. Let M1 be the unique perfect matching of Q1 ∪ Q2 ∪ Q3\u1, and let

M+ = M∪M1. We can extend P along Q1∪Q2∪Q3 to an M+-alternating path P+ so that

u1 is an end of P+. Apply (3.2) to P+ and P1[v0, u1] to produce an M ′-alternating path

P ′ with ends w and v0, where M ′ = M+4P1[u1, v0]. Let T ′ be obtained from T ∪P [v0, r]

by deleting the interiors of P2[r, u2] and Q2; then T ′ is a triad with ends v1, v2, v3. But

now T ′ and P ′ contradict the minimality of G.

4. EMBEDDINGS AND MAIN LEMMA

In this section we first formalize the notion of a matching minor by introducing the concept

of an embedding, and show in (4.2) below that a graph H has a matching minor isomorphic

to a graph G if and only if there is an embedding H ↪→ G. Then we study the following

question. Suppose that η : H ↪→ G is an embedding, G is a brick, and v0 ∈ V (H) has

degree two. Since bricks have no vertices of degree two, there is a subgraph of G that “fixes”

this violation of being a brick. What can we say about this subgraph? The answer leads

to the notion of v0-augmentation of η. We define this concept formally, and then prove

two results about its existence. The second, (4.4), will be used when some graph obtained
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from H by bisplitting a vertex is isomorphic to a matching minor of G; otherwise we will

use (4.3), the first of these results. Finally, we classify all “minimal” v0-augmentations

into one of four types.

Let T ′ be a tree, and let T be obtained from T ′ by subdividing every edge an odd

number of times. Then V (T ′) ⊆ V (T ). The vertices of T that belong to V (T ′) will be called

old and the vertices of V (T ) − V (T ′) will be called new. We say that T is a barycentric

tree. Please note that the partition into old and new vertices depends on T ′ (there is an

ambiguity concerning vertices of degree two). We shall assume that each barycentric tree

has a fixed partition into new and old vertices. By a branch of a barycentric tree T we

mean a subpath of T with ends old vertices and all internal vertices new.

We need to formalize the concept of matching minor. Let H and G be graphs. A weak

embedding of H to G is a mapping η with domain V (H)∪E(H) such that for v, v′ ∈ V (H)

and e, e′ ∈ E(H)

(1) η(v) is a barycentric subtree in G,

(2) if v 6= v′, then η(v) and η(v′) are vertex-disjoint,

(3) η(e) is an odd path with no internal vertex in any η(v) or η(e′) for e′ 6= e,

(4) if e = u1u2, then the ends of η(e) can be denoted by x1, x2 in such a way that xi is

an old vertex of η(ui), and

(5) G\
⋃

x∈V (H)∪E(H) V (η(x)) has a perfect matching.

The next lemma will show that H is isomorphic to a matching minor of G if and only if

there is a weak embedding of H to G. Then we will show that such a weak embedding can

be chosen with two additional properties. Thus we say that a weak embedding from H to

G is an embedding if, in addition, it satisfies

(6) if v has degree one then η(v) has exactly one vertex,

(7) if v ∈ V (H) has degree two and e1, e2 are its incident edges, then η(v) is an even path

with ends x1, x2, say, and η(e1), η(e2) both have length one, one has x1 as its end

and the other has x2 as its end, and

(8) if v has degree at least three and x is an old vertex of η(v) of degree d, then x is an

end of η(e) for at least 3 − d distinct edges e.

For every subgraph H ′ of H define η(H ′) =
⋃

x∈V (H)∪E(H) η(x). We denote the fact that
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η is an embedding of H into G by writing η : H ↪→ G.

Let T ⊆ H be a barycentric tree, and let (X, Y ) be the unique partition of V (T ) into

two independent sets with X including all the old vertices. The vertices of X will be called

protected and the vertices of Y will be called exposed.

(4.1) Let H and G be graphs. There exists a weak embedding of H to G if and only if

H is isomorphic to a matching minor of G.

Proof. If η : H ↪→ G then a graph isomorphic to H can be obtained from the central

subgraph η(H) of G by repeatedly bicontracting exposed vertices of η(v) and internal

vertices of η(e) for v ∈ V (H) and e ∈ E(H). Thus H is a matching minor of G.

To prove the converse we may assume that H is a matching minor of G. Thus there

exist graphs H1, H2, . . . , Hk such that H1 = H, Hk is a central subgraph of G, and for

i = 2, 3, . . . , k the graph Hi−1 is obtained from Hi by bicontracting a vertex. We define

ηk : Hk ↪→ G by saying that if v ∈ V (Hk), then ηk(v) is the graph with vertex-set

{v}, and if e ∈ E(Hk), then ηk(e) is the graph consisting of e and its ends. It is clear

that ηk satisfies (1)-(7). We now construct a sequence of mappings satisfying (1)-(7).

Assuming that ηi has been defined we define ηi−1 as follows. Let v be the vertex of Hi

whose bicontraction produces Hi−1, let x, y be the neighbors of v, and let w be the the

new vertex of Hi−1. For z ∈ V (Hi−1) ∪ E(Hi−1) − {w} let ηi−1(z) = ηi(z), and let

ηi−1(w) = ηi(x) ∪ ηi(y) ∪ ηi(v) ∪ ηi(xv) ∪ ηi(yv). This completes the construction. It is

clear that η1 satisfies (1)-(5).

We now show that if there is weak embedding of H to G, then there is an embedding

of H to G.

(4.2) Let H and G be graphs. There exists an embedding of H to G if and only if H is

isomorphic to a matching minor of G.

Proof. By (4.1) it suffices to show that if η is a weak embedding of H to G, then there

exists an embedding of H to G.
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It is easy to modify η so that it satisfies conditions (6) and (7). Thus we may choose

a mapping η with domain V (H) ∪ E(H) satisfying (1)-(7) such that the total number of

old vertices in η(v) over all vertices v ∈ V (H) of degree at least three is minimum. We

claim that η satisfies (8) as well.

To prove that η satisfies (8) let v ∈ V (H) have degree at least three, let x be an old

vertex of η(v), and let d be the degree of x in η(v). If d = 2 and x is not an end of η(e)

for any e ∈ E(G), then we change the barycentric structure of η(v) by declaring x to be a

new vertex. The new embedding thus obtained contradicts the minimality of η. If d = 0,

then x is the unique vertex of η(v), and it is an end of η(e) for all the (at least three) edges

e incident with v by (4). Thus we may assume that d = 1. If x is not an end of any η(e),

then we remove from η(v) the vertex x and all internal vertices of Q, where Q is the unique

subpath of η(v) between x and the nearest old vertex. Then set of vertices removed has a

perfect matching, because Q is even by the definition of barycentric subdivision, and hence

the new embedding satisfies (5). Thus the new embedding contradicts the minimality of

η. To complete the proof we may therefore suppose for a contradiction that x is incident

with η(e) for exactly one e ∈ E(H). By (4) one end of e is v; let u be the other end. If

u has degree at most two, then we define a new embedding by moving x and the internal

vertices of Q from η(v) to η(u), and changing η(e) accordingly. If u has degree at least

three, then we move x and all internal vertices of Q from η(v) to η(e). In either case the

new embedding contradicts the minimality of η. Thus η satisfies (8), and hence it is an

embedding H ↪→ G, as desired.

Let T be an even subpath of a graph H, and let T be regarded as a barycentric tree,

with its ends designated as old and all internal vertices designated as new. Let us recall

that the notions of protected and exposed were defined prior to (4.1). Let P be a path

with one end, say v, in the interior of T and no other vertex in T . If v is exposed, then let

Q be the null graph, and if v is protected, then let Q be a path with ends exposed vertices

q1, q2 ∈ V (T ) and otherwise disjoint from H ∪ P such that v lies on T between q1 and q2.

In those circumstances we say that Q is a cap for P at v with respect to T and H.

Let η : H ↪→ G. For every edge e = uv ∈ E(H) the path η(e) is odd. Let Pe denote
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its interior (that is, the path obtained by deleting the ends), and let Me be the unique

perfect matching of Pe (possibly Me = ∅). We define M(η) to be the union of Me over all

e ∈ E(H).

Now let v0 ∈ V (H) have degree two, and let v1, v2 be its neighbors. For i = 1, 2 let

Ei be the set of edges of H incident with vi, except for the edge v0vi, and let E1 ∩E2 = ∅.

Let M1 be a perfect matching of G\V (η(H)), and let M = M1 ∪ M(η). Let P be an

M -alternating path with one end x ∈ V (η(v0)) and the other end u in
⋃
{η(v) : v ∈

V (H) − {v0, v1, v2}} with the property that if P intersects η(e) for some e ∈ E(H) not

incident with v0, v1, or v2, then P and η(e) intersect in a path and have a common end.

Let S denote the path η(v0)∪η(v0v1)∪η(v0v2); then S is obtained from η(v0) by appending

two edges, one at each end. Let Q be an M1-alternating cap for P at x with respect to

S and η(H). We say that the pair (P, Q) is a v0-augmentation of η. It follows that P

and Q have no internal vertices in
⋃

v∈V (H) η(v). We say that x is the origin and u is the

terminus of P .

Our first result about augmentations is the following.

(4.3) Let H be a graph on at least four vertices, let v0 be a vertex of H that has exactly

two neighbors v1 and v2, and let v1 and v2 be not adjacent. Let G be a brick and let

η : H ↪→ G be an embedding such that both η(v1) and η(v2) have exactly one vertex.

Then there exists an embedding η′ : H ↪→ G and a v0-augmentation of η′.

Proof. Define E1, E2 and M as in the definition of v0-augmentation. The path η(v0) ∪

η(v0v1) ∪ η(v0v1) is even and can therefore be regarded as path octopus, which we denote

by Ω1. Let Ω2 be the octopus with the set of tentacles {η(e) : e ∈ E1 ∪ E2} and head

η(H\v0\v1\v2). The head of Ω2 is non-null, because H has at least four vertices. We can

convert M to a matching M+ so that M+ is Ωi-compatible for i = 1, 2. We apply (2.3) to

the frame ({Ω1, Ω2}, V (η(v1))∪V (η(v2))) and denote the resulting path by R. Let R have

ends r1 ∈ V (Ω1) and r2 ∈ V (Ω2) and let e ∈ E(R) be such that each of the components

Ri = R[si, ri] of R\e intersects only one of the octopi Ω1 and Ω2.

By (3.5) we may assume, by changing M+, R1, and η(v0), that there exists an M+-

alternating path P1 with ends p1 ∈ V (η(v0)) and s1, and an M+-alternating cap Q1 for P1
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at p1 with respect to Ω1 and η(H) such that P1∪Q1 ⊆ R1. We may also assume that r2 is

the only vertex of R in the head of Ω2. If r2 ∈ η(v) for some v ∈ V (H), then let R′
2 be the

null graph, and if r2 ∈ η(e) for some e ∈ E(H), then let R′
2 be an M+-alternating subpath

of η(e) with one end r2 and the other in η(v) for some v ∈ V (H). Then (P1 ∪R2 ∪R′
2, Q1)

is a desired v0-augmentation of η.

In the next section we will need the following lemma.

(4.4) Let H be a graph, and let v be a vertex of H of degree at least four, let G be a

brick, and let η : H ↪→ G be such that η(v) has at least two vertices. Then either

(1) there exists a graph H1 obtained from H by bisplitting v, an embedding η1 : H1 ↪→ G

and a v0-augmentation of η1, where v0 is the new inner vertex of H1, or

(2) there exists an embedding η2 : H ↪→ G, a path P with ends p1 and p2 in the interiors

of different branches, say B1 and B2, of η2(v) and otherwise disjoint from η2(H) and for

i = 1, 2 there exists a cap Qi for P at pi with respect to Bi and η2(H) such that Q1 and

Q2 are disjoint.

Proof. Denote the branches of η(v) by B1, B2, . . . , Bn. They can be considered as octopi,

which we denote by Ω1, Ω2, . . . , Ωn, respectively. Let Ω0 be the octopus with the set of

tentacles {η(e) : e is incident to v} and head η(H\v), let X be the set of old vertices of

η(v), and let F = {Ω0, Ω1, Ω2, . . . , Ωn}. We can extend a perfect matching of G \ η(H) to

a matching M so that M is Ω-compatible for every Ω ∈ F . Clearly |X| = n+1. Therefore

(F , X) is a frame. We apply (2.3) to it and denote the resulting path by R. Furthermore,

there is an edge e ∈ E(R) such that each of the components Ri = R[si, ri] of R\e intersects

only one of the octopi of F .

If for some i ∈ {1, 2} the path Ri intersects Ωj for j ≥ 1 we may assume, by changing

M , and Ωj , that there exists an M -alternating path Pi with ends pi ∈ V (Bj) and si, and an

M -alternating cap Qi for Pi at pi with respect to Bj and η(H) such that Pi∪Qi ⊆ Ri∪Bj .

If this happens for both R1 and R2 define P = P1 ∪ P2 + e and outcome (2) holds.

Therefore we may assume that R2 intersects Ω0 and R1 intersects Ωj for some j ≥ 1,

and furthermore that r2 is the only vertex of R in the head of Ω0. If r2 ∈ η(v) for some
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v ∈ V (H), then let R′
2 be the null graph, and if r2 ∈ η(e) for some e ∈ E(H), then let

R′
2 be an M -alternating subpath of η(e) with one end r2 and the other in η(v) for some

v ∈ V (H).

Let T1 and T2 be the two components of the graph obtained from η(v) by removing

the internal vertices of Bj. Let H1 be obtained from H by splitting v into new outer

vertices v1 and v2 and new inner vertex v0 in such a way that vi is adjacent to a neighbor

u of v in H if η(uvi) has an end in Ti. Let η1(vi) = Ti, let η1(v0) be B1 minus its ends,

let η1(v1v0) and η1(v2v0) be the two end-edges of B1 and let η1(x) = η(x) for all other

x ∈ V (H1)∪E(H1). Then (P1 ∪R′
2 ∪{e}, Q1) is a v0-augmentation of η1 and outcome (1)

holds.

Let H and G be graphs, let η : H ↪→ G, let v0 be a vertex of H of degree two, and let

(P, Q) be a v0-augmentation of η. We say that η is minimal if there exists no embedding

η′ : H ↪→ G and a v0-augmentation (P ′, Q′) of η′ such that η′(H) ∪ P ′ ∪ Q′ is a proper

subgraph of η(H)∪ P ∪Q. In applications we may assume that our v0-augmentations are

minimal. The next lemma will classify minimal augmentations into four types, which we

now introduce.

Let η : H ↪→ G, let v0 ∈ V (H) have degree two, let v1, v2 ∈ V (H) be its neighbors,

and let E1, E2 be as in the definition of v0-augmentation. Let i ∈ {1, 2} and e ∈ Ei. Let

xe be the end of η(e) that belongs to V (η(vi)). We say that an internal vertex x ∈ V (η(e))

is an inbound vertex if it is at even distance from xe in η(e), and otherwise we say that it

is an outbound vertex.

Let M be a matching containing M(η), let P be an M -alternating path with ends x0

and x5, and let the vertices x0, x1, x2, x3, x4, x5 appear on P in the order listed. Assume

that P [x1, x2] and P [x3, x4] are subpaths of η(e), and that otherwise P is disjoint from
⋃
{η(e) : e ∈ E1 ∪ E2}. Assume also that x1 is an inbound vertex of η(e), that x2 and

x3 are outbound, and that either x2 = x3 = x4, or x1, x2, x4, x3, xe are pairwise distinct

and occur on η(e) in the order listed. In those circumstances we say that P intersects η(e)

regularly from x0 to x5.

Let (P, Q) be a v0-augmentation of η and let P have ends a and b where a ∈ V (η(v0)).
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We say that (P, Q) is of type A if whenever P intersects η(e) for some e ∈ E1 ∪ E2, then

P and η(e) intersect in a path whose one end is a common end of P and η(e). Thus P

intersects at most one η(e), because the common end must be b, and b does not belong to

η(v1) ∪ η(v2). See Figure 4.

Figure 4. Augmentations of type A.

We say that (P, Q) is of type B if there exist a vertex x ∈ V (P ), an index i ∈ {1, 2},

and an edge e ∈ Ei such that the vertex vi has degree at most three, the path P [a, x]

intersects η(e) regularly from a to x, and if P [x, b]\x intersects η(e′) for some e′ ∈ E(H),

then P [x, b]\x and η(e′) intersect in a path and have a common end. Moreover, if e = e′,

then we require that P [a, x]∩η(e) be a path. We say that (P, Q) crosses η(e). See Figure 5.

We say that (P, Q) is of type C if there exist vertices x1, x2 ∈ V (P ) such that a, x1, x2, b

occur on P in the order listed, and there exist distinct edges e1, e2, one in E1 and the other

in E2, such that the end of e1 in {v1, v2} has degree at most three, P [a, x1] intersects η(e1)

regularly from a to x1, P [x1, x2] has no internal vertices in η(H) and x2 is an inbound

vertex of η(e2). We say that (P, Q) crosses η(e1). See Figure 6.

We say that (P, Q) is of type D if for some i ∈ {1, 2} and some e ∈ Ei the vertex vi

has degree at least four and there exists an inbound vertex x of η(e) such that x ∈ V (P )

and P [a, x] has no internal vertex in η(H).
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Figure 5. Augmentations of type B.

The following classification of minimal v0-augmentations is the third main result of

this section.

(4.5) Let H and G be graphs, and let η : H ↪→ G. Let v0 ∈ V (H) have degree two,

and let v1, v2 be its neighbors. Assume that v1 is not adjacent to v2. Then every minimal

v0-augmentation of η is of type A, B, C, or D.

Proof. Let (P, Q) be a minimal v0-augmentation of η, let x0 be the end of P in η(v0), and

let b be the other end of P . We wish to think of P as being directed away from x0; thus

language such as “the first vertex of P in a set Z” will mean the vertex of V (P ) ∩ Z that

is closest to x0 on P . Let E1 and E2 be as in the definition of v0-augmentation.

Let us assume for a moment that P includes an internal vertex of some η(e), where

e ∈ E(H) is not incident with v0, v1, or v2. Let z be the first such vertex on P . The

vertex z divides η(e) into two subpaths, one even and one odd. Let R be the even one.
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Figure 6. Augmentations of type C.

Then (P [x0, z] ∪ R, Q) is a v0-augmentation, and hence the minimality of (P, Q) implies

that R = P [z, b]. If e ∈ E1 ∪ E2 and z is an outbound vertex, then the same conclusion

holds. This will be later referred to as the confluence property of P .

If P includes an internal vertex of η(e1) for no e1 ∈ E1 ∪E2, then (P, Q) is of type A.

Thus we may assume that P includes such a vertex, and let x1 be the first such vertex on

P . From the symmetry we may assume that e1 = v1v3 ∈ E1. If x1 is an outbound vertex,

then the confluence property of P implies that (P, Q) is of type A. Thus we may assume

that x1 is inbound. If v1 has degree at least four, then (P, Q) is of type D, and so we may

assume that v1 has degree at most three. It follows from axiom (7) in the definition of an

embedding that v1 has degree exactly three.

Let x2 be the first vertex on P that belongs to η(z) for some z ∈ V (H) ∪ E(H) not

equal, incident or adjacent to v0 and not equal to e1. Then x1 lies on P between x0 and

x2. Let P1 = η(e1). By (3.4) applied to P1, P2 = P , r = x2, s2 = x0, t2 = b and the ends

of P1 numbered so that s1 ∈ V (η(v0)) and t1 ∈ V (η(v3)) we deduce that (1), (2), or (3)
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of (3.4) holds. But (1) does not hold by the minimality of (P, Q), and if (2) holds, then

(R, Q) is a v0-augmentation of type A or B. Thus we may assume that (3) of (3.4) holds.

Since x1 is an inbound vertex, this implies that either there exist vertices y1, y2 ∈ V (P1),

such that y1 and y2 are outbound, P [x1, y1] ⊆ P1, x1 ∈ P1[y1, y2] and P [y1, y2] has no

internal vertices in η(H), or P [x0, x2] \ x2 intersects η(e1) regularly from x0 to x2. In the

former case (P [x0, y2] ∪ P1[y2, t1], Q) is a v0-augmentation of η of type B, and hence we

may assume that the latter case holds. Thus P [x0, x2] \ x2 intersects η(e1) regularly from

x0 to x2, and if x2 = t2, then P [x0, x2] \ x2 intersects η(e1) in a path.

If x2 ∈
⋃
{V (η(v)) : v ∈ V (H) − {v0, v1, v2}}, then (P, Q) is of type B. Therefore we

may assume that x2 ∈ V (η(e2)) for some e2 ∈ E(H\v0)−{e1}. By the confluence property

of P we may assume that e2 ∈ E1 ∪ E2 and that x2 is inbound, for otherwise (P, Q) is of

type B.

If e2 ∈ E2, then (P, Q) is of type C, and the lemma holds. Thus we may assume that

e2 ∈ E1 −{e1}. Let y be such that η(e2)[x2, y] is a component of η(e2)∩P . For simplicity

of notation assume that Q is empty. The argument in the other case is similar. As v1

has degree three, axiom (8) in the definition of an embedding implies that the tree η(v1)

consists a single vertex, say u1. Since x2 is inbound it follows that y lies between u1 and

x2 in η(e2). Let C be the cycle P [x0, y] ∪ η(e2)[y, u1] ∪ S, where S = η(v0)[x0, u1]. The

subgraph of G with edge-set E(P )4E(C) includes a path with ends x0 and b, say P ′. Let

f be the edge of P [x0, x1] incident to x1. We define a new embedding η′ : H ↪→ G by

η′(e1) = η(e1)[x1, t1], η′(e2) = P [x1, x2] ∪ η(e2)[x2, z] (where z 6= u1 is the other end of

η(e2)), η′(v1) is the graph with vertex-set {x1}, we define η′(v0v1) to be the path with

edge-set {f}, we define η′(v0) to be the path obtained from η(v0) by replacing η(v0)[x0, u1]

by P [x0, x1]\x1, and we define η′(x) = η(x) for all other x ∈ V (H) ∪ E(H). It follows

that (P ′, Q) is a v0-augmentation of η′, contrary to the minimality of (P, Q), because

P ′ ∪ Q ∪ η′(H) does not include the edge of η(e2)[y, x2] incident with x2.

5. DISPOSITION OF BISPLITS

The purpose of this section is to prove (1.11) under the additional hypothesis that a graph,
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say H ′, obtained from H by bisplitting some vertex is isomorphic to a matching minor of

G. If that is the case we apply (4.4) and (4.5). We handle the four possible outcomes of

(4.5) separately.

(5.1) Let H and G be graphs, where H has minimum degree at least three. Let H ′

be obtained from H by bisplitting a vertex v, and let v0 be the new inner vertex. Let

η : H ′ ↪→ G, and assume that there exists a v0-augmentation of η of type A. Then a linear

extension of H is isomorphic to a matching minor of G.

Proof. Let v1 and v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation

of η of type A, and let a and b be the ends of P , where a ∈ V (η(v0)). Let b ∈ η(u),

where u ∈ V (H) − {v0, v1, v2}. Let us assume first that b is protected. If Q is null, then

H ′ + (v0, u) is isomorphic to a matching minor of G, and otherwise (by ignoring Q and

bicontracting its ends) we see that that H + (v, u) is isomorphic to a matching minor of G

and is a linear extension of H unless vu ∈ E(H). If vu ∈ E(H) we assume without loss of

generality that uv1 ∈ E(H ′). Then η(H ′ \uv1)∪P ∪Q is isomorphic to a bisubdivision of

a linear extension of H.

Now let us assume that b is exposed. Let T1, T2 be the two components of η(u)\b. For

each neighbor w of u in H the path η(uw) has exactly one end in η(u); that end is an old

vertex by axiom (4) in the definition of an embedding, and hence belongs to either T1 or

T2. For i = 1, 2 let Ni be the set of all neighbors w of u such that the end of η(uw) in η(u)

belongs to Ti. Let H1 be obtained from H by bisplitting u so that one of the new outer

vertices is adjacent to every vertex of N1, and the other new outer vertex is adjacent to

every vertex of N2. (Here we use that u has degree at least three.) Let u0 be the new inner

vertex of H1. Let H ′
1 be defined similarly, but starting from H ′ rather than H, and let the

new inner vertex be also u0. If Q is null, then H ′
1 + (v0, u0) is isomorphic to a matching

minor of G; otherwise H1 + (v, u0) is isomorphic to a matching minor of G, as desired.

(5.2) Let H and G be graphs, let η : H ↪→ G be an embedding, let v0 be vertex of H

of degree two, and let v1 be a neighbor of v0 of degree three with neighbors v0, v
′
1, v

′′
1 . Let

(P, Q) be a v0-augmentation of η of type B or C that crosses η(v1v
′
1). Then there exists
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an embedding η′ : H ↪→ G and a v0-augmentation (P ′, Q′) of η′ of the same type as (P, Q)

that crosses η′(v1v
′′
1 ) such that η′(H) ∪ P ′ ∪ Q′ ⊆ η(H) ∪ P ∪ Q and P and P ′ have the

same terminus.

Proof. We first define η′. Let x0 be the end of P in η(v0), let x6 be the other end of P , let

x5 ∈ V (P ), and let x0, x1, . . . , x5 be as in the definition of regular intersection, witnessing

that P [x0, x5] intersects η(v1v
′
1) regularly from x0 to x5. We define η′(v1) = x1, we define

η′(v1v
′
1) to be the subpath of η(v1v

′
1) with one end x1 and the other end in η(v′

1), we

define η′(v1v
′′
1 ) to be the union of the complementary subpath of η(v1v

′
1) and η(v1v

′′
1 ), we

define η′(v0) to be a suitable subgraph of η(v0) ∪ P ∪ Q, define η′(v0v1) to be the edge

of P [x0, x1] incident with x1, and we define η′(x) = η(x) for all other x ∈ V (H) ∪ E(H).

Then η′ : H ↪→ G.

It is now easy to find subpaths Q′ and P ′′ of η(v0) ∪ η(v0v1) ∪ η(v1v
′
1) ∪ P ∪ Q such

that (P ′′ ∪ P [x4, x6], Q
′) is the desired v0-augmentation of η′.

(5.3) Let H and G be graphs, where H has minimum degree at least three. Let H ′

be obtained from H by bisplitting a vertex v, and let v0 be the new inner vertex. Let

η : H ′ ↪→ G, and assume that there exists a v0-augmentation of η of type B. Then a linear

extension of H is isomorphic to a matching minor of G.

Proof. Let v1 and v2 be the new outer vertices of H ′. Let (P, Q) be a v0-augmentation of

η of type B, let x0, x6 be the ends of P , where x0 ∈ V (η(v0)) and x6 ∈ V (η(u)), and let

P cross e1 = v1v
′
1, where v′

1 6= v0 is a neighbor of v1 in H ′. Let x5 ∈ V (P ) be such that

P [x0, x5] intersects η(e1) regularly from x0 to x5, and let the vertices x0, x1, x2, x3, x4, x5

be as in the definition of regular intersection. Notice that v1 has degree three; thus η(v1)

consists of a unique vertex by condition (8) in the definition of embedding. Let v′′
1 be the

third neighbor of v1. By (5.2) we may assume that u 6= v′
1.

Assume first that x2, x3, x4 are pairwise distinct. The path P [x4, x6] proves that a

linear extension of H is isomorphic to a matching minor of G, unless x6 is a protected

vertex of η(u) and u is adjacent to v in H. Let i ∈ {1, 2} be such that u is adjacent to vi in

H ′. Consider the graph obtained from η(H) ∪ P [x4, x0] by deleting the interior of η(viu);
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the path P [x2, x3] proves that the linear extension H ′′ + (v′
0, v

′
1) of H is isomorphic to a

matching minor of G, where H ′′ is obtained from H by bisplitting of the vertex v so that

one of the new outer vertices is adjacent to v′
1 and u, the other outer vertex is adjacent to

all other neighbors of v and v′
0 is the new inner vertex.

Thus we may assume that x2 = x3 = x4. Again the path P [x4, x6] proves that a linear

extension of H is isomorphic to a matching minor of G, unless x6 is a protected vertex of

η(u) and u is adjacent to v′
1 in H. Thus we may assume that x6 is a protected vertex of

η(u) and u is adjacent to v′
1 in H. If v′

1 has degree at least four, then let H ′′ be obtained

from H ′ by bisplitting v′
1 in such a way that one of the new vertices is adjacent to v1 and

u, and let z be the new vertex. Then H ′′ + (v0, z) is a linear extension of H and is clearly

isomorphic to a matching minor of G. If v′
1 has degree three we replace η(v′

1u) by P [x4, x6]

and notice that (P, Q) can be easily converted to a v0-augmentation (P ′, Q′) of type A of

the embedding thus obtained. (Notice that the terminus of P ′ does not belong to η(v2),

because H ′ is obtained from H by bisplitting v.) Hence the theorem follows from (5.1).

For the next lemma we need the following generalization of v0-augmentations. Let

v0 ∈ V (H) have degree two, and let v1, v2 be its neighbors. For i = 1, 2 let Ei be the set

of edges of H incident with vi, except for the edge v0vi, and let E1 ∩E2 = ∅. Let R be the

interior of η(v0), let M1 be a perfect matching of G\V (η(H)), let x ∈ V (R), let M2 be a

perfect matching of R\x, and let M = M1 ∪M2 ∪M(η). Let P be an M -alternating path

with one end x and the other end u in
⋃
{η(v) : v ∈ V (H)−{v0, v1, v2}}. We say that P is a

weak v0-augmentation of η. It follows that P has no internal vertex in
⋃

v∈V (H)−{v0}
η(v).

This is indeed a generalization of v0-augmentation. For let (P, Q) be a v0-augmentation

of η. If Q is null, then P is a weak v0-augmentation of η, and otherwise Q ∪ S ∪ P is a

weak v0-augmentation of η, where S is a subpath of η(v0) with one end the end of P and

the other end an end of Q.

(5.4) Let H, G be graphs, let η : H ↪→ G be an embedding, let v0 be a vertex of H

of degree two belonging to no triangle of H, and let R be a weak v0-augmentation of η.

Then there exist an embedding η′ : H ↪→ G and a v0-augmentation (P, Q) of η′ such that

P ∪ Q ∪ η′(H) ⊆ R ∪ η(H).
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Proof. We may assume that R is minimal in the sense that there does not exist an

embedding η′ : H ↪→ G and a weak v0-augmentation R′ of η′ such that R′ ∪ η′(H) is a

proper subgraph of R ∪ η(H). It follows that R has the confluence property introduced in

the proof of (4.5). Let v1, v2 be the neighbors of v0, and let E be the set of all edges of H

incident with a neighbor of v0, but not with v0 itself.

Let a, b be the ends of R, where a ∈ V (η(v0)) and let z1, z2 be the ends of η(v0).

Assume first that R has a vertex x such that R[a, x] includes an internal vertex of η(e) for

no edge e ∈ E, and R[x, b] includes no vertex of η(v0). Let Ω be a path octopus with head

a and graph η(v0). We apply (3.5) to Ω and R[a, x] to produce a path octopus Ω′ with

head z and ends z1 and z2 and a path R′ with ends z and x. Define η′ so that η′(v0) is the

graph of Ω′ and otherwise η′ coincides with η. Let P be a maximal subpath of R′ ∪R[x, b]

with no internal vertex in η′(v0) containing b and let Q be a maximal non-empty subpath

of R′\V (P ) with no internal vertex in η′(v0) if such a path exists, and otherwise let Q be

the null graph. It is easy to check that (P, Q) is a v0-augmentation of η′.

Thus we may assume that the assumption of the previous paragraph does not hold.

Thus there exists an edge e ∈ E such that when following R starting from a at some point

we encounter an internal vertex of η(e), and later an internal vertex of η(v0), say t. Let T

be the component of R ∩ η(v0) containing t. Let the ends of e be v1 and v′
1, where v1 is

adjacent to v0, and let the ends of η(e) be u1 and u′
1, where u1 belongs to η(v1) and u′

1

belongs to η(v′
1). Let S be the component of R[a, t] ∩ η(e) that is closest to u′

1 on η(e).

Let t1, t2 be the ends of T , where a, t1, t2, b occur on R in the order listed, and let s1, s2 be

the ends of S chosen similarly. If t2 lies at an even distance from a on η(v0), then R[t2, b]

is a weak v0-augmentation of η, contrary to the minimality of R. Thus t1 lies at an even

distance from a on η(v0). It follows from the confluence property that s1 is an inbound

vertex of η(e) (that is, its distance from u1 on η(e) is even). Thus s2 is an outbound

vertex, and hence R[t1, s2] ∪ η(e)[s2, u
′
1] is a weak v0-augmentation of η, contrary to the

minimality of R.

Let H and G be graphs, let H ′ be obtained from H by bisplitting a vertex v, and let

v0 be the new inner vertex. Let η : H ′ ↪→ G, and let (P, Q) be a v0-augmentation of η.
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We say that (P, Q) is strongly minimal if there exists no graph H ′′ obtained from H by

bisplitting v, an embedding η′′ : H ′′ ↪→ G and (letting v′′
0 denote the new inner vertex of

H ′′
0 ) a v′′

0 -augmentation (P ′′, Q′′) of η′′ such that η′′(H ′′) ∪ P ′′ ∪ Q′′ is a proper subgraph

of η(H ′) ∪ P ∪ Q.

(5.5) Let H and G be graphs. Let H ′ be obtained from H by bisplitting a vertex v, let

v0 be the new inner vertex, and let η : H ′ ↪→ G. Then no v0-augmentation of η of type C

is strongly minimal.

Proof. Let v1, v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation of η

of type C, let a, b be the ends of P with a ∈ V (η(v0)), and let x1, x2, e1, e2 be as in the

definition of augmentation of type C. The vertex v1 has degree three; let e′1 6∈ {e1, v1v0} be

the third incident edge. Let H ′′ be obtained from H by bisplitting v into new outer vertices

v′′
1 , v′′

2 and new inner vertex v′′
0 , where v′′

1 is incident with e1 and e2, and v′′
2 is incident

with all the remaining edges of H incident with v. The embedding η can be modified to

produce an embedding η′′ : H ′′ ↪→ G with η′′(H) ⊆ P ∪ η(H) by defining η′′(v′′
2 ) = η(v2),

by defining η′′(v′′
1 ) to be the graph with vertex set {x2}, by letting η′′(e2) be a subpath of

η(e2) with end x2, by letting η′′(e1) be the union of a subpath of P [x2, a] with a suitable

subpath of η(e1), and by letting η′′(e′1) = η(v0)∪η(v1v0)∪η(v2v0)∪η(e′1). Now P [x2, b]\x2

is a weak v′′
0 -augmentation of η′′. By (5.4) there exists an embedding ξ : H ′′ ↪→ G and a

v′′
0 -augmentation (P ′′, Q′′) of η′′ such that

P ′′ ∪ Q′′ ∪ ξ(H ′′) ⊆ P [x2, b] ∪ η′′(H ′′) ⊆ P ∪ η(H),

but P ′′ ∪ Q′′ ∪ ξ(H ′′) does not use the edge of P incident with a, contrary to the weak

minimality of (P, Q).

(5.6) Let H and G be graphs, let H ′ be obtained from H by bisplitting a vertex v, let

v0 be the new inner vertex, and let η : H ′ ↪→ G. Then no v0-augmentation of η of type D

is strongly minimal.
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Proof. Let v1, v2 be the new outer vertices of H ′, let (P, Q) be a v0-augmentation of η of

type D, let a, b be the ends of P with a ∈ V (η(v0)), and let i, e, x be as in the definition

of augmentation of type D. We may assume that i = 1. Let H ′′ be obtained from H by

bisplitting v into new outer vertices v′′
1 , v′′

2 and new inner vertex v′′
0 , where v′′

1 is incident

with all the edges of H incident with v1 in H ′ except e (note that v0v1 6∈ E(H)), and

v′′
2 is incident with all the remaining edges of H incident with v. The embedding η can

be modified to produce an embedding η′′ : H ′′ ↪→ G with η′′(H) ⊆ P ∪ η(H) by defining

η′′(v′′
1 ) = η(v′

1) and letting η′′(v′′
2 ) be a suitable subgraph of η(v2) ∪ η(v0) ∪ η(v0v2) ∪

P [a, x] ∪ Q. Now P [x, b]\x includes a weak v′′
0 -augmentation of η′′. By (5.4) there exists

an embedding ξ : H ′′ ↪→ G and a v′′
0 -augmentation (P ′′, Q′′) of η′′ such that

P ′′ ∪ Q′′ ∪ ξ(H ′′) ⊆ P [x, b] ∪ η′′(H ′′) ⊆ P ∪ η(H),

but P ′′ ∪ Q′′ ∪ ξ(H ′′) does not use one of the edges of η(v0) incident with a, contrary to

the weak minimality of (P, Q).

We summarize (5.1), (5.3), (5.5), and (5.6) into the following.

(5.7) Let H and G be graphs, where H has minimum degree at least three, let H ′ be

obtained from H by bisplitting a vertex v, let v0 be the new inner vertex, let η : H ′ ↪→ G

be an embedding and assume that there exists a v0-augmentation of η. Then a linear

extension is isomorphic to a matching minor of H.

Proof. We may assume that the v0-augmentation is strongly minimal. By (4.5) it is of

type A, B, C, or D. By (5.5) and (5.6) it is of type A or B, and so the result holds by (5.1)

and (5.3).

We say that an embedding η : H ↪→ G is a homeomorphic embedding if η(v) has

exactly one vertex for every v ∈ V (H) of degree at least three. The next lemma motivates

this definition.
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(5.8) Let H and G be graphs. Then there exists an embedding η : H ↪→ G which is not

a homeomorphic embedding if and only if a graph obtained from H by bisplitting a vertex

is isomorphic to a matching minor of G.

Proof. Suppose that η : H ↪→ G and that for some vertex v ∈ V (H) of degree at least three

its image η(v) has more than one vertex. Then there exists a branch B of η(v) with length

greater than zero. The argument from the last paragraph of the proof of (4.4) applied to

η(v) and B, provides us with an embedding into G of a graph H1 obtained from H by

bisplitting v and therefore by (4.2) the graph H1 is isomorphic to a matching minor of G.

On the other hand let a graph H ′, obtained from H by bisplitting some vertex v into

new outer vertices v1 and v2 and new inner vertex v0, be isomorphic to a matching minor

of G. Then by (4.2) there exists an embedding η′ : H ′ ↪→ G. Let J be the subgraph of

H induced by {v0, v1, v2}. Define an embedding η : H ↪→ G by saying that η(v) = η′(J),

η(vu) = η′(viu) for i ∈ {1, 2} and all neighbors u 6= v0 of vi, and otherwise η coincides

with η′. Clearly η(v) has more than one vertex and therefore η is not a homeomorphic

embedding.

The following theorem and its corollary are the main results of this section.

(5.9) Let G be a brick, let H be a graph of minimum degree at least three, and let

η : H ↪→ G. If η is not a homeomorphic embedding, then a linear extension of H is

isomorphic to a matching minor of G.

Proof. Let v be a vertex of H of degree at least three such that η(v) has at least two

vertices. By axiom (8) in the definition of an embedding the vertex v has degree at least

four. We apply (4.4) to H, G, η and v. If outcome (4.4)(1) holds then (5.9) holds by (5.7).

Therefore we may assume that (2) of (4.4) holds, and let η2, P , p1, p2, B1, B2, Q1 and

Q2 be as in (4.4). Let G′ be the graph obtained from η2(H)∪P ∪Q1∪Q2 by bicontracting

all exposed vertices, except those in B1 ∪ B2. Note that G′ is a matching minor of G and

therefore it suffices to prove that a linear extension of H is isomorphic to a matching minor

of G′. If both Q1 and Q2 are null, then the graph G′ is isomorphic to a bisubdivision of
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a graph obtained from H by two bisplits and adding an edge joining the two new inner

vertices. Thus a linear extension of H is isomorphic to a matching minor of G.

Therefore we may assume that Q2 is not null. Let u be the common end of B1 and B2

in G′ and let u1 and u2 be the other ends of B1 and B2 correspondingly. If Q1 is not null,

denote its ends by q and q′ so that q ∈ B1[p1, u1] and let q = q′ = p1 otherwise. If u has

degree at least four in G′ then the graph G′′ obtained from G′ by deleting the interiors of

B1[u, q′], B1[p1, q] and Q2 can be bicontracted to a graph obtained from H by two bisplits

and Q2 can be bicontracted to an edge joining the two new inner vertices. Thus again a

linear extension of H is isomorphic to a matching minor of G.

Therefore we may assume that u has degree three in G′. Hence there exists a unique

vertex w ∈ V (H) such that u ∈ η2(vw). Now G′′ can be bicontracted to a graph obtained

from H by bisplitting v and Q2 can be bicontracted to an edge joining the new inner vertex

to w. We deduce that a linear extension of H is isomorphic to a matching minor of G, as

desired.

The next result follows immediately from (5.8) and (5.9).

(5.10) Let G be a brick, let H be a graph of minimum degree at least three, and assume

that a graph obtained from H by bisplitting a vertex is isomorphic to a matching minor

of G. Then a linear extension of H is isomorphic to a matching minor of G.

6. THE HIERARCHY OF EXTENSIONS

For the sake of exposition let us define a split extension of a graph H to be any graph

obtained from H by bisplitting a vertex. We have seen in the previous section that if a

split extension of H is isomorphic to a matching minor of G, then the conclusion of The-

orem (1.11) holds. The purpose of this short section is to define other types of extensions

and to give an ordering on these extensions, and to reformulate (4.5). The ordering reflects

the order in which these extensions will be dealt with. We will be proving theorems of the

form “if such an such extension is isomorphic to a matching minor of G, then an extension
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that is higher on our list of priorities is also isomorpchic to a matching minor of G”. Of

course, the highest priority extensions are linear extensions.

Let us begin the definitions. The lowest on our list will be the following. Let H be

a graph, let v ∈ V (H) be a vertex of degree at least three, and let v1, v2 be two distinct

neighbors of v in H. Let H ′ be obtained from H by bisubdividing the edge vv1, and

let x, y be the new vertices numbered so that x is adjacent to v. We say that the graph

H +(y, v2v) is a vertex-parallel extension of H. We say that H +(y, v2) is an edge-parallel

extension of H.

Let v be a vertex of degree 3 in a graph H and let v1, v2 and v3 be its neighbors. We say

that K is obtained from H by replacing v by a triangle if K is obtained from H by deleting

the vertex v and adding the vertices u1, u2, u3 and edges u1u2, u2u3, u3u1, u1v1, u2v2 and

u3v3.

Let H be a graph, let v be a vertex of H of degree at least three in a graph H, and

let v1 and v2 be two neighbors of v. Let K be obtained from H by bisubdividing the edges

v, v1 and v, v2 and let x1, y1, x2, y2 be the new vertices numbered so that v1y1x1vx2y2 is

a path in K. Let K ′ = K + (x1, y2) + (x2y1), and let J = K ′, or let J be obtained from

K ′ by replacing one or both of the vertices x1, x2 by triangles. We say that J is a cross

extension of H, and that v is its hub. See Figure 7.
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Figure 7. A cross extension.
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Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let H0

be obtained from H by bisubdividing each of the edges uu1, uu2 and uu3. Let the new

vertices be y1, y2, y3 and z1, z2, z3 in such a way that u1y1z3u, u2y2z1u and u3y3z2u are

paths. Let H1 := H0 +(y1, z2)+(y2, z3)+(y3, z1), let H2 be obtained from H1 by replacing

z1 by a triangle, let H3 be obtained from H2 by replacing z2 by a triangle, and let H4 be

obtained from H3 by replacing z3 by a triangle. Then each of the graphs H1, H2, H3, H4

is called a cube extension of H. See Figure 8.
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Figure 8. A cube extension.
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Let H be a graph, let uv ∈ E(H), and let H ′ be obtained from H by bisubdividing uv,

where the new vertices x, y are such that x is adjacent to u and y. Let x′ ∈ V (H) − {u}

and y′ ∈ V (H) − {v} be not necessarily distinct vertices such that not both belong to

{u, v}. In those circumstances we say that H ′ + (x, x′) + (y, y′) is a quadratic extension of

H. Now let ab ∈ E(H)− {uv} be such that a 6= v and u 6= b, let H ′′ be obtained from H ′

by bisubdividing ab, and let x′, y′ be the new vertices. Then the graph H ′′+(x, x′)+(y, y′)

is called a quartic extension of H.

We are now ready to define the promised linear order on extensions. We define that

linear extensions are better than quartic extensions, quartic extensions are better than

quadratic extensions, which in turn are better than cross extensions, which are better

than cube extensions, which are better than edge-parallel extensions, and those are better

than vertex-parallel extensions.

For later convenience we reformulate (4.5) in a form more suitable for applications.

To do so we will need a definition, but before we can state it, we need to introduce a

convention. Let G be a graph, let w ∈ V (G), and let uv be an edge of G not incident

with w. Then the graph G′ = G + (w, uv) has two new vertices, and it will be convenient

to have a default notation for them. We shall use τ1 and τ2 to denote the new vertices,

so that τ1 is adjacent to u, w and τ2 in G′. We shall extend this convention naturally to

more complicated scenarios, as exemplified by the following illustration. For instance, if

ab ∈ E(G) − {uv}, then G′′ = G + (w, uv) + (τ2, ab) means the graph G′ + (τ2, ab), and

its new vertices are denoted by τ3 and τ4 so that τ3 is adjacent to a, τ2 and τ4 in G′′. In

general, the new vertices will be numbered τ1, τ2, τ3, . . . in the order they arise as the input

graph is read from left to right. Sometimes we will use ρ1, ρ2, . . . rather than τ1, τ2, . . . in

order to avoid confusion.

Now we are ready for the definition. Let J, G be graphs, let v0 be a vertex of J of

degree two, and let v1, v2 be the neighbors of v0. We wish to reformulate the outcomes of

(4.5). Let v ∈ V (J) − {v0, v1, v2}, let i ∈ {1, 2}, and for j = 1, 2 let v′
j be a neighbor of vj

other than v0. We define the following graphs:

• A1(v) = J + (v0, v),

• A2(v) = J + (v0, v1v0) + (τ2, v),



S. Norine and R. Thomas, Generating bricks 43

• B1(v
′
ivi, v) = J + (v0, v

′
ivi) + (τ2, v),

• B2(v
′
ivi, v) = J + (v0, v

′
ivi) + (τ2, viτ2) + (τ4, v),

• B3(v
′
ivi, v) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, v),

• B4(v
′
ivi, v) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, viτ4) + (τ6, v),

• C1(v
′
ivi, v

′
3−iv3−i) = J + (v0, v

′
ivi) + (τ2, v

′
3−iv3−i),

• C2(v
′
ivi, v

′
3−iv3−i) = J + (v0, v

′
ivi) + (τ2, viτ2) + (τ4, v

′
3−iv3−i),

• C3(v
′
ivi, v

′
3−iv3−i) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, v

′
3−iv3−i),

• C4(v
′
ivi, v

′
3−iv3−i) = J + (v0, viv0) + (τ2, v

′
ivi) + (τ4, viτ4) + (τ6, v

′
3−iv3−i).

Sometimes we will omit the arguments when they will be clear from the context and write,

e.g., B3 instead of B3(v
′
ivi, v). The following lemma gives the promised reformulation of

the outcomes of (4.5).

(6.1) Let J be a graph, let G be a brick, let v0 be a vertex of J of degree two, let v1, v2

be the neighbors of v0, for i = 1, 2 let v′
i 6= v0 be a neighbor of vi, assume that v1 is not

adjacent to v2, assume that every vertex v ∈ V (J)−{v0} has a neighbor in V (J)−{v1, v2},

and assume that there exists an embedding J ↪→ G. Then one of the following holds:

(A) there exists a vertex v ∈ V (J) − {v0, v1, v2} such that A1(v) ↪→ G or A2(v) ↪→ G,

(B) there exist a vertex v ∈ V (J) − {v0, v1, v2} and indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4}

such that vi has degree three and Bj(v
′
ivi, v) ↪→ G,

(C) there exist indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4} such that v1, v2 have degree three and

Cj(v
′
ivi, v

′
3−iv3−i) ↪→ G,

(D) some split extension of J is isomorphic to a matching minor of G.

Proof. Let η : J ↪→ G. We may assume that η is a homeomorphic embedding, for otherwise

(D) holds by (5.8). By changing η we may assume that η(v1) and η(v2) each have exactly

one vertex, even if v1 or v2 has degree less than three. By (4.4) there exists an embedding

η′ : J ↪→ G and a v0-augmentation (P, Q) of η′. We may assume that (P, Q) is minimal,

and hence by (4.5) it is of type A, B, C or D. Similarly as above, we may assume that η ′ is

a homeomorphic embedding. Let P have origin a ∈ V (η′(v0)) and terminus b ∈ V (η′(u)).

We say that (P, Q) is good if either u has degree not equal to two, or u has degree two
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and b is at even distance from either end of η′(u) (recall that η′(u) is an even path when

u has degree two, and otherwise η′(u) has exactly one vertex).

Suppose (P, Q) is not good. Then u has degree two and b is at odd distance from the

ends of η(u). Let u′ be a neighbor of u in V (J) − {v1, v2} and let b′ and b′′ be the ends

of η(u), such that b′ ∈ V (η(uu′)). Let G′ be obtained from η(H) ∪ P ∪ Q by contracting

the even path η(u)[b, b′] ∪ η(uu′). Define η′ : J ↪→ G′ as follows. Let η′(u) = η(u)[b′′, b]\b,

η′(uu′) is a length one subpath of η(u)[b, b′′] with one end at b and η′ is otherwise equal to

η. Note that (P, Q) is a good augmentation of η′. Note also that G′ is a matching minor

of G.

Therefore we may assume that (P, Q) is a good augmentation of η of type A, B, C or

D. Now if (P, Q) is of type A, then outcome (A) holds, and similarly for type D, and, by

(5.2), for type B. Thus we may assume that (P, Q) is of type C. From the symmetry we

may assume that P crosses an edge incident with v1, and by (5.2) we may assume that

it crosses the edge v1v
′
1. In particular, v1 has degree at most three. But it has degree

exactly three by axiom (7) in the definition of an embedding, because η(v1v
′
1) has at least

one internal vertex. The existence of (P, Q) implies, by the same argument as above, that

there is an integer j ∈ {1, 2, 3, 4} such that Cj(v
′
1v1, v

′′
2v2) ↪→ G for some neighbor v′′

2 of v2

other than v0. Let L = C1(v
′
1v1, v

′′
2v2)\v0v2\τ1τ2 if j = 1, and let it be defined analogously

for j ≥ 2. If v2 has degree at least four, then L is isomorphic to a bisubdivision of a split

extension of H, and hence the lemma holds. Thus we may assume that v2 has degree at

most three, but it has degree exactly three by the same reason as v1. If v′
2 = v′′

2 , then (C)

holds, and so we may assume not. If j = 1, then by considering L and the edges τ1τ2 and

v0v2 we deduce that C1(v
′
1v1, v

′
2v2) ↪→ G. An analogous argument works for j = 4, while

for j ∈ {2, 3} the analogous argument proves that C5−j(v
′
1v1, v

′
2v2) ↪→ G. Thus (C) holds,

as desired.

7. USING 3-CONNECTIVITY

A graph G is matching covered if every edge of G belongs to a perfect matching of G.

Thus every brick is matching covered.
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(7.1) Let H and G be graphs such that H has minimum degree at least three, G is

connected and matching covered, and H is isomorphic to a matching minor of G. If H

is not isomorphic to G, then either a linear or split extension of H is isomorphic to a

matching minor of G, or there exists a homeomorphic embedding η′ : H ↪→ G such that

η′(e) has at least three edges for some e ∈ E(H).

Proof. By (4.2) there exists an embedding η : H ↪→ G. We may assume that η is a

homeomorphic embedding, for otherwise the lemma holds by (5.8). We may also assume

that η(e) has exactly one edge for each e ∈ E(H). Thus η(H) is isomorphic to H. But

G is not isomorphic to H, and hence there exists an edge e of G with exactly one end in

η(H). Let M1 be a perfect matching of G containing e, and let M2 be a perfect matching

of G\V (η(H)). (This exists, because η(H) is a central subgraph of G.) The component

of M14M2 containing e is a path with both ends in η(H); let u, v ∈ V (H) be such that

P has one end in η(v) and the other end in η(u). If u and v are not adjacent in H, then

by letting η(uv) = P the embedding η can be extended to an embedding H + uv ↪→ G,

and hence a linear extension of H is isomorphic to a matching minor of G. On the other

hand, if u and v are adjacent in H, then P has at least three edges, because in that case

the unique edge of G between η(u) and η(v) belongs to η(uv). Thus we obtain the desired

homeomorphic embedding by replacing η(uv) by P .

Let G be a graph, let A, B ⊆ V (G), let M be a perfect matching of G\(A ∪ B),

and let k ≥ 0 be an integer. We say that the sequence of paths (P, Q1, Q2, . . . , Qk) is an

(A, B)-hook with respect to M if the following conditions hold:

(1) P has ends p0 ∈ A − B and pk+1 ∈ B − A, and is otherwise disjoint from A ∪ B,

(2) for i = 1, 2, . . . , k, Qi is an even path with ends pi ∈ V (P )−{p0, pk+1} and qi ∈ A∩B,

and is otherwise disjoint from A ∪ B ∪ V (P ),

(3) V (Qi) ∩ V (Qj) ⊆ {qi, qj} for all distinct indices i, j ∈ {1, 2, . . . , k},

(4) the graph P ∪ Q1 ∪ Q2 ∪ . . . ∪ Qk\(A ∪ B) is M -covered, and

(5) the vertices p0, p1, p2, . . . , pk, pk+1 are distinct and occur on P in the order listed.
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(7.2) Let G be a matching covered graph, let A, B ⊆ V (G), and let M be a perfect

matching of G\(A ∪ B). If A − B and B − A are both nonempty and belong to the same

component of G\(A ∩ B), then there exists an (A, B)-hook with respect to M .

Proof. Suppose for a contradiction that the graph G does not satisfy the lemma, and

choose (A, B) violating the lemma with A∪ B maximum. Let e be an edge of G with one

end in A−B and the other end in V (G)−A. Let M ′ be a perfect matching of G containing

e, and let P0 be the component of M4M ′ containing e. Then P0 is a path with one end

in A − B, the other end in A ∪ B, and otherwise disjoint from A ∪ B. If the other end of

P0 is in B − A, then the sequence with sole term P0 is a required (A, B)-hook, and so we

may assume that the other end of P0 is in A. Let A′ := A∪ V (P0). Then A′ ∩B = A∩B.

By the maximality of A ∪ B there exists an (A′, B)-hook h = (P, Q1, Q2, . . . , Qk).

Let p0 ∈ A′ be an end of P . If p0 ∈ A, then h is an (A, B)-hook, and the lemma

holds. Thus we may assume that p0 is an internal vertex of P0. Let P1 and P2 be the

two subpaths of P0 with common end p0 and union P0. Exactly one of them, say P1, has

the property that P1 ∪ P ∪ Q1 ∪ Q2 ∪ . . . ∪ Qk\(A ∪ B) is M -covered. If the other end

of P1 is in A − B, then (P ∪ P1, Q1, Q2, . . . , Qk) is a desired (A, B)-hook. Thus we may

assume that P1 has one end in A∩B, in which case (P ∪P2, P1, Q1, Q2, . . . , Qk) is a desired

(A, B)-hook.

(7.3) Let H and G be graphs, where H has minimum degree at least three and is iso-

morphic to a matching minor of G and G is a brick. If H is not isomorphic to G, then a

vertex-parallel, edge-parallel or a linear extension of H is isomorphic to a matching minor

of G.

Proof. By (4.2) and (5.9) we may assume that there exists a homeomorphic embedding

η : H ↪→ G. By (7.1) we may assume that there exists an edge uv ∈ E(H) such that

η(uv) has at least three edges. Let A = V (η(uv)) and let B consist of V (η(H)), except the

internal vertices of η(uv). Then A − B and B − A are nonempty and |A ∩ B| = 2. Thus

A−B and B−A belong to the same component of G\(A∩B), because G is 3-connected. We

have A∪B = V (η(H)), and hence G\(A∪B) has a perfect matching, say M , because η(H)
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is a central subgraph of G. By (7.2) there exists an (A, B)-hook h = (P, Q1, Q2, . . . , Qk)

with respect to M . We may choose η, uv and h so that k is minimum. If k = 0, then by

considering the path P we conclude that a required extension is isomorphic to a matching

minor of G.

Thus we may assume that k > 0. Let the notation be as in the definition of (A, B)-

hook. Thus p0 is an internal vertex of η(uv), and from the symmetry we may assume it is lo-

cated at even distance from η(v) on η(uv). We have qi ∈ {η(u), η(v)} for all i = 1, 2, . . . , k.

We properly two-color the graph η(uv) ∪ P using the colors black and white so that η(v)

is black and η(u) is white. For convenience let q0 := p0. We will show that q0, q1, q2, ..., qk

all have the same color. Indeed, suppose for some i ∈ {0, 1, . . . , k − 1} the vertices qi and

qi+1 have different color. We replace η(uv)[qi, qi+1] by Qi ∪P [pi, pi+1]∪Qi+1 to obtain an

embedding η′′ : H ↪→ G. Then the sequence h′ = (P [pi+1, pk+1], Qi+2, Qi+3, . . . , Qk) is an

(A′, B′)-hook, where A′ and B′ are defined in the same way as A and B but relative to

η′′. But h′ contradicts the minimality of k. This proves our claim that q0, q1, q2, ..., qk all

have the same color; in particular, q1 = q2 = · · · = qk = η(v).

The graph η(H) ∪ Qk ∪ P [pk, pk+1] has a matching minor isomorphic to a desired

extension of H, unless pk+1 belongs to η(vw) for some neighbor w of v other than u. By

using the argument of the previous paragraph we deduce that pk+1 is an internal vertex

of η(vw) located at even distance from η(v) on η(vw) for some neighbor w 6= u of v. Let

J be obtained from H as follows. First we bisubdivide the edges uv and vw; let the new

vertices be p′0,r0 and p′k+1,rk+1 correspondingly, where p′0 is adjacent to u and p′k+1 is

adjacent to w. Denote resulting graph by H ′. Then we add new vertices p′1, p
′
2, . . . , p

′
k

and r1, r2, . . . , rk in such a way that p′0p
′
1 . . . p′kp′k+1 is a path, and p′iriv is a path for all

i = 1, 2, . . . , k, and there are no other edges incident with the new vertices. This completes

the definition of J . Now η can be converted to an embedding η′ : J ↪→ G in a natural way;

thus, for instance, η′(p′i) is the graph with vertex-set {pi}.

We apply (6.1) to the graphs J and G and the vertex r0; let J ′ be the resulting

graph, and let η′′ : J ′ ↪→ G. Suppose outcome (D) of (6.1) holds. Then either a split

extension of H is isomorphic to a matching minor of G, in which case the desired result

follows from (5.9), or J ′ is obtained from J by splitting v. Let v1 and v2 be the new outer
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vertices and v0 the new inner vertex. As we may assume that no split extension of H is

isomorphic to a matching minor of G, we have that |NJ ′(vi) ∩ NH′(v)| ≥ 2 for at most

one i ∈ {1, 2}, where NJ ′(vi) and NH′(v) denote the neighborhoods of vi and v in J ′ and

H ′ correspondingly. Without loss of generality let |NJ ′(v1) ∩ NH′(v)| ≤ 1. Assume first

N(v1) ∩ NH′(v) = ∅, then we can choose 1 ≤ i < i′ ≤ k such that ri, ri′ ∈ N(v1) and

rj 6∈ N(v1) for every j such that 1 ≤ j < i or i′ < j ≤ k. The image of the hook h′ =

(p′0p
′
1 . . . p′iriv1ri′p

′
i′p

′
i′+1 . . . p′k+1, p

′
1r1v2, . . . , p

′
i−1ri−1v2, v1v0v2, p

′
i′+1ri′+1v2, . . .) under η′′

contradicts the minimality of k. Assume now |NJ ′(v1)∩NH′(v)| = 1. From the symmetry

between r0 and rk+1 we may assume r0 ∈ N(v2). Let i be minimal such that ri ∈ N(v1)

then i ≤ k and the image of the hook h′ = (p′0p
′
1 . . . p′iriv1, p

′
1r1v2, . . . , p

′
i−1ri−1v2) under

η′′ contradicts the minimality of k. We assume now that one of the outcomes (A),(B) or

(C) of (6.1) holds.

Throughout the rest of the proof let z ∈ V (J) − {v, p′0, r0}. Outcome (C) cannot

hold, because v has degree at least four in J . Assume next that either J ′ = A1(z),

in which case we put τ1 = τ2 = v0, or that J ′ = A2(z) = J + (r0, p
′
0r0) + (τ2, z), in

which case τ1 and τ2 have their usual meaning. If z ∈ (V (H) − {u}) ∪ {rk+1, p
′
k+1},

then J + (τ2, z) is isomorphic to a bisubdivision of a suitable extension of H. If z = u

we replace η(uv) by η′′(uτ2r0τ1p
′
0p

′
1r1v) and the hook h′ = (P [p1, pk+1], Q2, Q3, . . . , Qk)

contradicts the minimality of k. If z = ri for some 1 ≤ i ≤ k then the hook h′ =

(η′′(τ2rip
′
i) ∪ P [pi, pk+1], Qi+1, Qi+2, . . . , Qk) contradicts the minimality of k. Finally if

z = p′i for some 1 ≤ i ≤ k we replace η(uv) by η′′(up′0τ1r0τ2p
′
iriv) and the hook h′ =

(P [pi, pk+1], Qi+1, Qi+2, . . . , Qk) contradicts the minimality of k. This completes the case

J ′ = Ai.

Since v has degree at least four in J we assume that J ′ = Bi(p
′
1p

′
0, z) for some

i ∈ {1, 2, 3, 4}. Note that J ′ contains J ′′ = Aj(z)\p′1p
′
0 as a matching minor for some

j ∈ {1, 2}, and unless z = u the argument from the previous paragraph provides us with a

suitable extension or a contradiction. If z = u we replace η(uv) by η′(uττ ′τ ′′p′1r1v), where

τ = τ ′ = τ ′′ = τ2i if i ∈ {1, 2} and τ = τ2i−2, τ ′ = τ2i−3, τ ′′ = τ2i−4 if i ∈ {3, 4}. The

hook h′ = (P [p1, pk+1], Q2, Q3, . . . , Qk) now contradicts the minimality of k.
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8. VERTEX-PARALLEL AND EDGE-PARALLEL EXTENSIONS

The purpose of this section is to replace vertex-parallel and edge-parallel extensions

in the statement of (7.3) by extensions that are closer to linear extensions. Our first

goal is to prove that if a brick G has a matching minor isomorphic to a vertex-parallel

extension of a 2-connected graph H, then it also has a matching minor isomorphic to

a better extension of H. We will proceed in two steps; in the intermediate step we will

produce a better extension or one that is “almost better”, the following. Let H be a graph,

let u be a vertex of degree at least three, let u1 and u2 be distinct neighbors of u, and let

H ′ = H + (u1, uu1) + (τ2, u2u). We say that H ′ is a semi-edge-parallel extension of H.

(8.1) Let H be a graph of minimum degree at least three, and let G be a brick. If a vertex-

parallel extension of H is isomorphic to a matching minor of G, then an edge-parallel, a

semi-edge-parallel, a linear, a cross, or a split extension of H is isomorphic to a matching

minor of G.

Proof. Let u0 be the vertex of H with neighbors u1 and u2 such that the graph H2 defined

below is isomorphic to a matching minor of G. Let H1 be obtained from H by bisubdividing

the edges u0u1 and u0u2 exactly once, and let x1, y1, x2, y2 be the new vertices, numbered

so that u2y2x2u0x1y1u1 is a path. The graph H2 is defined as H1 + (y1, y2). By (6.1)

applied to J = H2 and the vertex x1 there exists a graph J ′ ↪→ G satisfying (A), (B),

(C) or (D) of that lemma. If J ′ is a split extension of J , then the graph obtained from

J ′\y1y2 by bicontracting y1 and y2 is a split extension of H. Thus if (D) holds, then the

theorem holds, and so we may assume that (A), (B) or (C) holds. Throughout this proof

let v ∈ V (J) − {u0, x1, y1}. The symbols τ1, τ2, . . . will refer to the new vertices of J ′

according to the convention introduced prior to (6.1).

Assume first that J ′ = A1 = J + (x1, v). If v = u1, then J ′ is isomorphic to a

semi-edge-parallel extension of H. If v = x2, then H + (u1, u0u2) ↪→ G; if v = y2, then

H + (u1, u2u0) ↪→ G; and in all other cases H + (v, u0u1) ↪→ G. In the last case, if v is not

adjacent to u1, then H + (v, u1) is a linear extension of H, and otherwise H + (v, u0u1) is

an edge-parallel extension of H. The same argument will be used later. We will also use

later the fact that the inclusions above did not use the edge y1y2. This completes the case
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J ′ = A1.

Now we assume that J ′ = A2 = J + (x1, x1u0) + (τ2, v). If v = x2, then H +

(u2, u1u0) ↪→ G; if v = y2, then by deleting the edge y1y2 and bicontracting y1 we see

that a semi-edge-parallel extension of H is isomorphic to a minor of G; if v = u1, then

the graph A1\x1\y1 is isomorphic to a bisubdivision of H, and by considering the path

y2y1x1τ1 we deduce that H + (u1, u2u0) ↪→ G; and in all other cases H + (v, u1u0) ↪→ G.

This completes the case J ′ = A2.

Let j ∈ {1, 2, 3, 4} and let J ′ = Bj(y2y1, v). We have A1(v)\y1y2 ↪→ Bj(y2y1, v) for

j = 1, 2 and A2(v)\y1y2 ↪→ Bj(y2y1, v) for j = 3, 4 (if j = 1 we delete the edges y2τ1 and

y1τ2 and analogously for j ≥ 2). Since the arguments of the previous two paragraphs did

not use the edge y1y2, except for the cases of A1(u1) and A2(u1), we may assume that

J ′ = Bj(y2y1, u1), for some j ∈ {1, 2, 3, 4}. But H + (u1, u2u0) ↪→ Bj(y2y1, u1) (consider

the path u1τ2τ1y2 when j = 1). This completes the cases J ′ = Bj(y2y1, v).

Our next step is to handle the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1). If

j ≤ 2, then H + (u1, u2u0) ↪→ G, and if j ≥ 3, then H1 + (x1, x1u0) + (ρ2, x2u0) ↪→ G

and H1 + (x1, x1u0) + (ρ2, x2u0) after bicontraction of y1 and y2 becomes isomorphic to

a semi-edge parallel extension of H. (We are using “ρ” instead of “τ”, because the “τ”

notation is reserved for vertices of J ′.)

Thus the only remaining cases are J ′ = Cj(y2y1, x2u0). If j = 1, then by considering

the path x1τ1τ2τ3 we deduce that H+(u1, u2u0) ↪→ G; for j = 2 the argument is analogous.

For j = 3 notice that C3(y2y1, x2u0)\τ1y1\y2τ3\x1τ2\τ4τ5 is isomorphic to a bisubdivision

of H. By considering the edge τ4τ5 we see that H+(u1, u2u0) ↪→ G. Finally, C4(y2y1, x2u0)

has a matching minor isomorphic to a semi-edge-parallel extension of H. To see that,

consider the edge x1τ1 and path τ2τ3τ4τ5τ6τ7. (The last argument applies to j = 3 as well,

but for the sake of the next proof we wish to avoid semi-parallel extensions as much as

possible.)

(8.2) Let H be a 2-connected graph of minimum degree at least three, and let G be a

brick. If a semi-edge-parallel extension of H is isomorphic to a matching minor of G,

then an edge-parallel, a linear, a cross, a cube or a split extension of H is isomorphic
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to a matching minor of G, unless H is isomorphic to K4 and G has a matching minor

isomorphic to the Petersen graph.

Proof. By hypothesis there exists a vertex u0 of H with distinct neighbors u1 and u2 such

that the graph H3 is isomorphic to a matching minor of G, where H1, H2, x1, y1, x2, y2

are defined as in the proof of (8.1), and H3 = H2 + (x2, u2). We may assume that u0

has degree exactly three, for otherwise H3\u2y2\x2u0 is isomorphic to a bisubdivision of a

split extension of H, and hence a split extension of H is isomorphic to a matching minor

of G. Let u3 be the third neighbor of u0. Since H3 ↪→ G, either a split extension of H

is isomorphic to a matching minor of G, or one of the graphs H3, H4 = H2 + (x2, y2u2),

H5 = H2 + (x2, u
′
2u2), where u′

2 6= u0 is a neighbor of u2, has a homeomorphic embedding

into G. Let J denote that graph, and let it be chosen so that J 6= H3, if possible. This

choice implies that if a split extension of J is isomorphic to a matching minor of G, then

so is a split extension of H. Let x′
2, y

′
2 be the new vertices of H4 and H5. We apply (6.1)

to J and the vertex x1, and so we may assume that (A), (B), or (C) holds, for otherwise

the theorem holds. Let J ′ be the graph satisfying (A), (B) or (C). The symbols τ1, τ2, . . .

will again refer to the new vertices of J ′.

Let us assume first that either J = H3, or that y′
2 has degree two in J ′. Then by

deleting the edge x2u2 (and bicontracting y′
2 if J 6= H3) we may use the proof of (8.1).

By that argument the theorem holds, unless J ′ = A1(u1), J ′ = A2(y2), J ′ = Bj(y2y1, y2),

J ′ = Bj(x2u0, v), J ′ = Cj(x2u0, y2y1) or J ′ = C4(y2y1, x2u0) for some j ∈ {3, 4} and

v ∈ V (J) − {x1, y1, u0}.

If J ′ = A1(u1), then J ′\u1y1\x1u0\x2u2 is isomorphic to a bisubdivision of H, and by

considering the edge u2x2 we deduce that H + (u2, u0u3) ↪→ G. If J ′ = A2(y2) we delete

the edge y1y2, bicontract the vertex y1 and apply the previous argument.

Next, let J ′ = B3(y2y1, y2). The graph obtained from J ′ by deleting the edges y1τ4

and τ3y2 and bicontracting the vertices y1 and τ4 is isomorphic to A2(y2). Thus H +

(u2, u0u3) ↪→ G. Similarly if J ′ = B4(y2y1, y2) we delete the edges y1τ5, τ4τ6 and τ3y2 and

bicontract the vertices y1, τ4 and τ6 to demonstrate that H + (u2, u0u3) ↪→ G.

Our next step is to handle the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1).
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Assume first that j = 3. If v 6∈ {u2, x2, y2}, then by considering the edge τ4v we deduce

that H +(v, u0u2) ↪→ B3(x2u0, v) ↪→ G, and similarly H +(u2, u1u0) ↪→ C3(x2u0, y2y1) ↪→

G. For the cases v ∈ {u2, x2, y2} let L3 = B3(x2u0, v)\y1y2\x1τ2\τ1u0\τ4v\x2u2. By

considering the edge τ4v we deduce that H + (u2, u0u3) ↪→ G if v ∈ {u2, x2} and H +

(u3, u2u0) ↪→ G if v = y2. Now assume j = 4. If v 6∈ {u2, x2, y2}, then by considering

the edge τ6v we deduce that H + (v, u2u0) ↪→ B4(x2u0, v) ↪→ G. If v = u2 then let

L4 = B4(x2u0, u2)\x2\y2\x1τ1\τ4τ6\τ5u0. By considering the edge x1τ1 we deduce that

H + (u3, u0u1) ↪→ G. If v = x2 we get the same result by the graph obtained from L4

by adding the path x2y2u2, and if v = y2 we add the path y2x2u2 instead. The graph

C4(x2u0, y2y1) has a matching minor isomorphic to a cross extension of H (delete the edges

τ7y2 and x2u2; the cross extension has two vertices replaced by triangles). This concludes

the cases J ′ = Bj(x2u0, v) and J ′ = Cj(x2u0, y2y1).

The graph C4(y2y1, x2u0) also has a matching minor isomorphic to a cross extension

of H. To see that, delete the edges u2y2 and x2τ7; the cross extension has two vertices

replaced by triangles.

We may therefore assume that J = H4 or J = H5, and that y′
2 has degree three in J ′.

Thus J ′ = Aj(y
′
2) or J ′ = Bj(y2y1, y

′
2) or J ′ = Bj(x2u0, y

′
2) for some j. Assume first that

J ′ = Aj(y
′
2). If J = H4, then J ′ is isomorphic to a cross extension of H (with one or two

vertices replaced by triangles depending on the value of j), and so we may assume that

J = H5. If j = 2, then by considering the edge τ2y
′
2 we deduce that H + (u0, u2u

′
2) ↪→ G,

and so we may assume that j = 1. We may assume that u′
2 = u1, for otherwise by

considering the edge x1y
′
2 we deduce that H + (u1, u2u

′
2) ↪→ G. Now there is symmetry

among u0, u1, u2, and since we could assume u0 had degree three, we may also assume u1

and u2 have degree three in H. The graph K := J ′\u0x1\x2y2\u2y
′
2 is isomorphic to a

bisubdivision of H. If u2 is not adjacent to u3, then let u′′
2 be the third neighbor of u2;

by considering K and the edge x2y2 we see that H + (u3, u2u
′′
2) ↪→ G, as desired. Thus

we may assume that u2 is adjacent to u3, and by symmetry we may also assume that

u1 is adjacent to u3. But H is 2-connected, and hence u3 is not a cutvertex; thus H is

isomorphic to K4. It follows that J ′ is isomorphic to the Petersen graph, as desired. This

completes the case J ′ = Aj(y
′
2).
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Now let J ′ = Bj(y2y1, y
′
2) or J ′ = Bj(x2u0, y

′
2). If J = H4, then J ′ is isomorphic to a

cube extension of H, and so we may assume that J = H5. If J ′ = Bj(y2y1, y
′
2) and j = 1,

then by considering the path y2τ1τ2y
′
2 we deduce that H +(u′

2, u2u0) ↪→ G. The argument

for j > 1 is analogous. Thus we may assume that J ′ = Bj(x2u0, y
′
2). If j = 1, then by

considering the path τ2y
′
2 we deduce that H +(u′

2, u0u2) ↪→ G. The argument is analogous

for j > 1 with the proviso that when j is even the conclusion is H + (u′
2, u2u0) ↪→ G.

We now turn our attention to edge-parallel extensions. Let us recall that G/v denotes

the graph obtained from the graph G by bicontracting the vertex v.

(8.3) Let H be a graph of minimum degree at least three, and let G be a brick. If an

edge-parallel extension of H is isomorphic to a matching minor of G, then a cross, cube,

linear, quadratic, quartic or split extension of H is isomorphic to a matching minor of G.

Proof. By hypothesis there exists a vertex u0 ∈ V (H) of degree at least three with

neighbors u1 and u2 such that the graph H2 := H +(u2, u1u0) is isomorphic to a matching

minor of G. Let y1, x1 be the new vertices of H2; thus u0x1y1u1 is a path of H2. Let

H1 := H2\u2y1. Since H2 ↪→ G, either a split extension of H is isomorphic to a matching

minor of G, or one of the graphs H2, H3 = H1 + (y1, u0u2), H4 = H1 + (y1, u
′
2u2), where

u′
2 6= u0 is a neighbor of u2, has a homeomorphic embedding into G. Let J denote that

graph, and let it be chosen so that J 6= H2, if possible. This choice implies that if a split

extension of J is isomorphic to a matching minor of G, then so is a split extension of

H. Let x2, y2 be the new vertices of H3 and H4. If J = H2 let x2 := u2 and let y2 be

undefined. We apply (6.1) to J and the vertex x1, and so we may assume that (A), (B), or

(C) holds, for otherwise the theorem holds. Let J ′ be the graph satisfying (A), (B) or (C).

Throughout this proof let v ∈ V (J) − {x1, y1, u0} and once again the symbols τ1, τ2, . . .

will again refer to the new vertices of J ′.

We first notice that if u0 has degree at least four, then H2\u0u2 is isomorphic to a

split extension of H, and so we may and will assume that u0 has degree three. Let u3

be the third neighbor of u0. We now show that we may assume that if J = H4, then u2

has degree three. Indeed, if J = H4 and u2 has degree at least four then H4\u0u2/x1 is
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isomorphic to a split extension of H. So in the case J = H4 let u′′
2 be the third neighbor

of u2. Let L be obtained from J ′ by deleting u0u2 and all the “new” edges. Thus, for

instance, if J ′ = A2(v), then L = J ′\u0u2\x1τ1\τ2v. Then L/u0/y2 is isomorphic to H.

Assume first that J ′ = A1(v) = J + (x1, v). If v = y2, then J ∈ {H3, H4}, and J ′ is a

cross extension of H if J = H3, and a quartic or cross extension of H if J = H4. Thus we

may assume that v 6= y2, and hence we may assume (by bicontracting y2) that J = H2. It

follows that J ′ is a quadratic extension of H, as desired. This completes the case J ′ = A1.

Next we assume that J ′ = A2(v) = J + (x1, u0x1) + (τ2, v). Assume first that v = y2.

If J = H3, then J ′ is a cross extension of H, and so we may assume that J = H4. But

then J ′\x1τ1/x1/τ1 is isomorphic to a quadratic extension of H. Thus we may assume

that v 6= y2, and hence, by bicontracting y2, we may assume that J = H2. If v 6= u1, then

J ′\y1u2/y1 is a quadratic extension of H, and so we may assume that v = u1. But then by

considering the graph L/u0 and edges x1τ1 and τ2u1 we deduce that a quadratic extension

of H is isomorphic to a matching minor of G. This completes the case J ′ = A2.

Next we handle the cases J ′ = Bj(x2y1, v). We start by assuming that v = y2.

If J = H3, then J ′ is isomorphic to a cube extension of H, and so we may assume

that J = H4. Recall the definiton of L and that u2 has degree three. If j = 1, then

by considering L and the edges x1τ1 and τ2y2 we deduce that a quadratic extension of

H, namely H + (u′′
2 , u0u2) + (ρ2, u3), is isomorphic to a matching minor of G. If j =

2, then by considering the edges τ2τ3 and τ4y2 we deduce that the quadratic extension

H +(u′′
2 , u2u0)+ (ρ2, u2) is isomorphic to a matching minor of G. An analogous argument

applies when j = 4. If j = 3 then by deleting the edge x1τ1 and bicontracting x1 and τ1 we

deduce that H + (u′′
2 , u0u2) + (ρ2, u0) ↪→ G, as desired. Thus we may assume that v 6= y2,

and hence, by bicontracting y2, we may assume that J = H2. If j = 1, then by considering

L and the edges x1τ1 and τ2v we deduce that the quadratic extension H+(u3, u2u0)+(ρ2, v)

is isomorphic to a matching minor of G. Let j = 2. If v 6= u2, then by considering L and

the edges τ2τ3 and τ4v we deduce that the quadratic extension H + (v, u2u0) + (ρ2, u2) is

isomorphic to a matching minor of G. If v = u2 then by considering the graph obtained

from L by replacing the edge x1y1 by τ1x1 and considering the edges τ2τ3 and τ4u2 we

deduce that the quadratic extention H + (u2, u1u0) + (ρ2, u1) is isomorphic to a matching
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minor of G. Thus we may assume j ∈ {3, 4}. Let us assume that v = u1. Then we

may assume that u1 is adjacent to u2, for otherwise H + (u1, u2) ↪→ G (consider the path

u1τ4τ3u2 when j = 3 and the analogous path for j = 4). If j = 3, then by replacing the

edge u1u2 by the path u1τ4τ3u2 we obtain a graph isomorphic to a bisubdivision of H,

and by considering the edges y1τ4 and τ2τ3 we deduce that a quadratic extension of H,

namely H + (u0, u2u1) + (ρ2, u0), is isomorphic to a matching minor of G. If j = 4 then

by replacing the edge u1u2 by the path u1τ6τ5τ4τ3u2, by considering the edges τ4τ6 and

y1τ5 and by bicontracting x1 and τ3 we deduce that a quadratic extension of H, namely

H + (u0, u2u1) + (ρ2, u2), is isomorphic to a matching minor of G. Thus we may assume

that v 6= u1. If j = 3, then by considering the edge x1τ1 and path τ2τ3τ4v we see that the

quadratic extension H + (v, u1u0) + (ρ2, u1) is isomorphic to a matching minor of G; an

analogous argument gives the same conclusion when j = 4.

The cases J ′ = Bj(u2u0, v) can be reduced to the cases just handled by noticing that

J\u0u2 is isomorphic to a bisubdivision of H, and hence J is isomorphic to the edge-

parallel extension H + (u2, u3u0). Similarly the cases J ′ = Cj(u2y1, u2u0) can be reduced

to J ′ = Cj(u2u0, u2y1), and so it remains to handle the cases J ′ = Cj(u2u0, u2y1). But in

all four of those cases a cross extension of H is isomorphic to a matching minor of G.

The results of this section allow us to strengthen (7.3) as follows.

(8.4) Let H and G be graphs, where H is 2-connected, has minimum degree at least

three and is isomorphic to a matching minor of G, and G is a brick. Assume that if H is

isomorphic to K4, then G has no matching minor isomorphic to the Petersen graph. If H

is not isomorphic to G, then a cross, cube, linear, quadratic or quartic extension of H is

isomorphic to a matching minor of G.

Proof. By (7.3) we may assume that a vertex-parallel or an edge-parallel extension of H is

isomorphic to a matching minor of G. Thus the result follows from (8.1), (8.2) and (8.3).
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9. CUBE AND CROSS EXTENSIONS

In this section we strengthen (8.4) by eliminating cube and cross extensions from the

conclusion.

(9.1) Let H be a graph, let u be a vertex of H of degree three, and let u1 and u2 be

two neighbors of u. Let H1 be obtained from H by bisubdividing the edges uu1 and

uu2 once, and let x1, y1, x2, y2 be the new vertices so that u1y1x1ux2y2u2 is a path. Let

H2 := H1 +(x2, y2x2)+(τ2, x1), let H3 := H1 +(x2, y2x2)+(τ2, x1y1)+(τ4, x1), and let H4

be obtained from H2 or H3 by replacing exactly one of the vertices x2, τ1, τ2 by a triangle.

Then each of H2, H3, H4 has a matching minor isomorphic to an alpha or prism extension

of H.

Proof. Throughout this proof let τ1, τ2 denote the new vertices of H2, and let τ1, τ2, τ3, τ4

denote the new vertices of H3 with the usual numbering convention. We can naturally

embed H into H2. By bicontracting y1 and y2 and considering edges x2τ1 and x1τ2,

we see that H2 is isomorphic to a bisubdivision of a prism extension of H. The graph

H3\τ1x2\x1u\τ3τ4 is isomorphic to a bisubdivision of H and by bicontracting y1, τ3 and τ4

and considering edges τ1x2 and x1u we deduce that H3 has a matching minor isomorphic

to an alpha extension of H. This completes the proof for H2 and H3.

Suppose H4 is obtained from H2 by replacing τ2 with a triangle, then H4\x2τ1/x2/τ1/y1

is isomorphic to an alpha extension H +(u1, uu2)+(ρ2, u) of H. Similarly if H4 is obtained

from H2 by replacing x2 or τ1 with a triangle then H4\x1u/x1/u/y1 is isomorphic to an

alpha extension of H.

It remains to consider the case when H4 be obtained from H3 by replacing exactly one

of the vertices x2, τ1, τ2 by a triangle. We need to make the following easy observation. If

a graph G1 is obtained from a graph G by replacing a vertex t ∈ V (G) of degree three with

a triangle T and G2 is obtained from G1 by replacing one of the vertices of T by a triangle,

then G is isomorphic to a matching minor of G2. Let H ′
2 = H1 + (x1, y1x1) + (ρ2, x2).

Clearly a graph obtained from H3 by contracting a triangle with vertex set {x2, τ1, τ2} is

isomorphic to H ′
2. Therefore, by the observation above, H4 contains H ′

2 as a matching

minor and H ′
2/y1/y2 is isomorphic to a quadratic extension of H.
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(9.2) Let H be a graph of minimum degree at least three, and let G be a brick. If a cube

extension of H is isomorphic to a matching minor of G, then a linear, cross or quadratic

extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let

H0 be obtained from H by bisubdividing each of the edges uu1, uu2 and uu3. Let the

new vertices be y1, y2, y3 and z1, z2, z3 in such a way that u1y1z3u, u2y2z1u and u3y3z2u

are paths. Let H1 := H0 + (y1, z2) + (y2, z3) + (y3, z1), and let J be obtained from H1 by

replacing a subset of {z1, z2, z3} by triangles. If zi is replaced by a triangle, then let the

triangle be Zi; otherwise, let Zi denote the graph with vertex-set {zi}. By hypothesis the

vertex u and graph J may be selected so that J is isomorphic to a matching minor of G.

Let η : J ↪→ G. We may assume that η is a homeomorphic embedding, for otherwise a

split extension of H is isomorphic to a matching minor of G and the result holds by (5.9).

When v ∈ V (J) we will abuse notation and use η(v) to denote the unique vertex of

the graph η(v). With that in mind let J ′ = η(J), let u′
i = η(ui), u′ = η(u) and z′i = η(zi).

For i = 1, 2, 3 let Pi denote the path η(uiyi). We may assume that J and η are chosen so

that |V (P1)| + |V (P2)| + |V (P3)| is minimum.

Let Ω1 be the octopus with head η(Z1) and tentacles the paths of η(J) joining

u′, y′
2 and y′

3 to Z1, and let Ω2 and Ω3 be defined analogously. Let Ω4 be the octo-

pus with head η(J\V (Z1)\V (Z2)\V (Z3)\{y1, y2, y3, u}) and tentacles P1, P2, P3, let F =

{Ω1, Ω2, Ω3, Ω4}, and let Y ′ = {y′
1, y

′
2, y

′
3, u

′}. Then (F , Y ′) is a frame in G. Let M be a

perfect matching of G\V (η(J)); then M has a unique extension to a matching M ′ that is

Ωi-compatible for all i = 1, 2, 3, 4. By (2.3) there exist distinct integers i, j ∈ {1, 2, 3, 4}

and an M ′-alternating path S joining vertices vi and vj , where vi belongs to the head

of Ωi and vj belongs to the head of Ωj , such that for some edge e ∈ E(S)\M ′ the two

components of S \ e may be denoted by Si and Sj so that V (Si) ∩ V (F) ⊆ V (Ωi) and

V (Sj) ∩ V (F) ⊆ V (Ωj).

Assume first that j = 4. Then from the symmetry we may assume that i = 2. In

this case it will be convenient to allow v4 to be an internal vertex of a tentacle of Ω4.

By doing so we may assume (by replacing S by its subpath) that v4 is the only vertex of
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S ∩ Ω4. If for some l ∈ {1, 2, 3} we have v4 ∈ V (Pl) and Pl[u
′
l, v4] is even, then let v = ul;

if v4 ∈ V (Pl) and Pl[u
′
l, v4] is odd, then v is undefined. If v4 belongs to V (η(z)) for some

z ∈ V (J), then let v = z. Finally, if v ∈ V (η(zz′)) for some edge zz′ ∈ E(H \ u), then v4

is at even distance on η(zz′) from exactly one of η(z), η(z′), say from η(z). In that case

we put v = z. Notice that if v is defined, then v ∈ V (H) − {u}. From the symmetry we

may assume v 6= u1 and v4 6∈ V (P1). By (3.6) the graph Ω2 ∪ S2 + e includes a triad or

tripod T with ends y′
1, u

′, v4.

We claim that if v4 belongs to P3, then the path Pi[v4, u
′
3] is even. Indeed, otherwise

by making use of T , Ω1 and Ω3 we obtain contradiction to the minimality of |V (P1)| +

|V (P2)| + |V (P3)|. This proves that if v is undefined then v4 ∈ V (P2). In that case by

deleting the path of η(J) joining y′
2 and Z1 and by considering the path of η(J) joining y′

1

and Z3 and using T we deduce that a cross extension of H is isomorphic to a matching

minor of G. If v is defined, then one of the following graphs is isomorphic to a matching

minor of G:

• H + (v, uu1) + (τ2, uu2), if T is a triad and Z3 = {z3},

• H + (v, uu1) + (τ2, u2u), if T is a triad and Z3 is a triangle,

• H + (v, u1u) + (τ2, τ1u1), if T is a tripod.

But each of the above graphs has a matching minor isomorphic to a quadratic extension

of H. This completes the case j = 4.

Thus we may assume that i = 1 and j = 2. By (3.6) Ω1 ∪ S1 + e includes a triad

or tripod T1 with ends y′
3, u

′, s2 and Ω2 ∪ S2 + e includes a triad or tripod T2 with ends

y′
1, u

′, s1, where s1 ∈ V (S1), s2 ∈ V (S2) are the ends of e. If either T1 or T2 is a tripod

then the required result follows from (9.1) by deleting the path of η(J) joining y′
1 and Z3

and making use of T1 and T2. If both T1 and T2 are triads then one of the following graphs

is isomorphic to a matching minor of G:

• H + (uu3, uu1) + (τ4, uu2), if Z3 is not a triangle,

• H + (uu3, uu1) + (τ4, u2u), if Z3 is a triangle.

Both of these graphs have matching minors isomorphic to quadratic extensions of H.
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(9.3) Let H be a graph, let J be a cross extension of H and let v be the hub of J . If the

degree of v in H is at least four then a split extension of H is isomorphic to a matching

minor of J .

Proof. Let x1, y1, x2, y2 and K ′ be as in the definition of cross extension. If J = K ′

then J\vx1\x2y1/x1 is isomorphic to a split extension of H. If J 6= K ′ the argument is

analogous.

(9.4) Let H be a graph of minimum degree at least three, and let G be a brick. If a

cross extension of H is isomorphic to a matching minor of G, then a linear or quadratic

extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u1,u2 and u3 be its neighbors. Let

H1 be a cross extension of H obtained by deleting the vertex u and adding the vertices

x1, x2, y1, y2, y3 and edges yjuj and yjxi for all i = 1, 2 and j = 1, 2, 3. Let H2 be obtained

from H1 by replacing x1 by the triangle X1, and let H3 be obtained from H2 by replacing

x2 by the triangle X2. Let the vertices of X1 be a1, a2, a3 such that ai is adjacent to

yi, and let the vertices of X2 be b1, b2, b3 such that bi is adjacent to yi. By hypothesis,

(9.3) and (5.10) we may assume that there exist a vertex u of H of degree three, a graph

J ∈ {H1, H2, H3}, and an embedding η : J ↪→ G. If J 6= H3 we define X2 to be the

subgraph of J with vertex-set {x2} and let b1 = b2 = b3 = x2, and if J = H1 we define

X1 to be the subgraph of J with vertex-set {x1} and let a1 = a2 = a3 = x1. By (5.9)

we may assume that η is a homeomorphic embedding. Let J ′ = η(J), let u′
i = η(ui), and

y′
i = η(yi). Let Pi denote the path η(uiyi). We may assume that J and η are chosen so

that |V (P1)| + |V (P2)| + |V (P3)| is minimum.

Let Ω1 be the octopus with head η(X1) and tentacles η(ajyj), where j = 1, 2, 3, and let

Ω2 be defined analogously. Let Ω3 be the octopus with head η(J\V (X1)\V (X2)\{y1, y2, y3})

and tentacles P1, P2, P3, let F = {Ω1, Ω2, Ω3}, and let Y ′ = {y′
1, y

′
2, y

′
3}. Then (F , Y ′) is a

frame in G. Let M be a perfect matching of G\V (η(J)); then M has a unique extension

to a matching M ′ that is Ωi-compatible for all i = 1, 2, 3. By (2.3) there exist distinct

integers i, j ∈ {1, 2, 3} and an M ′-alternating path S joining vertices vi and vj , where vi
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belongs to the head of Ωi and vj belongs to the head of Ωj , and an edge e ∈ E(S)\M ′ such

that the components of S\e may be denoted by Si and Sj so that V (Si) ∩ V (F) ⊆ V (Ωi)

and V (Sj) ∩ V (F) ⊆ V (Ωj).

Assume first that j = 3. In this case it will be convenient to allow v3 to be an internal

vertex of a tentacle of Ω3. By doing so we may assume (by replacing S by its subpath)

that v3 is the only vertex of S ∩ Ω3. If v3 ∈ V (Pi), then let v = ui. If v3 belongs to

V (η(z)) for some z ∈ V (J), then let v := z. Finally, if v ∈ V (η(zz′)) for some edge

zz′ ∈ E(J), then v3 is at even distance on η(zz′) from exactly one of η(z), η(z′), say from

η(z). In that case we put v := z. We may assume that v ∈ V (H) − {u, u1, u2}, and that

if v3 ∈ V (P1 ∪ P2 ∪ P3) then v3 ∈ V (P3). By (3.6) we may assume that S ∪ Ωi includes

a triad or tripod T with ends y′
1, y

′
2, v3. We claim that if v3 belongs to P3, then the path

P3[v3, u
′
3] is even. Indeed, otherwise by making use of T and Ω3−i we obtain contradiction

to the minimality of |V (P1)| + |V (P2)| + |V (P3)|. We deduce that of the following graphs

is isomorphic to a matching minor of G:

• H1\x1y3 + (x1, v),

• H2\x2y3 + (x2, v),

• H2\a3y3 + (a3, v),

• H3\a3y3 + (a3, v).

But each of the above graphs has a matching minor isomorphic to a suitable extension of

H. In the first case we get a prism extension (bicontract y3 and consider the edges x1v

and y1x2), and in the other cases we get alpha extensions. In the second case delete a2a3,

bicontract its ends and consider the edges y1a1 and x2v; in the third case delete y1x2,

bicontract its ends, and consider the edges a1a2 and a3v; and in the fourth case consider

the same two edges, delete y1b1 and b2b3 and bicontract their ends. This completes the

case j = 3.

Thus we may assume that i = 1 and j = 2. Let s1 ∈ V (S1) and s2 ∈ V (S2) be the

ends of e. We apply (3.7) to S2∪Ω2 to conclude that Ω2∪S2 +e has a central subgraph T2

such that T2 is either a quadropod with ends y′
1, y

′
2, y

′
3, s1, or a quasi-tripod, in which case

we may assume by symmetry that its ends are y′
1, y

′
2, s1. By (3.6) the graph Ω1∪S1 +e has

a central subgraph T1 that is a triad or tripod with ends y′
1, y

′
3, s2. If T2 is a quasi-tripod
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then the theorem holds by (9.1). If T2 is a quadropod with ends y′
1, y

′
2, y

′
3, s1, then one of

the following graphs is isomorphic to a matching minor of G:

• H1\x1y2 + (x1, x2),

• H2\a2y2 + (a2, x2).

Both of these graphs have a matching minor isomorphic to a suitable extension of H. In

the first case we get a prism extension by bicontracting y2 and considering the edges x2y1

and x2x1. In the second case we get an alpha extension by deleting x2y1, bicontracting y1

and y2 and considering the edges x2a2 and a1a3 .

Using (9.2) and (9.4) we can upgrade (8.4) to the following statement.

(9.5) Let H and G be graphs, where H is 2-connected and has minimum degree at least

three, G is a brick and H is isomorphic to a matching minor of G. Assume that if H is

isomorphic to K4, then G has no matching minor isomorphic to the Petersen graph. If H

is not isomorphic to G, then a linear, quadratic or quartic extension of H is isomorphic to

a matching minor of G.

Proof. This follows immediately from (8.4), (9.2) and (9.4).

10. EXCEPTIONAL FAMILIES

We now handle quadratic extensions. The next lemma will show that a quadratic exten-

sion gives rise to a linear extension, unless it is of one of the following two types. Let

H, u, v, x, y, x′, y′, H ′ be as in the definition of quadratic extension; that is, H is a graph,

uv ∈ E(H), H ′ is obtained from H by bisubdividing uv, where the new vertices x, y are

such that x is adjacent to u and y. Further, x′ ∈ V (H) − {u} and y′ ∈ V (H) − {v} do

not both belong to {u, v}. Let H1 = H ′ + (x, x′) + (y, y′) be a quadratic extention of H.

If y′ = u, x′ is adjacent to v, and v has degree three, then we say that H1 is an alpha

extension of H. If x′, y′ ∈ V (H) − {u, v}, x′ is adjacent to v, y′ is adjacent to u and both

u and v have degree three, then we say that H1 is a prism extension of H.
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(10.1) Let H be a graph of minimum degree at least three, and let K be a quadratic

extension of H. Then K has a matching minor isomorphic to a linear, alpha or prism

extension of H. Furthermore, if H, u, v, x, y, x′, y′, H ′ are as in the definition of quadratic

extension and x′, y′ ∈ V (H)−{u, v}, then K has a matching minor isomorphic to a linear

or prism extension of H.

Proof. Let H, u, v, x, y, x′, y′, H ′ be as in the definition of quadratic extention, and let

K = H ′ + (x, x′) + (y, y′) be a quadratic extension of H. By symmetry we may assume

that y′ 6= u. If y′ is not adjacent to u, then H + (u, y′) ↪→ K, as desired. Thus we may

assume that y′ is adjacent to u. If u has degree at least four, then K\uy′ is isomorphic

to a linear extension of H, as desired. Thus we may assume that u has degree three. If

x′ 6= v, then by symmetry K is a prism extension of H, and if x′ = v, then K is an alpha

extension of H, as desired.

(10.2) Let K be an alpha extension of a graph H of minimum degree at least three. Then

K has a matching minor isomorphic to a linear or prism extension of H.

Proof. Let H, u, v, x, y, x′, y′, H ′ be as in the definition of quadratic extention, and let

K = H ′ + (x, x′) + (y, y′) be an alpha extension of H, where y′ = u. Thus v has degree

three and is adjacent to x′. There exists a homeomorphic embedding η : H ↪→ K with

η(v) = x and η(z) = z for z ∈ V (H) − {v}, and by considering η(H) and the edges vx′

and uy we deduce that K is isomorphic to a quadratic extension of H that satisfies the

second statement of (10.1). Thus the lemma holds by that statement.

Let H be a graph. By a fan in H we mean a sequence of vertices (x, y, u1, u2, . . . , uk)

such that these vertices are pairwise distinct, except that possibly x = y, and further

k ≥ 2, u1, u2, . . . , uk all have degree three and form a path in H in the order listed, and

for i = 1, 2, . . . , k the vertex ui is adjacent to x if i is even, and otherwise it is adjacent to

y.
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(10.3) Let K be a prism extension of a 3-connected graph H. If K is not a prismoid, a

wheel or a biwheel, then K has a matching minor isomorphic to a linear extension of H.

Proof. By hypothesis there exists a fan (x, y, u1, u2) in H such that K = H + (x, u1u2) +

(y, τ2). Let t1, t2 denote the new vertices τ1, τ2 of K, respectively. Let us choose a maximum

integer k such that H has a fan (x, y, u1, u2, . . . , uk) such that H +(x, u1u2)+(y, τ2) ↪→ K.

Let u0 be the neighbor of u1 other than u2 and y. Now u0 6= uk, for otherwise H is a wheel

or a biwheel (depending on whether x and y are distinct or not). Assume first that u0 6= x.

There exists an embedding η : H ↪→ K such that η(u1) = t2. By considering the edges u1y

and xt1 we deduce that H + (y, u0u1) + (x, τ2) ↪→ K, and by using the proof of (10.1) we

deduce that either a linear extension of H is isomorphic to a matching minor of K, or that

x is adjacent to u0 and that u0 has degree three. But then the fan (y, x, u0, u1, . . . , uk)

contradicts the maximality of k. Thus we may assume that u0 = x, and by symmetry we

may assume that uk is adjacent to both x and y. It follows from the 3-connectivity of H

that K is a prismoid, as desired.

We now turn to quartic extensions. Again, we will show that a quartic extension gives

rise to a linear extension, unless it is of two special types, the following ones. Let H be

a graph, and let u, v, H ′, x, y, a, b be as in the definition of a quartic extension. That is,

uv ∈ E(H), H ′ is obtained from H by bisubdividing uv, where the new vertices are x, y

numbered so that x is adjacent to u and y, and let K = H + (x, ab) + (τ2, y) be a quartic

extension of H. If b = v and the vertices u and a are adjacent and both have degree three,

then we say that K is a staircase extension of H. If a, b, u, v are pairwise distinct, all have

degree three, a is adjacent to u and b is adjacent to v, then we say that K is a ladder

extension of H. We also say that the extension is based at u, v, b, a (in that order).

(10.4) Let H be a graph of minimum degree at least three, and let K be a quartic

extension of H. Then K has a matching minor isomorphic to a linear, staircase or ladder

extension of H.

Proof. If a and u are not equal or adjacent, then H + au ↪→ K (delete xτ1 and bicontract

its ends), and hence the theorem holds. Assume now that a and u are adjacent. If both
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u and a have degree at least four, then K\au is a linear extension of H. If exactly one of

a, u has degree three, say a does, then the graph obtained from K\au by bicontracting a

is isomorphic to a linear extension of H. Thus if a 6= u, and either they are not adjacent

or one of them has degree at least four, then a linear extension of H is isomorphic to a

matching minor of K. By symmetry the same conclusion holds about the vertices v and

b, and the lemma follows.

(10.5) Let K be a staircase extension of a 3-connected graph H. If H has at least five

vertices, then a linear or ladder extension of H is isomorphic to a matching minor of K.

Proof. Let K = H ′ + x1x2 + y1y2, where H ′ is obtained from H by bisubdividing the

edges vv1 and vv2 so that v1y1x1vx2y2v2 is a path of H ′, and assume that v1, v2 have

degree three and are adjacent to each other. Let v′
1, v

′
2 be the third neighbors of v1 and

v2, respectively. If v′
1 and v′

2 are not equal or adjacent, then H + v′
1v

′
2 ↪→ K (bicontract

v1 and v2 in K\v1v2), and so the lemma holds. If v′
1 and v′

2 are adjacent, then K can be

regarded as a ladder extension of H, and if v′
1 = v′

2, then the 3-connectivity of H implies

that it is isomorphic to K4, contrary to hypothesis.

A fence in a graph H is a sequence (u1, v1, u2, v2, . . . , uk, vk) of distinct vertices of H

such that k ≥ 2, each of theses vertices has degree three, u1u2 . . . uk and v1v2 . . . vk are

paths and ui is adjacent to vi for all i = 1, 2, . . . , k.

(10.6) Let K be a ladder extension of a 3-connected graph H on an even number of

vertices. If K is not a ladder or a staircase, then K has a matching minor isomorphic to

a linear extension of H.

Proof. By hypothesis there exists a fence (u1, v1, u2, v2, . . . , uk, vk) in H such that K =

H ′ + x1y1 + x2y2, where H ′ is obtained from H by bisubdividing u1u2 and v1v2 and

x1, x2, y1, y2 are the new vertices numbered so that u1x1x2u2v2y2y1v1 is a cycle in H ′. We

may assume that the fence is chosen with k maximum. Let u0, v0 be the third neighbors

of u1, v1, respectively. Assume first that u0 6= v0. Since the quartic extension of H based
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at u0, u1, v1, v0 is isomorphic to K, the argument in the proof of (10.4) shows that either

a linear extension of H is isomorphic to a matching minor of K, or that u0 and v0 are

adjacent and both have degree three. We may assume the latter, for otherwise the lemma

holds. By the maximality of k the sequence (u0, v0, u1, v1, . . . , uk, vk) is not a fence in H,

and hence we may assume that u0 = uk or u0 = vk. But H is 3-connected, and so in the

former case K is a planar ladder, and in the latter case it is a Möbius ladder. Thus we

may assume that u0 = v0. The ladder extension of H based at uk−1ukvkvk−1 is clearly

isomorphic to K, and hence the above argument shows that we may assume that the third

neighbors of uk and vk are equal. Since H is 3-connected and has an even number of

vertices, it is a staircase.

The following result summarizes the previous lemmas.

(10.7) Let K be a quadratic or quartic extension of a 3-connected graph H on an even

number of vertices, and assume that K is not a prismoid, wheel, biwheel, ladder or stair-

case. Then a linear extension of H is isomorphic to a matching minor of K.

Proof. If H is isomorphic to K4, then K is not a staircase extension of H, because K is

not a staircase. Thus the lemma follows from the results of this section.

We are now ready to prove Theorem (1.11). Let H and G be as stated therein, and

assume that they are not isomorphic. Assume first that either H is not isomorphic to K4,

or G has no matching minor isomorphic to the Petersen graph. By (9.5) we may assume

that a quadratic or quartic extension K of H is isomorphic to a matching minor of G. It

follows from the hypothesis of (1.11) that K is not a prismoid, wheel, biwheel, ladder or

staircase. Thus K has a matching minor isomorphic to a linear extension of H by (10.7),

and hence so does G, as desired. Thus we may assume that H is isomorphic to K4 and

G has a matching minor isomorphic to the Petersen graph. But G is not isomorphic to

the Petersen graph by hypothesis. Since we have already shown that (1.11) holds when

H is the Petersen graph, we may now apply it to deduce that G has a matching minor

isomorphic to a linear extension of the Petersen graph. The Petersen graph has, up to
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isomorphism, a unique linear extension, and this linear extension has a matching minor

isomorphic to the staircase on eight vertices. But the latter graph has a matching minor

isomorphic to K4, the staircase on four vertices, contrary to hypothesis.

11. A GENERALIZATION

In this section we state a generalization of (1.11), and point out how it follows from the

theory that we developed. Let G be a graph with a perfect matching. Let us recall that a

barrier in G is a set X ⊆ V (G) such that G\X has at least |X| odd components, and that

bricks are 3-connected graphs with perfect matchings and no barriers of size at least two.

Braces almost have no barriers, either, for if X is a barrier in a brace and X has at least

two elements, then X is one of the two color classes of G. We use this fact to weaken the

condition on bricks. Let s ≥ 0 be an integer. We say that a set X ⊆ V (G) is an s-barrier

in G if G\X has |X|−1 odd components such that the union of the remaining components

of G\X has at least s vertices. We say that a graph is an s-brick if it is 3-connected and

has no s-barrier of size at least two. Thus bricks are 1-bricks and braces are 2-bricks. Our

proof of (1.11) actually proves the following more general theorem. A pinched staircase is

a graph obtained from a staircase by contracting the edge v1v2, where the vertices v1 and

v2 are as in the definition of a staircase.

(11.1) Let s ≥ 0 be an integer, G be an s-brick other than the Petersen graph, and let

H be a 3-connected matching minor of G on at least s + 1 vertices. Assume that if H is

a planar ladder, then there is no strictly larger planar ladder L with H ↪→ L ↪→ G, and

similarly for Möbius ladders, wheels, lower biwheels, upper biwheels, staircases, pinched

staircases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some

matching minor of G is isomorphic to a linear extension of H.

Proof. The proof follows the proof of (1.11), with the following minor modifications. In

(2.2) the set Rk is not required to be odd, but instead must have at least s vertices. The

proof goes through with the obvious changes. Then the definition of octopus needs to be

changed to permit heads with even number of vertices, and in the definition of frame we
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need to add a condition guaranteeing that the heads of Ω1, Ω2, . . . , Ωk−1 are odd and that

the head of Ωk has at least s vertices. The assumption that H has at least s+1 vertices will

guarantee that this additional condition is satisfied whenever (2.3) is applied. Finally, in

(10.6) the assumption that H has an even number of vertices can be replaced by assuming

that K is not a pinched staircase.

Clearly (11.1) implies (1.11) on taking s = 1. Let us now turn to braces. Let L be a

linear extension of a brace H. Then L need not be a brace, but if L is bipartite, then it is

a brace. Furthermore, if L is isomorphic to a matching minor of a bipartite graph, then L

itself is bipartite. Thus (11.1) implies (1.9) by taking s = 2. The third application of (11.1)

is to factor-critical graphs. A graph G is factor-critical if G\v has a perfect matching for

every vertex v ∈ V (G). It is easy to see that every 1-brick on an odd number of vertices is

factor-critical. Thus the following immediate corollary of (11.1) gives a generation theorem

for a subclass of factor-critical graphs.

(11.2) Let G be a 1-brick on an odd number of vertices, and let H be a 3-connected

matching minor of G. Assume that if H is a wheel, then there is no strictly larger wheel

W with H ↪→ W ↪→ G, and similarly for pinched staircases, lower prismoids and upper

prismoids. If H is not isomorphic to G, then some matching minor of G is isomorphic to

a linear extension of H.

Unfortunately, a linear extension of a 1-brick need not be a 1-brick.
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