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We generalize the concept of tree-width to directed graphs, and prove that
every directed graph with no “haven” of large order has small tree-width.
Conversely, a digraph with a large haven has large tree-width. We also show
that the Hamilton cycle problem and other NP-hard problems can be solved
in polynomial time when restricted to digraphs of bounded tree-width. c© 2001

Academic Press

1. INTRODUCTION

All graphs and digraphs in this paper are finite and may have loops and
multiple edges. A tree-decomposition of a graph G is a pair (T, W ), where
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DIRECTED TREE-WIDTH 139

T is a tree and W = (Wt : t ∈ V (T )) is a family of subsets of V (G),
satisfying
(W1)

⋃
t∈V (T ) Wt = V (G), and every edge of G has both ends in some

Wt, and

(W2) if t, t′, t′′ ∈ V (T ) and t′ lies on the path from t to t′′, then Wt ∩
Wt′′ ⊆ Wt′ .

The width of a tree-decomposition is max(|Wt| − 1 : t ∈ V (T )), and the
tree-width of G is the minimum width of a tree-decomposition of G.

Tree-width was introduced in [7], but it went unnoticed until it was redis-
covered in [15], and, independently, in [2]. It has since received widespread
attention, for the following reasons:

(i) It serves as a cornerstone of the Graph Minors theory [15, 16],
(ii) it can be used to prove theorems in structural graph theory [12, 16],
(iii) it has many algorithmic applications due to the fact that many

NP-hard problems can be solved in linear time when restricted to graphs
of bounded tree-width [1, 2, 17],

(iv) it has been successfully used in practical computations [5].

In Section 2 of this paper we generalize tree-width to directed graphs,
and point out two relationships with tree-width of undirected graphs. In
Section 4 we identify a class of problems that are NP-hard in general, but
can be solved in polynomial time when restricted to digraphs of bounded
tree-width. In Section 5 we state what appears to be a fundamental open
question concerning tree-width of directed graphs.

The main result of Section 3 is a theorem that says that a digraph of
large tree-width has a “haven” of large order, and conversely, a digraph
with a haven of large order has large tree-width. Havens of digraphs are
defined in Section 3. Let us review the corresponding result for undirected
graphs now.

Let w ≥ 0 be an integer. A haven of order w in an undirected graph
G is a function β which assigns to every set Z ⊆ V (G) with |Z| < w the
vertex-set of a component of G\Z in such a way that if Z ′ ⊆ Z ⊆ V (G)
and |Z| < w, then β(Z) ⊆ β(Z ′). (Let us remark that the definition of
haven in [18] is slightly more restrictive, but we prefer this version, because
it readily generalizes to directed graphs.) The following is shown in [18].

1.1. Let G be a graph, and let w ≥ 0 be an integer. Then G has a
haven of order w if and only if its tree-width is at least w − 1.

Havens correspond to particularly nice winning strategies for the robber
player in a certain cops-and-robbers game introduced in [18]. While not

Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



140 JOHNSON, ROBERTSON, SEYMOUR, THOMAS

needed here, the game helps develop intuition for the concept of haven. In
the next section we present a generalization of the game to directed graphs.

2. ARBOREAL DECOMPOSITIONS

In this section we introduce tree-width of digraphs, and present two
propositions relating it to tree-width of undirected graphs. By an arbores-
cence we mean a directed graph R such that R has a vertex r0, called the
root of R, with the property that for every vertex r ∈ V (R) there is a
unique directed walk from r0 to r. Thus every arborescence arises from
a tree by selecting a root, and directing all edges away from the root. If
r, r′ ∈ V (R) we write r′ > r if r′ 6= r and there exists a directed walk in R
with initial vertex r and terminal vertex r′. If e ∈ E(R) we write r′ > e if
either r′ = r or r′ > r, where r is the head of e. We also write e ∼ r to
mean that e is incident with r.

Let D be a digraph, and let Z ⊆ V (D). The digraph obtained from D
by deleting Z will be denoted by D\Z. We say that a set S ⊆ V (D) − Z
is Z-normal if there is no directed walk in D\Z with first and last vertex
in S that uses a vertex of D\(Z ∪ S). It follows that every Z-normal set
is the union of the vertex-sets of certain strong components of D\Z. As
one readily checks, a set S is Z-normal if and only if the vertex-sets of the
strong components of D\Z can be numbered S1, S2, . . . , Sd in such a way
that

(a) if 1 ≤ i < j ≤ d, then no edge of D has head in Si and tail in Sj ,
and

(b) either S = ∅, or S = Si ∪ Si+1 ∪ · · · ∪ Sj for some integers i, j with
1 ≤ i ≤ j ≤ d.

An arboreal decomposition of a digraph D is a triple (R, X, W ), where
R is an arborescence, and X = (Xe : e ∈ E(R)) and W = (Wr : r ∈ V (R))
are sets of vertices of D that satisfy
(D1) (Wr : r ∈ V (R)) is a partition of V (D) into nonempty sets, and

(D2) if e ∈ E(R), then
⋃{Wr : r ∈ V (R), r > e} is Xe-normal.

The width of (R, X, W ) is the least integer w such that for all r ∈ V (R),
|Wr ∪ ⋃

e∼r Xe| ≤ w + 1. The tree-width of D is the least integer w such
that D has an arboreal decomposition of width w. It is easy to see that
the tree-width of a subdigraph of D is at most the tree-width of D.

To aid the reader’s intuition we now introduce a generalization of the
cops-and-robbers game from [18]. The game is played on a directed graph
D by two players, one controlling the movement of a robber, and the other
controlling k cops, where k is a parameter of the game. At any time a
cop either stands on a vertex or is in a helicopter (that is, is temporarily
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DIRECTED TREE-WIDTH 141

removed from the game). The robber stands on a vertex of D, and can at
any time run at great speed to another vertex in the same strong component
of D\Z, where Z is the set of vertices occupied by the cops. In particular,
the robber is not permitted to run through a cop. In other words, the
robber moves along directed cop-free paths, but he is only permitted to
make a move if there also exists a directed cop-free path from his intended
destination back to where he is at the moment. The objective of the player
controlling the movement of the cops is to land a cop via helicopter on
the vertex occupied by the robber, and the robber’s objective is to elude
capture. (The point of the helicopters is that cops are not constrained
to move along paths of the digraph — they move from vertex to vertex
arbitrarily.) The robber can see the helicopter approaching its landing
spot and may run to a new vertex before the helicopter actually lands.

There are two forms of this game. In the first, the robber is invisible, and
so to capture him the cops must methodically search the whole graph. For
undirected graphs this version was investigated in [3, 4, 8, 9, 10, 11, 13].
We are concerned with a second form of the game, where the cops can see
the robber at all times — the difficulty is just to corner him somewhere.

We shall see in the next section that a haven of order w in a digraph gives
a winning strategy for the robber player against w − 1 cops. Conversely,
it can be shown that if a digraph D has tree-width less than w, then w
cops have a winning strategy. To see this let (R, X, W ) be an arboreal
decomposition of D of width less than w. The winning strategy is as
follows. In the first move the cops will occupy Wr0 ∪ ⋃

e∼r0
Xe, where

r0 is the root of R. The robber then selects a strong component C0 of
D\(Wr0 ∪ ⋃

e∼r0
Xe); it follows from (D2) that V (C0) ⊆ ⋃

r>e1
Wr for

some edge e1 of R with tail r0. Let r1 be the head of e1. In the next
move the cops in Wr0 ∪ ⋃

e∼r0
Xe − Xe1 will take off, leaving only Xe1

occupied. By (D2) the robber remains trapped in
⋃

r>e1
Wr. In the next

move the cops land on the set Wr1 ∪
⋃

e∼r1
Xe, at which point the robber

must select a strong component C1 of D\(Wr1 ∪ ⋃
e∼r1

Xe), and so on.
Continuing in this way the cop moves will trace a directed path r0, r1, . . .
in R, and eventually the cops will capture the robber. It is worth pointing
out that the search strategy thus obtained need not be “cop-monotone” in
the sense that the cops may have to revisit certain vertices. For example,
consider the digraph depicted in Figure 1, where we use the convention
that an undirected edge represents two edges with the same ends, one in
each direction. That digraph has tree-width three, but in order for four
cops to capture the robber they must revisit a previously occupied and
vacated vertex. This is in sharp contrast with the undirected case, where
the existence of a tree-decomposition implies a search strategy where no
vertex is revisited once it has been vacated [18].
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142 JOHNSON, ROBERTSON, SEYMOUR, THOMAS

FIG. 1.

There is another notion of monotonicity. We say that a search strategy
for the cops is robber-monotone if for every sequence Z1, Z2, . . . of moves by
the cops and all possible responses by the robber, the strong components
of D\Zi containing the robber form a nonincreasing sequence (eventually
equal to the null digraph). The strategy for the cop player outlined above
is indeed robber-monotone, and so it appears plausible that if k cops can
capture the robber in a digraph, then they can do so robber-monotonely.
We do not know if this is true, but it would be implied by the converse of
(3.1), discussed prior to (3.3).

The following proposition justifies calling the concept of tree-width of a
digraph a generalization of tree-width of graphs.

2.1. Let G be a graph, and let D be the directed graph obtained from G
by replacing every edge by two directed edges directed in opposite directions.
Then the tree-width of D is equal to the tree-width of G.

Proof. Let (T, Z) be a tree-decomposition of G of width w, where
Z = (Zt : t ∈ V (T )). Let r0 ∈ V (T ) be arbitrary, and let R be the
arborescence obtained from T by directing every edge away from r0. Let
Wr0 = Zr0 , for an edge e of R with head r′ and tail r let Xe = Zr ∩ Zr′ ,
and let Wr′ = Zr′ − Zr. Let X = (Xe : e ∈ E(R)) and W = (Wr :
r ∈ V (R)). Then (R, X, W ) is an arboreal decomposition of D by [15,
Theorem (3.4)]. Moreover, since Wr ∪ ⋃

e∼r Xe ⊆ Zr, we see that its
width is at most w. Thus the tree-width of D is at most the tree-width of
G. We postpone the proof of the other inequality until the next section.

A digraph is Eulerian if the out-degree of every vertex is equal to its
in-degree. The next proposition shows that the tree-width of an Eulerian
digraph of bounded degree and that of its underlying undirected graph are
within a constant factor of each other.
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2.2. Let D be an Eulerian digraph of maximum out-degree ∆, and let
G be its underlying undirected graph. Let d be the tree-width of D, and let
w be the tree-width of G. Then d ≤ w ≤ (2∆ + 1)(d + 1) − 1.

Proof. The fact that d ≤ w follows from (2.1), because the tree-width
of D is at most the tree-width of the digraph obtained from G by replacing
every edge by two edges directed in opposite directions. We postpone the
proof of the other inequality until the next section.

3. HAVENS IN DIGRAPHS

Let D be a digraph, and let w ≥ 0 be an integer. A haven of order w in D
is a function β assigning to every set Z ⊆ V (D) with |Z| < w the vertex-set
of a strong component of D\Z in such a way that if Z ′ ⊆ Z ⊆ V (D) with
|Z| < w, then β(Z) ⊆ β(Z ′). If β is a haven of order w in a digraph D, then
the robber player wins against w − 1 cops by staying in β(Z), where Z is
the set of vertices occupied by the cops. The haven axiom guarantees that
however the cops change their position, the robber has a move consistent
with this strategy. The following is a “directed” version of the easy half of
(1.1).

3.1. Let D be a digraph, and let w be an integer. If D has a haven of
order w, then its tree-width is at least w − 1.

Proof. Suppose for a contradiction that D has a haven β of order w,
and an arboreal decomposition (R, X, W ) of width at most w − 2. Let us
choose a vertex r ∈ V (R) such that (letting Xr denote the union of Xe

over all edges e of R incident with r)

(i) β(Xr ∪ Wr) ⊆
⋃{Wt : t ∈ V (R), t > r}, and

(ii) subject to (i), the distance of r from the root of R is maximum.

Such a choice is possible, because |Xr ∪ Wr| ≤ w − 1, and the root of R
satisfies (i). Since β(Xr ∪ Wr) is the vertex-set of a strong component of
D\(Xr∪Wr) we deduce from (D2) that there exists an edge e ∈ E(R) with
tail r such that β(Xr ∪ Wr) ⊆ W e, where W e =

⋃{Wr : r ∈ V (R), r > e}.
Let r′ be the head of e. By the haven axiom β(Xr∪Wr) ⊆ β(Xe), and so

β(Xe)∩W e 6= ∅. Thus β(Xe) ⊆ W e by (D2). But β(Xr′∪Wr′) ⊆ β(Xe) by
the haven axiom, and hence β(Xr′ ∪Wr′) ⊆ ⋃{Wt : t ∈ V (R), t > r′}, con-
trary to the choice of r. Thus our assumption that D has both a haven of
order w and an arboreal decomposition of width at most w−2 was incorrect,
and the result follows.
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Now we are ready to complete the proofs of (2.1) and (2.2).

Proof of (2.1). We have already shown that the tree-width of D is at
most the tree-width of G. To show the converse, let w be the tree-width
of G. By (1.1) G has a haven β of order w + 1. Then β is a haven in D,
and hence D has tree-width at least w by (3.1), as desired.

To complete the proof of (2.2) we need the following easy lemma.

3.2. Let G be a graph, let w be an integer, let β be a haven in G of order
w, and let V, V ′ ⊆ V (G) be such that |V ∪V ′| < w. Then β(V )∩β(V ′) 6= ∅.

Proof. By the haven axiom β(V ∪V ′) ⊆ β(V )∩β(V ′), and hence β(V )∩
β(V ′) 6= ∅, as desired.

If D is a digraph and S ⊆ V (D) we define ∂+(S) to be the set of all
vertices v ∈ S such that v is the tail of an edge of D with head in V (D)−S,
and we define ∂−(S) to be the set of all vertices v ∈ S such that v is the
head of an edge of D with tail in V (D) − S.

Proof of (2.2). We have already shown that d ≤ w. To prove that
w ≤ (2∆ + 1)(d + 1)− 1 suppose for a contradiction that G has tree-width
at least (2∆+1)(d+1). Then G has a haven β of order (2∆+1)(d+1)+1 by
(1.1). Our aim is to construct a haven γ in D of order d+2. To this end we
first prove that if S ⊆ V (D) − Z is Z-normal for some set Z ⊆ V (D) with
|Z| ≤ d + 1, then both ∂+(S) and ∂−(S) have size at most ∆(d + 1). To
see this let S = Si ∪Si+1 ∪ · · ·∪Sj , where S1, S2, . . . , St are the vertex-sets
of the strong components of D\Z, numbered so that for 1 ≤ i′ < j′ ≤ t
no edge of D has head in Di′ and tail in Dj′ . Then the size of ∂+(S) is
at most the number of edges of G with tail in S and head not in S. The
heads of such edges belong to Z ∪ Q, where Q = Sj+1 ∪ Sj+2 ∪ · · · ∪ St.
Since D is Eulerian, the number of edges with tail not in Q and head in Q
is equal to the number of edges directed the opposite way. But every edge
with tail in Q and head not in Q has head in Z, and so we see that the size
of ∂+(S) is at most the number of edges with head in Z, which, in turn, is
at most ∆(d+1), as desired. The bound on the size of ∂−(S) is analogous.

We claim that for every set Z ⊆ V (D) with |Z| ≤ d + 1 there exists a
strong component C of D\Z such that β(Z ∪ ∂+(V (C)) ∪ ∂−(V (C))) ⊆
V (C). To prove this claim let Z be as stated and let S1, S2, . . . , St be
the vertex-sets of all the strong components of D\Z numbered so that if
1 ≤ i < j ≤ t, then no edge of D has head in Si and tail in Sj. Let us
choose the maximum integer i ∈ {1, 2, . . . , t} such that

β(Z ∪ ∂+(S1 ∪ S2 ∪ . . . ∪ Si−1)) ⊆ Si ∪ Si+1 ∪ · · · ∪ St.
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Such a choice is possible, because i = 1 satisfies the inclusion. We shall
prove that the strong component with vertex-set Si satisfies the claim. By
(3.2)

β(Z ∪ ∂−(Si ∪ Si+1 ∪ . . . ∪ St)) ⊆ Si ∪ Si+1 ∪ · · · ∪ St,

and so either

β(Z ∪ ∂−(Si ∪ Si+1 ∪ . . . ∪ St) ∪ ∂+(S1 ∪ S2 ∪ . . . ∪ Si)) ⊆ Si,

or

β(Z∪∂−(Si∪Si+1∪. . .∪St)∪∂+(S1∪S2∪. . .∪Si)) ⊆ Si+1∪Si+2∪· · ·∪St.

The latter case cannot occur, because then (3.2) would give a contradiction
to the choice of i. Thus the former case holds, and (3.2) implies

β(Z ∪ ∂−(Si) ∪ ∂+(Si)) ⊆ Si,

as desired. This proves the claim, and hence we can pick a component C
of D\Z satisfying the claim, and define γ(Z) = V (C).

Next we show that γ is a haven in D of order d + 2. To this end let
Z ′ ⊆ Z ⊆ V (D) with |Z| ≤ d + 1. Suppose for a contradiction that
γ(Z) 6⊆ γ(Z ′); then γ(Z) ∩ γ(Z ′) = ∅. By reversing the directions of all
the edges of D if necessary we may assume that D\Z ′ has no directed path
from a vertex in γ(Z) to a vertex in γ(Z ′). Then the vertex-sets of the
strong components of D\Z ′ may be numbered S1, S2, . . . , St in such a way
that for 1 ≤ i < j ≤ t no edge of D has head in Si and tail in Sj , and such
that k < l, where γ(Z ′) = Sk and γ(Z) ⊆ Sl. Let S′ = S1 ∪ S2 ∪ · · · ∪ Sk.
Then S′ is the union of vertex-sets of some strong components of D\Z ′

including γ(Z ′) but not γ(Z) such that ∂+(γ(Z ′)) ⊆ ∂+(S′) and every
edge of D\Z ′ with one end in S′ and the other in V (D) − Z ′ − S′ has tail
in S′. By definition of γ

β(Z ′ ∪ ∂−(γ(Z ′)) ∪ ∂+(γ(Z ′))) ⊆ S′.

By (3.2) β(Z ′ ∪ ∂+(S′)) ⊆ S′. Similarly as above, let S be the union of
the vertex-sets of some strong components of D\Z including S′ − Z but
not γ(Z) such that ∂−(γ(Z)) ⊆ ∂−(V (D)−Z − S). From (3.2) we deduce
that β(Z ∪ ∂−(V (D) − Z − S)) ⊆ S, and by applying (3.2) once again we
conclude that β(Z ∪ ∂−(γ(Z)) ∪ ∂+(γ(Z))) is disjoint from γ(Z), contrary
to the definition of γ.

Thus γ is a haven in D of order d + 2, contrary to (3.1), because D has
tree-width d.
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It appears possible that the converse of (3.1) holds; in other words, that
(1.1) holds also for directed graphs. However, at the time of writing we
are unable to decide that. We are only able to prove the following weaker
result.

3.3. Let D be a directed graph, and let w > 0 be an integer. Then
either D has tree-width at most 3w − 2, or it has a haven of order w.

Proof. Let us select an arboreal decomposition (R, X, W ) of D such
that

(1) |Wr ∪
⋃

e∼r Xe| ≤ 3w − 1 for all r ∈ V (R) of out-degree at least one,
(2) |Xe| ≤ 2w − 1 for every e ∈ E(R), and
(3) subject to (1) and (2), the number of vertices v ∈ V (D) such that

v ∈ Wr and |Wr | ≥ w + 1 for some r ∈ V (R) is minimum.

Such a choice is possible, because the arboreal decomposition (R0, X0, W 0)
of D with X0 null, V (R0) = {r}, W 0 = (Wr) and Wr = V (D) satisfies (1)
and (2). If the inequality in (1) holds for all vertices r ∈ V (R), then D
has tree-width at most 3w − 2, and the theorem holds. We may therefore
assume that there exists a vertex r0 ∈ V (D) of out-degree zero such that
|Wr0 ∪ ⋃

e∼r0
Xe| ≥ 3w. If |V (R)| > 1, then there exists a unique edge

e0 ∈ E(R) with head r0, and we put Y = Xe0 ; otherwise e0 is undefined
and we put Y = ∅. In either case |Y | ≤ 2w − 1, |Wr0 | ≥ w + 1 and Wr0 is
Y -normal.

We claim that if for every set Z ⊆ V (D) with |Z| < w there exists a
strong component C of D\Z with vertex-set β(Z) such that |β(Z)∩Y | ≥ w,
then the theorem holds. To prove this claim we shall show that β is a
haven in D of order w. Indeed, let Z ′ ⊆ Z ⊆ V (D) with |Z| ≤ w − 1.
Since |Y | ≤ 2w − 1 we deduce that β(Z) ∩ β(Z ′) ∩ Y 6= ∅; in particular,
β(Z) ∩ β(Z ′) 6= ∅. But β(Z) is the vertex-set of a strongly connected
subdigraph of D, and is disjoint from Z ′, and hence β(Z) ⊆ β(Z ′), as
desired. This proves the claim.

Thus we may assume that there exists a set Z ′ ⊆ V (D) with |Z ′| < w
such that every strong component C of D\Z ′ satisfies |V (C)∩Y | < w. By
adding one element of Wr0 to such a set Z ′ we produce a set Z ⊆ V (D)
such that

(4) |Z| ≤ w, Z∩Wr0 6= ∅ and every strong component C of D\Z satisfies
|V (C) ∩ Y | < w.

Let B be a strong component of C\Y for some strong component C
of D\Z. The digraph B is strongly connected and its vertex-set is dis-
joint from Y , and hence either V (B) ⊆ Wr0 or V (B) ∩ Wr0 = ∅. Let
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B1, B2, . . . , Bd be all the digraphs such that V (Bi) ⊆ Wr0 and there exists
a strong component Ci of D\Z (depending on Bi) such that Bi is a strong
component of Ci\Y . Then for i = 1, 2, . . . , d the strong component Ci is
uniquely determined. It follows that

(5) Z∩Wr0 , V (B1), V (B2), . . . , V (Bd) is a partition of Wr0 into nonempty
sets.

For i = 1, 2, . . . , d let ri 6∈ V (R) be a new vertex, and let R′ be the
arborescence obtained from R by adding r1, r2, . . . , rd, and a directed edge
ei with tail r and head ri for all i = 1, 2, . . . d. Let X ′

e = Xe for e ∈ E(R), let
W ′

r = Wr for r ∈ V (R)−{r0}, let W ′
r0

= Z∩Wr0 , and for i = 1, 2, . . . , d let
X ′

ei
= Z∪(V (Ci)∩Y ) and W ′

ri
= V (Bi). Finally let X ′ = (X ′

e : e ∈ E(R′))
and W ′ = (W ′

r : r ∈ V (R′)).
We claim that (R′, X ′, W ′) is an arboreal decomposition of D. Condi-

tion (D1) follows immediately from (5). Condition (D2) clearly holds for
edges whose tail is not r0, because all the sets referenced in (D2) remained
unchanged. Thus it remains to verify (D2) for edges with tail r0. To that
end let i ∈ {1, 2, . . . , d}. Then

⋃{W ′
r : r ∈ V (R′), r > ei} = W ′

ri
, and

W ′
ri

∩ X ′
ei

= ∅, because W ′
ri

= V (Bi), and Bi is a strong component of
Ci\Y , and hence has no vertex in Z ∪ Y . To complete the verification of
(D2) we shall show that Bi is a strong component of D\X ′

ei
. Indeed, Bi

is strongly connected and has no vertex in X ′
ei

, and hence Bi is a subdi-
graph of a strong component H of D\X ′

ei
. But V (H) ∩ Z = ∅, and yet

V (H)∩ V (Ci) 6= ∅ (because V (Bi) ⊆ V (H)), and hence H is a subdigraph
of Ci. But H has no vertex in V (Ci) ∩ Y , and so H is a subdigraph of a
strong component of Ci\Y . Thus H = Bi, as desired. This proves that Bi

is a strong component of D\X ′
ei

, and thus completes the proof of the fact
that (R′, X ′, W ′) is an arboreal decomposition of D.

We claim that (R′, X ′, W ′) satisfies (1) and (2). Condition (1) is clear
for all r ∈ V (R′) − {r0}, and for r = r0 we have

|W ′
r ∪

⋃

e∼r

X ′
e| ≤ |Y ∪ Z| ≤ |Y | + |Z| ≤ 2w − 1 + w = 3w − 1.

Condition (2) is clear for all e ∈ E(R), and for i = 1, 2, . . . , d we have
|X ′

ei
| ≤ |Z|+ |V (Ci)∩Y | ≤ w+w−1 = 2w−1 by (4), as desired. Since Z∩

Wr0 6= ∅ we see that the existence of (R′, X ′, W ′) contradicts (3), as de-
sired.
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4. ALGORITHMS

In this section we give a generic algorithm to solve many NP-hard prob-
lems in polynomial time, provided the input digraph has bounded tree-
width.

Let D be a digraph, let S ⊆ V (D), and let w be an integer. Let us recall
that Z-normal sets were defined at the beginning of Section 2. We say that
S is w-protected in D if it is Z-normal for some Z ⊆ V (D) with |Z| ≤ w. In
particular, the empty set is w-protected for all w ≥ 0. In the course of the
algorithm we shall compute certain information about w-protected subsets
of V (D). It turns out that this information needs to satisfy only very little
in order for the algorithm to perform correctly, and so it seems worthwhile
to isolate the conditions we need. We shall refer to the information we are
interested in as an itinerary for a set A ⊆ V (D), and we require that for
every integer w there be a real number α and two algorithms such that the
following two axioms hold. (In fact, the first axiom does not depend on w.)

4.1 (Axiom 1). Let D be a digraph, and let A, B ⊆ V (D) be disjoint
sets such that no edge of D has head in A and tail in B. Then an itinerary
for A ∪ B can be computed from itineraries of A and B in time O((|A| +
|B|)α).

4.2 (Axiom 2). Let D be a digraph, let A, B ⊆ V (D) be disjoint
sets such that A is w-protected and |B| ≤ w. Then an itinerary for A ∪ B
can be computed from itineraries of A and B in time O((|A| + 1)α).

We remark that the constants hidden in the O(. . .) notation depend on
w, but not on D, A, or B. Before we present the main algorithm we need
the following lemma.

4.3. Let D be a digraph, let (R, X, W ) be an arboreal decomposition of
D of width at most w − 1, let X = (Xe : e ∈ E(R)), let W = (Wr : r ∈
V (R)), and let r0 ∈ V (R). Then the set S =

⋃{Wr : r ∈ V (R), r > r0} is
w-protected in D.

Proof. Let Z = Wr0 ∪ ⋃
e∼r0

Xe. Then |Z| ≤ w, because (R, X, W )
has width at most w − 1. We claim that S is Z-normal. Indeed, let
e1, e2, . . . , ed be the edges of R with tail r0. Then S =

⋃
Wr, the union

taken over all r ∈ V (R) such that r > ei for some i = 1, 2, . . . , d. We
must show that there is no directed walk in D\Z from a vertex of S
to a vertex of S using a vertex x ∈ V (D) − Z − S. To this end sup-
pose for a contradiction that such a walk, say P , exists. Since x exists,
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r0 is not the root of R. Let e0 be the unique edge of R with head r0.
Then S ⊆ ⋃{Wr : r ∈ V (R), r > e0}, but the latter is Xe0 - normal by
(D2), contrary to the existence of P . This completes the proof of the
claim that S is Z-normal. By the claim S is w-protected, as desired.

4.4 (Algorithm). For every fixed integer w there exists an algorithm
satisfying the following specifications.
Input: A digraph D on n vertices, and an arboreal decomposition (R, X, W )
of D of width at most w − 1.
Output: An itinerary for V (D).
Running time: O(nα+1), assuming Axioms 1 and 2 are satisfied.

Description. Let X = (Xe : e ∈ E(R)) and W = (Wr : r ∈ V (R)). Let
r0 ∈ V (R) be a vertex of out-degree zero. By (4.2) applied to A = ∅ and
B = Wr0 we can compute an itinerary for Wr0 in constant time. Now let
r0 ∈ V (R), let e1, . . . , ed be the edges of R with tail r0, let e0 be the edge of
R with head r0 (if r0 is the root of R, then e0 is undefined, but we define Xe0

to be the empty set), for i = 1, 2, . . . , d let Si =
⋃{Wr : r ∈ V (R), r > ei},

let S0 = Wr0∪S1∪S2∪· · ·∪Sd, and suppose that we have already computed
itineraries for S1, S2, . . . , Sd. Our objective is to compute an itinerary for
S0. Let Z = Xe0 ∪ Xe1 ∪ · · · ∪ Xed

. Since for all i = 1, 2, . . . , d the set Si

is Z-normal, we may assume that the edges e1, e2, . . . , ed are numbered in
such a way that for i, j with 1 ≤ i < j ≤ d no edge of D has head in Si

and tail in Sj . By using (4.1) repeatedly we can compute the itineraries
of S1 ∪ S2, S1 ∪ S2 ∪ S3, . . . , S1 ∪ S2 ∪ · · · ∪ Sd in total time O(dnα). By
(4.3) the set S′ = S1 ∪ S2 ∪ · · · ∪ Sd is w-protected in D, and so by (4.2)
we may compute an itinerary for S0 = S′ ∪ Wr0 in time O(nα). When r0

is the root of R, then S0 = V (G), and hence an itinerary for V (G) can be
computed in time O(nα+1), because |V (R)| ≤ n by (D1).

For the purpose of applications we now make a more specific choice of
itineraries. If D is a digraph and S ⊆ V (D), then D|S denotes the digraph
D\(V (D) − S). A linkage in a digraph D is a subdigraph L of D such
that every weak component of L (that is, a component of the underlying
undirected graph) is a directed path. Let σ = (s1, t1, s2, t2, . . . , sk, tk) be
a sequence of 2k (not necessarily distinct) vertices of D. We say that a
linkage L is a σ-linkage if the weak components of L can be numbered
P1, P2, . . . , Pk in such a way that for i = 1, 2, . . . , k, the digraph Pi is a
directed path with first vertex si and last vertex ti. Let D be a digraph,
let S ⊆ V (D), let L be a linkage in D and let k, w ≥ 0 be integers. We
say that L is (k, w)-limited in S if V (L) ⊆ S, and for every w-protected
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set S′ ⊆ S, the digraph L|S′ has at most k + w weak components. The
following is an easy but important fact.

4.5. Let k, w ≥ 0 be integers, let D be a digraph, let S ⊆ V (D), and
let L be a linkage in D with k weak components and V (L) ⊆ S. Then L is
(k, w)-limited in S.

Proof. Let P1, P2, . . . , Pk be the weak components of L, and let S′ ⊆ S
be w-protected. Thus there exists a set Z ⊆ V (D) such that |Z| ≤ w and S′

is Z-normal. Then for i = 1, 2, . . . , k, if Pi|S′ has j weak components, then
|V (Pi)∩Z| ≥ j − 1 by the Z-normality of S′. Thus L|S′ has at most k +w

weak components, as desired.

Let D be a digraph, let k, w ≥ 0 be integers, and let S ⊆ V (D). Let l be
an integer with 1 ≤ l ≤ |S|, and let σ be a sequence of 2j (not necessarily
distinct) vertices of S, where 0 ≤ j ≤ k + w. A mapping f which assigns
to every pair (l, σ) as above a value 0 or 1 is called a (k, w)-itinerary for S
in D provided that

(i) if f(l, σ) = 0, then there exists no σ-linkage L in D|S with |V (L)| = l
such that L is (k, w)-limited in S, and

(ii) if f(l, σ) = 1, then there exists a σ-linkage L in D|S with |V (L)| = l.

We now show that this concept satisfies axioms (4.1) and (4.2).

4.6. Let D be a digraph, let k, w ≥ 0 be integers, and let A, B ⊆ V (D)
be disjoint sets such that no edge of D has head in A and tail in B. Then
a (k, w)-itinerary for A ∪ B can be computed from (k, w)-itineraries for A
and B in time O((|A| + |B|)4(k+w)+2).

Proof. Let D, A, B, k, w be as stated, let f1 be an itinerary for A in D,
and let f2 be an itinerary for B in D. Let l be an integer with 1 ≤ l ≤ |A∪
B|, and let σ = (s1, t1, s2, t2, . . . , sj , tj) be a sequence of 2j vertices of A∪B,
where 0 ≤ j ≤ k+w. If si ∈ B and ti ∈ A for some i = 1, 2, . . . , j, then there
is no σ-linkage in D|(A ∪B) and we set f(l, σ) = 0. Otherwise we proceed
as follows. Let i = 1, 2, . . . , j. If si, ti ∈ A we define s1

i = si, s1
i = ti and

declare s2
i , t

2
i undefined. If si, ti ∈ B we define s2

i = si, t2i = ti and declare
s1

i , t
1
i undefined. If si ∈ A and ti ∈ B we define s1

i = si, t2i = ti and select
t1i ∈ A, s2

i ∈ B arbitrarily in such a way that some edge of D has tail t1i and
head s2

i . Finally, we select an integer l1 with 1 ≤ l1 ≤ |A| arbitrarily. Let
σ1 be the subsequence of (s1

1, t
1
1, s

1
2, t

1
2, . . . , s

1
j , t

1
j) consisting of those entries

that are defined, and let σ2 be defined analogously. If for some choice of
s1
1, t

1
1, . . . , s

2
j , t

2
j and l as above we find f(l1, σ1) = f(l− l1, σ2) = 1, then we

set f(l, σ) = 1. Otherwise we set f(l, σ) = 0. If f(l, σ) = 1, then condition
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(ii) in the definition of (k, w)-itinerary is clearly satisfied. Let us then
assume that f(l, σ) = 0; we must show that condition (i) holds. Suppose for
a contradiction that there exists a σ-linkage L in G|(A∪B) with |V (L)| = l
such that L is (k, w)-limited in A∪B. Let L1 = L|A and L2 = L|B. Then
L1 is a σ1-linkage in G|A for some sequence σ1 considered above, and
similarly L2 is a σ2-linkage in G|B. Furthermore, L1 is (k, w)-limited in A,
and L2 is (k, w)-limited in B, and hence, letting l1 = |V (L1)|, we see that
f1(l1, σ1) = f(l − l1, σ2) = 1, a contradiction. Thus f is a (k, w)-itinerary
for A ∪ B, as desired. The bound on running time follows immediately.

4.7. Let D be a digraph, let k, w ≥ 0 be integers, and let A, B ⊆ V (D)
be disjoint sets such that A is w-protected and |B| ≤ w. Then a (k, w)-
itinerary for A ∪ B in D can be computed from a (k, w)-itinerary for A in
D in time O((|A| + 1)4(k+w)+1).

Proof. Let D, A, B, k, w be as stated, and let f ′ be an itinerary for A in
D. Let l be an integer with 1 ≤ l ≤ |A∪B|, and let σ = (s1, t1, s2, t2, . . . , sj , tj)
be a sequence of vertices of A ∪ B, where j ≤ k + w. Let Σ be the set
of all sequences σ′ = (s′1, t

′
1, s

′
2, t

′
2, . . . , s

′
j′ , t

′
j′) of vertices of A of length

at most 2(k + w) such that {s1, s2, . . . , sj} ∩ A ⊆ {s′1, s′2, . . . , s′j′} and
{t1, t2, . . . , tj} ∩ A ⊆ {t′1, t′2, . . . , t′j′}. For σ′ ∈ Σ as above let H be the
digraph with vertex-set {s′1, t′1, s′2, t′2, . . . , s′j′ , t′j′} and j′ edges, where the
ith edge has tail s′i and head t′i. Also, for σ′ ∈ Σ as above let Lσ′ be the set
of all linkages Q in A∪B such that every weak component of Q has its first
and last vertex in B ∪{s′1, t′1, s′2, t′2, . . . , s′j′ , t′j′} and all other vertices in B,
and H ∪Q is a σ-linkage. Thus the size of Lσ′ is bounded by a function of
k and w, and does not depend on |A|.

We set f(l, σ) = 1 if there exists a sequence σ′ ∈ Σ and a linkage Q ∈ Lσ′

such that f ′(l′, σ′) = 1, where l′ = l − |B ∩ V (Q)|. We claim that f thus
defined satisfies conditions (i) and (ii) in the definition of (k, w)-itinerary.
Condition (ii) is clearly satisfied by the construction. To prove condition (i)
holds let us assume that there exists a σ-linkage L in G|(A ∪ B) with
|V (L)| = l such that L is (k, w)-limited in A∪B. Then L|A is a σ′-linkage
in G|A for some σ′ ∈ Σ (because L is (k, w)-limited in A ∪ B), and it
follows from the construction that there exists a linkage Q ∈ Lσ′ (in fact,
Q is a subdigraph of L). Furthermore, L|A is (k, w)-limited in A, and hence
f ′(l′, σ′) = 1, where l′ = |V (L|A)|. We deduce that f(l, σ) = 1, as de-
sired.

From (4.4), (4.5), (4.6) and (4.7) we deduce

4.8. For all fixed integers k, w ≥ 0 there exists a polynomial-time al-
gorithm to solve the following problem.
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Instance. A directed graph D on n vertices, an arboreal decomposition
(R, X, W ) of D of width at most w − 1, a sequence σ of 2k vertices of D,
and a set M ⊆ {1, 2, . . . , n}.
Question. Does there exist a σ-linkage L in D with |V (L)| ∈ M?

Proof. By (4.6) and (4.7) the (k, w)-itinerary satisfies Axioms 1 and 2.
By (4.4) a (k, w)-itinerary f for V (D) can be computed in polynomial time.
If f(l, σ) = 1 for some l ∈ M , then we answer “yes”; otherwise we answer
“no”. The “yes” answer is clearly correct, and the “no” answer is correct
by (4.5).

This includes the linkage problem for fixed number of terminals, the
Hamilton path and Hamilton cycle problems, the Hamilton path problem
with prescribed ends, the even cycle problem through a specified vertex, etc.
Since acyclic digraphs have tree-width zero, (4.8) generalizes the algorithm
of Fortune, Hopcroft and Wyllie [6].

In the above problems we were assuming that an arboreal decomposition
of the input digraph is given as part of the input instance. What if we were
only told that the input digraph D has bounded tree-width, but were given
no arboreal decomposition of D? It is easy to convert the proof of (3.3)
into a polynomial-time algorithm that for a fixed integer w either finds an
arboreal decomposition of the input digraph D of width at most 3w − 2
(and such that the underlying arborescence has at most |V (D)| vertices),
or constructs a haven in D of order w, in which case D has tree-with at
least w−1 by (3.1). Thus if D has tree-width at most w−1, this algorithm
will allow us to construct an arboreal decomposition of D of width at most
3w + 1, and we can then apply (4.8) (with w replaced by 3w + 2).

5. A CONJECTURE

The result of [16] states that an undirected graph has large tree-width
if and only if it has a large grid minor. The purpose of this section is to
formulate an analogous conjecture for directed graphs. To do so we need
to define minors of digraphs and directed grids.

Let D be a digraph. We say that an edge e ∈ E(D) with head v and
tail u is contractible if either e is the only edge of D with head v, or it
is the only edge of D with tail u, or both. We say that a digraph D is a
minor of a directed graph D′ if D can be obtained from a subdigraph of
D′ by repeatedly contracting contractible edges. It is easy to see that if a
digraph D is a minor of a digraph D′, then the tree-width of D is at most
the tree-width of D′.
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FIG. 2.

For k = 1, 2, . . . we define a digraph Jk as the union of k directed circuits
C1, C2, . . . , Ck, and 2k directed paths P1, P2, . . . , Pk, Q1, Q2, . . . , Qk, where
for i = 1, 2, . . . , k, Ci has vertex-set {ui,1, ui,2, . . . , ui,k, vi,1, vi,2, . . . , vi,k}
(in order), Pi has vertex-set {u1,i, u2,i, . . . , uk,i} (in order), and Qi has
vertex-set {vk,i, vk−1,i, . . . , v1,i} (in order). Thus Jk has a planar draw-
ing, where the circuits C1, C2, . . . , Ck are concentric (in the order listed),
P1, P2, . . . , Pk are disjoint paths linking C1 to Ck, and Q1, Q2, . . . , Qk are
disjoint paths linking Ck to C1. See Figure 2.

The conjecture is as follows. It was formulated using havens during a
conversation of the last three authors with Noga Alon and Bruce Reed at
a conference in Annecy, France in 1995, and appeared in equivalent form
in [14].

5.1 (Conjecture). For every integer k there exists an integer N
such that every digraph with tree-width N or more has a minor isomorphic
to Jk.

Conversely, if X ⊆ V (Jk) and |X | < k, then there exist indices i, p, q such
that Ci ∪ Pp ∪ Qq is disjoint from X . Let β(X) be the strong component
of Jk\X that includes Ci. It follows that β is well-defined and that it is a
haven in Jk of order k, and hence Jk has tree-width at least k− 1 by (3.1).
We have convinced ourselves that (5.1) holds for planar digraphs, but the
general case is open.

Finally, we mention two attempts at defining tree-width for directed
graphs that did not work out. Given a digraph D, one can consider pairs
(T, Z), where T is a tree, and Z = (Zt : t ∈ V (T )) satisfies

(i)
⋃

(Zt : t ∈ V (T )) = V (D),
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(ii) if t′ lies on the path in T between t and t′′, then Zt′ ⊆ Zt∩Zt′′ , and
(iii) if e ∈ E(T ), then the components of T \e can be numbered T1 and

T2 in such a way that no edge of D has head in
⋃

t∈V (T1) Zt −
⋃

t∈V (T2) Zt

and tail in
⋃

t∈V (T2)
Zt −

⋃
t∈V (T1) Zt.

Another possibility is to consider triples (T, Z, π), where T is a tree, Z =
(Zt : t ∈ V (T )) satisfies (i) and (ii) above and π = (πt : t ∈ V (T )) satisfies

(iii′) for every t0 ∈ V (T ), πt0 is a linear ordering of the components of
T \t0 such that if T1 is strictly before T2 in πt0 , then no edge of D has head
in

⋃
t∈V (T1)

Zt − Zt0 and tail in
⋃

t∈V (T2) Zt − Zt0 .

For either of these two concepts one can define width as min{|Zt| − 1 : t ∈
V (T )}, leading to two possible variations of tree-width. However, neither
seems satisfactory, because they are not closed under directed unions. (A
digraph D is a directed union of digraphs D1 and D2 if D1 and D2 are
induced subdigraphs of D, V (D1) ∪ V (D2) = V (D), and no edge of D has
head in V (D1) and tail in V (D2).)
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