
Addendum to “Directed Tree-Width”

by Johnson, Robertson, Seymour and Thomas

There are two places in need of correction. We are greatful to Jan Obdrzalek for
bringing the first to our attention.

In the second paragraph of Section 4, after the first line, the following definition should
be insered: Let Z ⊆ V (G) be not necessarily disjoint from S. The set S is Z-regular if
there is no directed walk in D\Z with first and last vertex in S that uses a vertex of D\S.
Now in Section 4 all occurences of Z-normal should be replaced by Z-regular. As a result
of this change, “k + w” should be replaced by “k + 2w” in the definition of limited linkage
and thereafter, including the running time estimates. In the proof of (4.5) j − 1 should be
changed to bj/2c.

The second difficulty concerns the assertion made in the description of (4.4) that “we
may assume that the edges e1, e2, . . . , ek are numbered in such a way that for i, j with
1 ≤ i < j ≤ d no edge of D has its head in Si and tail in Sj”. It seems that in order to
make this assertion we need to convert the arboreal decomposition into a triple (R, X, W )
of the same width that satisfies (D1’), (D2”) and (D3) below. A proof that it can be done
follows. As a result of the bound in (D3), one should be added to the exponent in the
estimates on the running times.

An arboreal predecomposition of a digraph D is a triple (R, X, W ), where R is an
arborescence, and X = (Xe : e ∈ E(R)) and W = (Wr : r ∈ V (R)) are sets of vertices of
D that satisfy

(D1’) (Wr : r ∈ V (R)) is a partition of V (D) into possibly empty sets such that Wr0 6= ∅,
where r0 is the root of R, and

(D2’) if e ∈ E(R), then
⋃{Wr : r ∈ V (R), r > e} is Xe-normal or empty.

The width of (R, X, W ) is the least integer w such that for all r ∈ V (R), |Wr ∪
⋃

e∼r Xe| ≤
w + 1.

THEOREM. If D is a digraph of tree-width d, then D has an arboreal predecomposition
(R, X, W ) of width at most d satisfying

(D2”) if e ∈ E(R), then
⋃{Wr : r ∈ V (R), r > e} is the vertex-set of a strongly connected

component of D\Xe, and
(D3) |V (R)| ≤ |V (D)|2.
Proof. We say that an arboreal predecomposition (R, X, W ) of a digraph D is tame if
there exists a function φ : V (R) → V (R), called a rank function, such that for every
r ∈ V (R)
(i) Wφ(r) 6= ∅, and
(ii) r and φ(r) are at the same distance from the root of R.
Every arboreal decomposition is tame, because the identity is a rank function. Let
(R, X, W ) be an arboreal predecomposition of D. We say an edge e ∈ E(R) is good
if

⋃{Wr : r ∈ V (R), r > e} is empty or the vertex-set of a strongly connected component
of D\Xe, and we say that e is bad otherwise.
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Let (R, X, W ) be a tame arboreal predecomposition of D of width at most d with
the minimum number of bad edges, and, subject to that, with the minimum number of
vertices. Such a choice is possible, because every arboreal decomposition is tame. We
claim that (R, X, W ) satisfies the conclusion of the theorem.

To prove that (R, X, W ) satisfies (D2”) we first prove that (R, X, W ) has no bad
edges. Suppose for a contradiction that (R, X, W ) has a bad edge, and choose a bad
edge e1 such that no bad edge has both ends > e1 in R. Let r0 be the tail and r1

the head of e1. Let S1, S2, . . . , Sk be the vertex-sets of the strong components of D\Xe1

comprising
⋃{Wr : r ∈ V (R), r > e1}. Then k ≥ 2, because e1 is bad. Let R1 be

the subarborescence of R consisting of r1 and all vertices > r1 in R, let R2, R3, . . . , Rk

be isomorphic copies of R1 and let their roots be r2, r3, . . . , rk, respectively. Let R′ be
obtained from R ∪ R2 ∪ R3 ∪ · · · ∪ Rk by adding, for each i = 2, 3, . . . , k, an edge ei with
tail r0 and head ri. For f ∈ E(R′) we put X ′

f = Xe, where e ∈ E(R) is such that f = e
or f is a copy of e. For r ∈ V (Ri) we put W ′

r = Wr ∩ Si and for all other r ∈ V (R) we
put W ′

r = Wr. Let X ′ = (X ′
f : f ∈ E(R′)) and W ′ = (W ′

r : r ∈ V (R′)).
We claim that (R′, X ′, W ′) is an arboreal predecomposition of D of width at most d.

Condition (D1’) and the statement about width clearly hold. The edges e1, e2, . . . , ek are
clearly good, and for edges e ∈ E(R) not in Ri∪{ei} for any i the set

⋃{Wr : r ∈ V (R), r >
e} has not changed, and hence those edges satisfy (D2’) and they are good in (R, X, W )
if and only if they are good in (R′, X ′, W ′). We now prove that for i = 1, 2, . . . , k every
edge e ∈ E(Ri) is good. To this end let C′ :=

⋃{W ′
r : r ∈ V (R′), r > e} be non-empty,

and let f ∈ E(R1) be such that e is a copy of f . Then C :=
⋃{Wr : r ∈ V (R), r > f}

is the vertex-set of a strong component of D\Xf , because f if good for (R, X, W ) by the
choice of e1. The set C is a subset of

⋃{Wr : r ∈ V (R), r > e1}, but the latter set is
disjoint from Xe1 by (D2’). Thus C ∩Xe1 = ∅, and hence C is a subset of the vertex-set of
a component of D\Xe1 . But C intersects Si (because C′ is not empty), and hence C ⊆ Si.
Thus C′ = C ∩ Si = C is the vertex-set of a strong component of D\Xf = D\X ′

e, and
hence e is good. Thus (R′, X ′, W ′) is an arboreal predecomposition of D with fewer bad
edges than (R, X, W ).

Let us now construct a rank function for (R′, X ′, W ′). Let p : V (R′) → V (R) be the
natural projection. If W ′

φ(p(r)) 6= ∅ we define φ′(r) = φ(p(r)). Otherwise φ(p(r)) ∈ V (R1)
and hence W ′

φ(p(r)) ∩ Si 6= ∅ for some i = 1, 2, . . . , k. We define φ′(r) to be the copy of
φ(p(r)) in Ri. The function φ′ thus defined is a rank function for (R′, X ′, W ′), proving that
(R′, X ′, W ′) is tame. That is a contradiction, because (R′, X ′, W ′) has fewer bad edges
than (R, X, W ). This proves that (R, X, W ) has no bad edges. It follows that (R, X, W )
satisfies (D2”), for otherwise R has a leaf r with Wr = ∅, and deleting r violates the
minimality of R.

To prove (D3) we choose, for every r ∈ V (R), a vertex α(r) ∈ Wφ(r) and a vertex
β(r) ∈ Wr′ for some r′ such that r′ = r or r′ > r in R. We claim that the mapping
r → (α(r), β(r)) is one-to-one. To prove this suppose that α(r1) = α(r2) and β(r1) = β(r2).
The former equality implies that φ(r1) = φ(r2). The latter equality implies that there exists
a vertex r′ ∈ V (R) such that for i = 1, 2 either r′ = ri or r′ > ri in R. But condition (ii)
in the definition of tameness implies r1 = r2, as desired. This proves (D3) and hence the
theorem.
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