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Abstract

In 1943, Hadwiger made the conjecture that every loopless graph not contractible

to the complete graph on t+1 vertices is t-colourable. When t ≤ 3 this is easy, and

when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the

four-colour conjecture (the 4CC). However, when t ≥ 5 it has remained open. Here

we show that when t = 5 it is also equivalent to the 4CC. More precisely, we show

(without assuming the 4CC) that every minimal counterexample to Hadwiger’s

conjecture when t = 5 is “apex”, that is, it consists of a planar graph with one

additional vertex. Consequently, the 4CC implies Hadwiger’s conjecture when t = 5,

because it implies that apex graphs are 5-colourable.



1. INTRODUCTION

The following conjecture was made by H. Hadwiger in 1943 [4].

(1.1) (Hadwiger’s conjecture) For every t ≥ 0, every loopless graph with no Kt+1-minor

is t-colourable.

(All graphs in this paper are finite; Kn is the complete graph with n vertices; a graph

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting

edges; an H-minor of G is a minor isomorphic to H; a t-colouring of G is a function φ

from the vertex set V (G) of G into {1, ..., t} so that φ(u) 6= φ(v) for every edge with ends

u, v; and G is t-colourable if it has a t-colouring.)

For t = 0, 1, 2 (1.1) is obvious, and Hadwiger [4] and Dirac [3] proved (1.1) for t = 3,

when it is also easy. For t = 4, however, (1.1) seems extremely difficult. It evidently

implies the four-colour conjecture (that every loopless planar graph is 4-colourable –

briefly, the 4CC) because no planar graph has a K5-minor; and in 1937 Wagner [16]

proved the equivalence of the two. The 4CC remained open until 1977, when Appel and

Haken [1, 2] announced a proof.

Our main result is that the 4CC implies Hadwiger’s conjecture for t = 5. Since the

converse implication is easy, we cannot do without the 4CC. However, we can reformulate

the main result to avoid mention of the 4CC, in the following way ((1.2) below). A graph

G is simple if it has no loops or parallel edges. Let us say G is a Hadwiger graph if

(i) G is simple and not 5-colourable

(ii) every loopless minor of G with fewer vertices than G is 5-colourable, and

(iii) G has no K6-minor (or equivalently, in view of (ii), G 6= K6).
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Hadwiger’s conjecture for t = 5 is therefore that there is no Hadwiger graph. Let us say

a graph G is apex if G\v is planar for some vertex v. (We use G\X to denote the graph

obtained from G by deleting X; here X can be a vertex or an edge, or a set of vertices or

edges.) Without assuming the 4CC, we shall prove the following.

(1.2) Every Hadwiger graph is apex.

Since the 4CC obviously implies that every loopless apex graph is 5-colourable and

hence is not a Hadwiger graph, (1.2) together with the 4CC imply (1.1) with t = 5.

This paper is therefore devoted to proving (1.2). The proof falls into five separate

steps. (We assume Mader’s result that every Hadwiger graph is 6-connected.)

Step 1: A non-apex Hadwiger graph has minimum valency ≥ 7 except for at most

two vertices of valency 6.

To prove this we study the distribution of K4-subgraphs in a non-apex Hadwiger graph

G. It is easy to show that no edge of G is in four triangles, and so no two K4-subgraphs

meet in exactly two vertices. If there are three K4-subgraphs meeting pairwise in at most

one vertex, then either they have a common vertex (when we can prove that G is apex, a

contradiction, in section 3) or not (when we can find a K6-minor, a contradiction, using

Mader’s “H-Wege” theorem, in section 4). Thus there are not three such subgraphs. On

the other hand, it is easy to show that no three K4-subgraphs meet pairwise in 3 vertices:

and it follows that G has ≤ 4 K4-subgraphs. But every vertex of valency 6 belongs to

≥ 2 K4-subgraphs, for otherwise a 5-colouring of a minor of G could be extended to a

5-colouring of G; and it easily follows (in section 5) that there are ≤ 2 such vertices.

Step 2: A non-apex Hadwiger graph is 7-connected except for its (≤ 2) vertices of
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valency 6.

For this, assume that (A,B) is a separation of a non-apex Hadwiger graph G, that is,

A,B ⊆ V (G), A ∪ B = V (G), and no vertex in A − B is adjacent to a vertex in B − A.

Moreover, assume that |A∩B| = 6, and |A−B|, |B−A| ≥ 2. We prove in section 6 that

for any four vertices v1, ..., v4 ∈ A∩B, the restriction of G to (A−B)∪{v1, ..., v4} can be

contracted to a K4 on {v1, ..., v4}; this uses the result of step 1, and also a characterization

of when such a contraction to K4 is possible, proved in section 2. Now we examine the

six-vertex graph G|A ∩ B. (If X ⊆ V (G), G|X denotes the graph G\(V (G) −X).) It is

easy to show, contracting K4’s from left and right onto A∩B appropriately, that G|A∩B

has no circuit of length 4. The remainder of step 2 breaks into cases, because we need to

enumerate all the possibilities for G|A ∩ B. Here is a simple one, when G|A ∩ B has no

edges: then we contract A to a single vertex, find a 5-colouring, and deduce that G|B has

a 5-colouring in which all the vertices in A ∩ B have the same colour. But so does G|A,

and we fit these two 5-colourings together to obtain a 5-colouring of G, a contradiction.

All except one of the possibilities for G|A ∩ B can be disposed of by this and similar

arguments (section 7). The remaining possibility for G|A ∩ B is that it is a 5-edge path.

Disposing of this is much more difficult, and occupies sections 8, 9 and 10; roughly we

show that in this case, if we choose such (A,B) with A minimal, then both G|A and

G|B can be drawn in the plane with ≤ 1 crossing, contrary to the result of step 1. This

completes step 2.

Step 3: Find ten forbidden subgraphs.

We observed earlier that no edge was in four triangles. For this we only needed 6-

connectivity, and now we have 7-connectivity (more or less) by step 2. We can therefore

get more; for instance, that if we contract one edge of G, still no edge is in four triangles.

By similar means, we find (in section 11) a list of ten graphs, with about 8 vertices and
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11 edges, that are not subgraphs of any non-apex Hadwiger graph.

Step 4: There is a perfect matching.

More exactly, there is a matching of cardinality b 1
2
V (G)c. For if not, by Tutte’s theo-

rem, there exists Z ⊆ V (G) such that G\Z has ≥ |Z|+2 components, and by contracting

appropriately we obtain a simple minor H of G with ≥ 4|V (H)| edges; but this is impos-

sible, for Mader proved that a simple graph H with > 4|V (H)|−10 edges has a K6-minor.

This is the content of section 12.

Step 5: There is a reducible configuration.

By a “reducible configuration” we mean, roughly, a subgraph of G (whose vertices

typically have small valency in G) such that there corresponds a proper minor of G every

5-colouring of which induces a 5-colouring of G. The most trivial one is a single vertex

v which is 4-valent in G; then every 5-colouring of G\v extends to one of G. Of course,

we already know that G has no 4-valent vertices, but there are more useful reducible

configurations, for example, two adjacent vertices of valency 7 and 8, joined by an edge in

three triangles, where neither vertex is in a K4-subgraph. A Hadwiger graph by definition

cannot contain a reducible configuration. However, let us take the matching of step 4,

and contract its edges, and delete any resultant parallel edges. If |V (G)| = n, we obtain

a graph with (about) 1
2
n vertices, and therefore, by Mader’s theorem, at most 4( 1

2
n)− 10

edges. But G has ≥ 7
2
n− 1 edges, by step 1; where did the extra > 3

2
n edges go? 1

2
n were

lost because they were contracted, but the remaining > n edges became parallel and were

discarded for that reason. Consequently, on average an edge of the matching belongs to

several triangles or squares, and more (on average) if its ends have valency > 7. This

leads to a proof (in section 13) that there is either a reducible configuration or a forbidden

subgraph in any non-apex Hadwiger graph, and so there is no such graph.
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There is a very interesting conjecture due to Jørgensen [5], that every 6-connected

graph with no K6-minor is apex. This would obviously imply our result, because Had-

wiger graphs are 6-connected, and we spent a good deal of effort trying to prove it, with

no success. However, it does seem to us to be true, and with a view to this conjecture we

organized sections 2-4 to apply to all graphs satisfying the hypotheses of the conjecture,

rather than just to Hadwiger graphs.

2. FINDING A K4-MINOR

Let G be a graph. Its vertex- and edge-sets are denoted by V (G) and E(G). As

in section 1, G\X denotes the result of deleting X, and for X ⊆ V (G), G|X denotes

G\(V (G)−X). Thus, G|X is the subgraph of G induced on X. A subset X ⊆ V (G) is a

fragment of G if X 6= ∅ and G|X is connected. If X, Y ⊆ V (G), we say XY are adjacent

in G if X ∩ Y = ∅ and some x ∈ X is adjacent in G to some y ∈ Y . If there is an edge of

G with ends x, y ∈ V (G) we say xy are adjacent (with no comma, because we shall need

lists ab, uv, xy, ... of adjacent pairs), and if there is a unique edge with ends x, y we speak

of the edge xy or yx.

A cluster in G is a set of mutually adjacent fragments of G, and it is a p-cluster if

it has cardinality p. Thus, G has a Kp-minor if and only if it has a p-cluster. Given p

distinct vertices v1, ..., vp a cluster C is said to traverse v1, ..., vp or {v1, ..., vp} if |C| = p,

and C can be written as C = {X1, ..., Xp} in such a way that vi ∈ Xi (1 ≤ i ≤ p). Our

concern here is, given four vertices of a graph G, when is there a cluster in G traversing

them?

If H, J are subgraphs of G, then H ∪ J denotes the subgraph with vertex set V (H) ∪

V (J) and edge set E(H) ∪E(J), and H ∩ J is defined similarly. We say subgraphs H, J

are disjoint if V (H ∩ J) = ∅. A separation of G is a pair (A,B) of subsets of V (G) such

that (G|A) ∪ (G|B) = G, that is, A ∪ B = V (G) and no edge has one end in A− B and
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the other in B − A. Its order is |A ∩ B|. It is a k-separation if it has order k, and a

(≤ k)-separation if its order is ≤ k.

Let Z1, Z2, ..., Zk ⊆ V (G) be disjoint. We say that (the subpartition) Z1, ..., Zk is

feasible in G (via X1, ..., Xk) if there are disjoint fragments X1, ..., Xk of G with Zi ⊆ Xi

(1 ≤ i ≤ k); and it is infeasible otherwise.

Paths and circuits by definition have no repeated vertices or edges. We begin with the

following.

(2.1) Let v1, ..., v4 ∈ V (G) be distinct. Then there exist disjoint fragments X1, ..., X4

of G such that vi ∈ Xi (1 ≤ i ≤ 4) and X1X2, X2X3, X3X4, X4X1 are adjacent, if and

only if {v1, v2}, {v3, v4} and {v2, v3}, {v1, v4} are both feasible in G.

Proof: The “only if” implication is easy, and we prove “if”. Let P,Q,R, S be paths

of G, chosen with P ∪Q ∪R ∪ S minimal, such that

(i) P has ends v1v2, Q has ends v2v3, R has ends v3v4, and S has ends v1v4

(ii) P,R are disjoint and Q, S are disjoint.

These exist, from the feasibility hypothesis.

By an arc we mean here a path of Q ∪ S with distinct ends both in P ∪ R and with

no edge or internal vertex in P ∪R. Every arc is a subpath of Q or of S, and both Q and

S contain at least one arc.

(1) Every arc has one end in V (P ) and the other in V (R).

For if some arc A has both ends in V (P ) say, let P ′ be the path obtained from P by
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replacing by A the subpath of P between the ends of A; then P ′, Q,R, S satisfy (i) and

(ii) above, and P ′ ∪ Q ∪ R ∪ S is a proper subgraph of P ∪ Q ∪ R ∪ S, contrary to the

choice of P,Q,R, S.

Let Q′ be the arc in Q closest to v2, with ends a, b where a lies in Q between b and

v2. Let P ′ be the subpath of Q between a and v2. Since P ′ ⊆ P ∪ R and has an end v2,

it follows that P ′ ⊆ P ∩ Q, and in particular a ∈ V (P ) and b ∈ V (R) by (1). Let S ′ be

the arc in S closest to v4, with ends c, d where c lies between d and v4; and let R′ be the

subpath of S between c and v4. Similarly, R′ ⊆ R ∩ S, c ∈ V (R), and d ∈ V (P ). Now

d 6∈ V (P ′) since P ′ ⊆ Q and d 6∈ V (Q); and b 6∈ V (R′) similarly. Thus taking

X1 = V (P ) − V (P ′)

X2 = V (P ′ ∪Q′) − {b}

X3 = V (R) − V (R′)

X4 = V (R′ ∪ S ′) − {d}

satisfies the theorem.

In (2.1) we asked that a specific four pairs of X1, ..., X4 should be adjacent. Even-

tually, we want all six to be adjacent; and the next step is a specific five. A trisection

of G is a triple (A,B,C) of subsets of V (G) such that A ∩ B = A ∩ C = B ∩ C and

(G|A) ∪ (G|B) ∪ (G|C) = G; its order is |A ∩ B ∩ C|.

(2.2) Let v1, ..., v4 ∈ V (G) be distinct. Then the following are equivalent:

(i) there exist disjoint fragments X1, ..., X4 of G with vi ∈ Xi (1 ≤ i ≤ 4) such

that X1X2, X1X3, X1X4, X2X3, X2X4 are adjacent

(ii) all the following hold:
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(a) {v1, v3}, {v2, v4} is feasible,

(b) {v1, v4}, {v2, v3} is feasible, and

(c) for every trisection (A1, A2, B) of G of order 2 with A1 ∩ A2 ∩B =

{x1, x2} such that vi ∈ Ai − {x1, x2} (i = 1, 2) and v3, v4 ∈ B,

there are disjoint fragments Y1, ..., Y4 of G|B with x1 ∈ Y1, x2 ∈ Y2,

v3 ∈ Y3, v4 ∈ Y4 such that Y1Y3, Y1Y4, Y2Y3, Y2Y4 are all adjacent.

Proof: That (i) implies (ii) is easy, and we omit it. Let us prove the converse. We assume

that (ii) holds. By (2.1) and (ii)(a), (ii)(b), there is a circuit C of G, and four distinct

vertices u1, u2, u3, u4 of C, such that u1, u3, u2, u4 occur in C in order, and there are four

disjoint paths P1, ..., P4 of G, such that Pi has ends ui, vi and has no vertex in C except

ui. Choose C and P1, ..., P4 with P3 ∪ P4 minimal. Let the path of C between u1 and u3

not containing u2, u4 be C13, and define C14, C23, C24 similarly.

(1) There is no path of G from V (P1 ∪P2 ∪C) to V (P3 ∪P4) with no vertex in {u3, u4}.

For if there is such a path P we may assume it has one end u in V (P1∪C13∪C14) and the

other end v in V (P3), and has no vertex in {u3, u4}, and has no vertex in C∪P1∪P2∪P3∪P4

except its ends. If u ∈ V (P1 ∪ C14) we may replace C13 by P , contrary to the minimality

of P3 ∪P4; and if u ∈ V (C13) we replace the subpath of C13 between u and u3 by P , again

contrary to the minimality of P3 ∪ P4. This proves (1).

From (1), there is a separation (A,B) ofG with V (C∪P1∪P2) ⊆ A and V (P3∪P4) ⊆ B,

with A ∩ B = {u3, u4}.

(2) We may assume that there is a separation (A1, A2) of G|A with A1 ∩ A2 = {u3, u4},

v1 ∈ A1 − {u3, u4} and v2 ∈ A2 − {u3, u4}.
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For if there is a path of G|A from v1 to v2 avoiding u3 and u4, there is a minimal path

P from V (P1 ∪C13 ∪C14)− {u3, u4} to V (P2 ∪ C23 ∪C24)− {u3, u4} in G|(A− {u3, u4});

but then taking

X1 = V (P1 ∪ C13 ∪ C14 ∪ P ) − {u3, u4, v}

X2 = V (P2 ∪ C23 ∪ C24) − {u3, u4}

X3 = V (P3)

X4 = V (P4)

satisfies (i) where v is the end of P in V (P2 ∪ C23 ∪ C24) − {u3, u4}. This proves (2).

From (ii)(c) applied to the trisection (A1, A2, B) of (2), there are disjoint fragments

Y1, ..., Y4 of G|B such that u3 ∈ Y1, u4 ∈ Y2, v3 ∈ Y3, v4 ∈ Y4, and Y1Y3, Y1Y4, Y2Y3, Y2Y4

are all adjacent. Let

X1 = Y1 ∪ V (P1 ∪ C13 ∪ C14) − {u4}

X2 = Y2 ∪ V (P2 ∪ C24)

X3 = Y3

X4 = Y4;

then (i) holds, as required.

The main result of this section is the following.

(2.3) Let Z ⊆ V (G) with |Z| = 4. Then the following are equivalent:

(i) there is a cluster in G traversing Z

(ii) for every ordering Z = {v1, ..., v4} both the following hold:
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(a) {v1, v2}, {v3, v4} is feasible in G, and

(b) for every trisection (A1, A2, B) of G of order 2 with A1 ∩ A2 ∩B =

{x1, x2} such that vi ∈ Ai − {x1, x2} (i = 1, 2) and v3, v4 ∈ B, there

are disjoint fragments Y1, ..., Y4 of G|B with x1 ∈ Y1, x2 ∈ Y2, v3 ∈

Y3, v4 ∈ Y4 such that Y1Y3, Y1Y4, Y2Y3, Y2Y4, Y3Y4 are all adjacent.

Proof: Again, that (i) implies (ii) is easy, and we shall just prove the converse. We assume

that (ii) holds. It follows easily that we may assume G is 2-connected (by induction on

|V (G)|, say). We assume for a contradiction that (i) is false.

(1) There is no trisection (A1, A2, B) of order 2 such that A1−(A2∪B) and A2−(A1∪B)

both contain exactly one member of Z.

For suppose that (A1, A2, B) is such a trisection, and let A1 ∩ A2 ∩ B = {x1, x2}.

Let Z = {v1, ..., v4} where vi ∈ Ai − {x1, x2} (i = 1, 2) say. Since G is 2-connected,

{v1, x1} is feasible in G|(A1 − {x2}), and {v2, x2} is feasible in G|(A2 − {x1}), and hence

{v1, x1}, {v2, x2} is feasible in G|(A1 ∪ A2). Also, since G is 2-connected, there is a path

of G|(A1 ∪ A2) between v1 and v2. Consequently, there are adjacent fragments Y ′
1 , Y

′
2 of

G|(A1 ∪A2) with v1, x1 ∈ Y ′
1 and v2, x2 ∈ Y ′

2 . By (ii) there are fragments Y1, ..., Y4 of G|B

as in (ii). Then {Y1 ∪ Y
′
1 , Y2 ∪ Y

′
2 , Y3, Y4} is a cluster in G traversing Z, a contradiction.

This proves (1).

(2) There is no 2-separation (A,B) of G such that |(A−B) ∩ Z| = |(B − A) ∩ Z| = 2.

For suppose that (A,B) is such a 2-separation; let (A − B) ∩ Z = {v1, v2}, (B −

A) ∩ Z = {v3, v4}, A ∩ B = {x1, x2}. By exchanging v1, v2 if necessary, we may as-
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sume that {v1, x1}, {v2, x2} is feasible in G|A, since G is 2-connected, and similarly that

{v3, x1}, {v4, x2} is feasible in G|B.

By (2.3)(ii)(a), {v1, v4}, {v2, v3} is feasible in G, and so either {v1, x2}, {v2, x1} is feasi-

ble in G|A, or {v3, x2}, {v4, x1} is feasible in G|B, and from the symmetry we may assume

the latter. If (A′
1, A

′
2, B

′) is a trisection of G|B of order 2 with A′
1∩A

′
2∩B

′ = {x′1, x
′
2} say,

and with v3 ∈ A′
1−{x′1, x

′
2}, v4 ∈ A′

2−{x′1, x
′
2} and x1, x2 ∈ B′, then (A′

1, A
′
2, B

′∪A) is a tri-

section of G contrary to (1). Thus there is no such (A′
1, A

′
2, B

′), and so by (2.2) applied to

G|B, there are disjoint fragments Y1, ..., Y4 of G|B with x1 ∈ Y1, x2 ∈ Y2, v3 ∈ Y3, v4 ∈ Y4,

and with Y1Y3, Y1Y4, Y2Y3, Y2Y4, Y3Y4 all adjacent. Choose disjoint fragments Y ′
1 , Y

′
2 of

G|A with v1, x1 ∈ Y ′
1 and v2, x2 ∈ Y ′

2 and with Y ′
1Y

′
2 adjacent (this is possible since G

is 2-connected); then {Y1∪Y
′
1 , Y2∪Y

′
2 , Y3, Y4} satisfies (i), a contradiction. This proves (2).

(3) There do not exist disjoint paths P1, P2 of G with ends v1, v3 ∈ Z and v2, v4 ∈ Z

respectively, and distinct vertices a1, b1, c1 of P1 in order (with a1 closest to v1) and dis-

tinct vertices a2, b2, c2 of P2 in order (with a2 closest to v2) and disjoint paths Q1, Q2, Q3

of G with ends a1b2, a2b1, and c1c2 respectively, so that Q1, Q2, Q3 have no vertices in

V (P1 ∪ P2) except their ends.

For suppose such P1, P2, Q1, Q2, Q3 exist. Since b1, b2 6= v1, v2, v3, v4, there is by (2) a

path P of G from

V (A1 ∪Q1 ∪B1 ∪ A2 ∪Q2 ∪B2)

to V (C1 ∪D1 ∪C2 ∪D2 ∪Q3), with b1, b2 6∈ V (P ), where A1, B1, C1, D1 are the subpaths

of P1 with ends v1a1, a1b1, b1c1, c1v3 and A2, B2, C2, D2 ⊆ P2 are defined similarly. Take a

minimal such subpath P , with ends u ∈ V (A1 ∪B1 ∪Q1)−{b1, b2} and v ∈ V (C1 ∪D1 ∪
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Q3)−{b1, c2} say (without loss of generality, by exchanging v1 with v2 or v3 with v4). Let

X1 = V (A1 ∪ B1 ∪Q1) − {b1, b2}

X2 = V (A2 ∪ B2 ∪Q2) − {b2}

X3 = V (C1 ∪D1 ∪Q3 ∪ P ) − {b1, c2, u}

X4 = V (C2 ∪D2);

then {X1, ..., X4} is a cluster traversing Z, a contradiction. This proves (3).

Let Z = {v1, ..., v4}. Since {v1, v2}, {v3, v4} is feasible and so are the other two sim-

ilar partitions, it follows from (2.1) that there is a circuit C and four distinct vertices

u1, u2, u3, u4 of it, in order on C, and four disjoint paths P1, ..., P4, where Pi has ends

vi, ui and has no vertex in C except ui; and there are disjoint paths Q,R with ends v1, v3

and v2, v4 respectively. Let P1 ∪ ... ∪ P4 ∪ C = H. Let C12 be the path of C between

u1 and u2 not containing u3, u4, and define C23, C34, C41 similarly. By an arc we mean a

subpath ofQ∪R with distinct ends both in V (H) and with no edge or internal vertex inH.

(4) No arc has ends u ∈ V (P1) − {u1} and v ∈ V (C23 ∪ C34 ∪ P3) − {u2, u4}.

For suppose that P is such an arc. By (3) (with v1, v4 exchanged) v 6∈ V (P3) − {u3};

by (3) v 6∈ V (C23) − {u2, u3}, and by (3) (with v2, v4 exchanged) v 6∈ V (C34) − {u3, u4}.

Thus, v = u3. Let T1 = P ∪ P1, T2 = C12 ∪ C23 ∪ P2, T3 = C41 ∪ C34 ∪ P4; we see there is

symmetry between T1, T2 and T3 exchanging v1, v2 and v4 and fixing u1. By (1) there is a

path S of G joining two of T1, T2, T3, P3 with no vertex in {u1, u3}. Choose a minimal such

path S, with ends a, b say. From (3) with v1, ..., v4 permuted, it follows that a, b 6∈ V (P3),
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and so we may assume from the symmetry that a ∈ V (T1) and b ∈ V (T2). Then setting

X1 = V (S ∪ T1) − {u1, u3, b}

X2 = V (T2) − {u1, u3}

X3 = V (P3)

X4 = V (T3) − {u3}

defines a cluster traversing Z, a contradiction. This proves (4).

Now choose P1, ..., P4, C,Q,R,H with H ∪ Q ∪ R minimal, and subject to that with

Σ|E(Pi)| minimum.

(5) No arc has an end in V (P1) − {u1}.

For suppose that P is an arc with ends u, v where u ∈ V (P1) − {u1}. By (4),

v ∈ V (P1 ∪ C12 ∪ P2 ∪ C41 ∪ P4) − {u},

and by the symmetry we may assume that v ∈ V (P1 ∪ C12 ∪ P2) − {u}. If v ∈ V (P1),

then we may replace the subpath of P1 between u and v by P , thereby reducing the union

H ∪Q ∪ R, a contradiction. If v ∈ V (C12 ∪ P2) − {u1}, we may replace by P either C12

(if v ∈ V (P2)) or the path of C12 between u1 and v (if v ∈ V (C12)), thereby reducing

Σ|E(Pi)| while not increasing the union H ∪Q ∪R, a contradiction. This proves (5).

From (5) it follows that P1 ⊆ Q, and similarly P2 ⊆ R,P3 ⊆ Q,P4 ⊆ R. Now Q 6⊆ H

since u2, u4 6∈ V (Q) and so there is an arc in Q; let the first arc in Q be A (that is, closest

to v1 in Q). Similarly, let the arc in R closest to v2 be B. Let A have ends a1, a2, and B

have ends b1, b2, where a1 is between v1 and a2 in Q, and b1 is between v2 and b2 in R. Since

the subpath Q′ of Q between v1 and a1 is in H, it follows that a1 ∈ V (C12∪C14)−{u2, u4},

and Q′ is the path of H\{u2, u4} between v1 and a1. Suppose that a2 ∈ V (C12 ∪ C41).

Let a2 ∈ V (C12) − {u1, u2} say. If a1 ∈ V (C12) we may reduce the union H ∪ Q ∪ R by
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replacing the subpath of C12 between a1 and a2 by A; and if a1 ∈ V (C41), we may similarly

reduce the union by replacing by A either the subpath of C12 between u1 and a2, or the

subpath of C41 between u1 and a1, whichever is not included in Q∪R. In either case, we

have a contradiction, and so a2 6∈ V (C12∪C41). Hence, a2 ∈ V (C23∪C34). By exchanging

v2 and v4 we may therefore assume that a2 ∈ V (C23). Similarly, b1 ∈ V (C12 ∪ C23) and

b2 ∈ V (C34 ∪ C41). Let R′ be the subpath of R between v2 and b1. Then setting

X1 = V (Q′ ∪ C12) − V (R′)

X2 = V (R′)

X3 = V (C23 ∪ P3 ∪ A) − (V (R′) ∪ {a1})

X4 = V (C34 ∪ C41 ∪ P4 ∪B) − (V (Q′) ∪ {b1, u3})

defines a cluster traversing Z, a contradiction. This completes the proof.

We need also the following, a slight variation on a result of [11] - see also [6, 12, 13, 14].

(2.4) Let v1, ..., vk be distinct vertices of a graph G. Then either

(i) there are disjoint paths of G with ends p1p2 and q1q2 respectively, so that

p1, q1, p2, q2 occur in the sequence v1, ..., vk in order, or

(ii) there is a (≤ 3)-separation (A,B) of G with v1, ..., vk ∈ A and |B−A| ≥ 2, or

(iii) G can be drawn in a disc with v1, ..., vk on the boundary in order.

Proof: We may assume that every vertex of G not in {v1, ..., vk} has ≥ 3 neighbours.

Hence there is no (≤ 2)-separation (A,B) of G with v1, ..., vk ∈ A and |B − A| = 1, and

the statement follows from [11, theorems (2.3) and (2.4)].
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We deduce

(2.5) Let s1, t1, s2, t2 ∈ V (G) be distinct. Then either

(i) {s1, t1}, {s2, t2} is feasible in G, or

(ii) {s1, t1} is not feasible in G\{s2, t2}, or {s2, t2} is not feasible in G\{s1, t1},

or

(iii) there is a (≤ 3)-separation (A,B) of G with s1, t1, s2, t2 ∈ A and |B − A| ≥ 2

and |B ∩ {s1, t1, s2, t2}| ≤ 2, or

(iv) G can be drawn in a disc with s1, s2, t1, t2 on the boundary in order.

Proof: We proceed by induction on |V (G)| + |E(G)|. We may therefore assume that

G is simple, and every vertex not in {s1, s2, t1, t2} has valency ≥ 3. By (2.4), since we

may assume that (i) and (iv) are false, there is a (≤ 3)-separation (A,B) of G with

s1, t1, s2, t2 ∈ A and |B − A| ≥ 2. We may therefore assume that B contains three of

s1, t1, s2, t2, for otherwise (iii) holds; say s1, t1, s2 ∈ B. Assuming (ii) is false, there is a

path P from s2 to t2 with s1, t1 6∈ V (P ) and hence with V (P )∩B = {s2}. Since (i) is false,

there is no path in G|(B−{s2}) between s1 and t1. Consequently we may choose a sepa-

ration (X, Y ) of G|B with X ∩ Y = {s2}, s1 ∈ X and t1 ∈ Y . Since |B −A| ≥ 2, we may

assume that |X−A| ≥ 1; let v ∈ X−A. Since v has valency ≥ 3, it follows that |X| ≥ 4,

and so |X −A| ≥ 2. But (Y ∪A,X) is a 2-separation of G with s1, t1, s2, t2 ∈ Y ∪A, and

so (iii) holds.

From (2.3) and (2.5) we deduce:

(2.6) Let Z ⊆ V (G) with |Z| = 4. Then either
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(i) there is a cluster in G traversing Z, or

(ii) there is a trisection (A1, A2, B) of order 2 such that |Z∩(Ai−B)| = 1 (i = 1, 2),

or

(iii) there is a (≤ 3)-separation (A,B) with Z ⊆ A and |B−A| ≥ 2 and |Z∩B| ≤ 2,

or

(iv) G can be drawn in a plane so that every vertex in Z is incident with the infinite

region.

Proof: We assume that (i) is false. By (2.3) we may order Z = {v1, ..., v4} so that one

of (2.3)(ii)(a), (2.3)(ii)(b) is false. If (2.3)(ii)(a) is false, then by (2.5), one of (ii), (iii),

(iv) holds. (In particular, if (2.5)(ii) holds and Z = {v1, ..., v4} and {v1, v2} is not feasible

inG\{v3, v4}, then (ii) holds, taking B = {v3, v4}.) If (2.3)(ii)(b) is false, then (ii) holds.

We shall apply (2.6) several times in our approach to Hadwiger’s conjecture; the first

is the following, which for Hadwiger graphs was proved independently by J. Mayer (un-

published). A triangle of G is a circuit of G of length 3.

(2.7) Let G be a simple 6-connected graph with no K6-minor, which is not apex. Then

every edge of G is in ≤ 3 triangles.

Proof: Suppose that there are triangles with vertex sets {x1, x2, vi} (1 ≤ i ≤ 4), where

x1, x2, v1, v2, v3, v4 are distinct. Let G′ = G\{x1, x2}, and let us apply (2.6) to G′, tak-

ing Z = {v1, ..., v4}. If (2.6)(i) holds, and C is a cluster in G′ traversing Z, then C

∪{{x1}, {x2}} is a 6-cluster in G, a contradiction. Since G′ is 4-connected, (2.6)(ii) and

(2.6)(iii) do not hold, and so (2.6)(iv) holds, and G′ can be drawn in a plane so that

v1, ..., v4 are all incident with the infinite region. Since G′ is 2-connected and loopless and
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|V (G′)| ≥ 3 there is a circuit C bounding the infinite region. Let X = V (G′) − V (C).

Since G′ is 3-connected and |V (C)| ≥ 4, it follows that X 6= ∅, and that X is a fragment

of G′. Let P1, P2, P3 be three disjoint paths in C with V (P1 ∪ P2 ∪ P3) = V (C) and with

vi ∈ V (Pi)(1 ≤ i ≤ 3). Now v1, v2, v3 all have neighbours in X since G′ is 3-connected,

and yet

{V (P1), V (P2), V (P3), X, {x1}, {x2}}

is not a 6-cluster in G. Consequently, one of x1, x2 has no neighbour in X, say x2. But

then G\x1 is planar, and so G is apex, a contradiction as required.

Let us also mention the following, the proof of which is clear.

(2.8) Let G be a 5-connected graph with no K6-minor and with |V (G)| ≥ 6. Then

no subgraph of G is isomorphic to K5.

3. TRIADS AND TRIPODS

A triad in G is a connected subgraph T of G with no circuits, with one vertex of

valency 3 and all others of valency ≤ 2. Necessarily, it has precisely three vertices of

valency 1, called its feet. It is lean (in G) if V (T ′) = V (T ) for every triad T ′ in G with

V (T ′) ⊆ V (T ) and with the same feet as T .

If H is a subgraph of G, an H-flap is the vertex set of a connected component of

G\V (H).

(3.1) Let G be simple and let v1, v2, v3 ∈ V (G) be distinct, such that there is no (≤ 3)-

separation (A,B) with v1, v2, v3 ∈ A, |A| ≥ 4 and |V (G)−A| ≥ 1. Let T0 be a triad in G

with feet v1, v2, v3, and let W be a T0-flap. Then there is a lean triad T with feet v1, v2, v3

and with V (T ) ∩W = ∅, such that there is only one T-flap.
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Proof: (Our thanks to the referee for the following, which is much better than our original

proof.) We say (α1, ..., αn) is lexicographically larger than (β1, ..., βm) if either

(i) m < n and αi = βi for i = 1, ..., m, or

(ii) there exists j with 1 ≤ j ≤ min(m,n) so that αj > βj and αi = βi for

i = 1, ..., j − 1.

Let T be a triad with feet v1, v2, v3, and with V (T ) ∩W = ∅. Since G|W is connected,

there is a T -flap B1 say, with W ⊆ B1; let the T -flaps be B1, ..., Bn say, ordered so that

|B2| ≥ |B3| ≥ ... ≥ |Bn|. Since there is such a triad T (namely T0), we may choose T

so that (|B1|, ..., |Bn|) is lexicographically maximum. We shall show that T satisfies the

theorem. Clearly it is lean; we must show that n = 1.

Let us say that v ∈ V (G) is essential if v ∈ V (T ′) for every triad T ′ with feet

v1, v2, v3 and with V (T ′) ⊆ V (T ) ∪ Bn. Every vertex v of V (T ) ∪ Bn with a neighbour

in B1 ∪ ... ∪ Bn−1 is essential: for if not, there is a triad T ′ with feet v1, v2, v3 and with

V (T ′) ⊆ (V (T )∪Bn)−{v}, and replacing T by T ′ would give a lexicographic increase of

(|B1|, ..., |Bn|).

Let S be the set of all essential vertices; thus, S ⊆ V (T ). Let K be the component of

G\S containing Bn; thus, V (K) ⊆ V (T ) ∪Bn. Let S ′ be the set of all vertices in S with

a neighbour in K.

We claim that |S ′| ≤ 3. If S ′ ⊆ {v1, v2, v3} the claim is true, and so we may assume

that S ′ ∩ (V (T )− {v1, v2, v3}) 6= ∅. Consequently, for i = 1, 2, 3 there is a path of T from

vi to a member of S ′ with only one vertex in {v1, v2, v3}; and by choosing it minimal we

may assume it has only one vertex in S ′. Consequently there is a path Pi from vi to V (K)

with

V (Pi) ⊆ V (T ) ∪ V (K) ⊆ V (T ) ∪Bn
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with only one vertex in {v1, v2, v3}. Now P1 ∪P2 ∪P3 ∪K is connected and v1, v2, v3 each

have valency 1 in this subgraph; for vi 6∈ V (K) since vi ∈ S (1 ≤ i ≤ 3). Hence there is

a triad T ′ ⊆ P1 ∪P2 ∪P3 ∪K with feet v1, v2, v3. Since each Pi contains only one member

of S ′ and K contains none, it follows that |S ′ ∩ V (T ′)| ≤ 3. But V (T ′) ⊆ V (T )∪Bn, and

so S ′ ⊆ S ⊆ V (T ′); and therefore |S ′| ≤ 3. This proves our claim that |S ′| ≤ 3.

Let A = V (G) − V (K), B = V (K) ∪ S ′. Then (A,B) is a (≤ 3)-separation of G with

v1, v2, v3 ∈ A, and with

|V (G) − A| = |V (K)| ≥ 1.

From the hypothesis, |A| ≤ 3, and so since v1, v2, v3 ∈ A it follows that A = {v1, v2, v3}.

But for 1 ≤ i < n,

Bi ∩ B = Bi ∩ (V (K) ∪ S ′) ⊆ Bi ∩ (Bn ∪ V (T )) = ∅

and v1, v2, v3 6∈ Bi, and so Bi = ∅ which is impossible; and therefore n = 1 as required.

Let v1, v2, v3 be mutually adjacent vertices of a graph G. We say G is triangular with

respect to v1, v2, v3 if G is simple, and either

(i) for some i (1 ≤ i ≤ 3), G\vi has maximum valency ≤ 2, and either G\vi is a

circuit or it has no circuit, or

(ii) all vertices of G have valency ≤ 3, there is at most one 3-valent vertex v 6=

v1, v2, v3, and G\{v1, v2, v3} has no circuit, or

(iii) all vertices of G have valency ≤ 3, there is a triangle C with v1, v2, v3 6∈ V (C),

every 3-valent vertex of G is in {v1, v2, v3} ∪ V (C), and every circuit of C

except these two triangles meets both {v1, v2, v3} and V (C).

The motivation for this is the following.
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(3.2) Let v1, v2, v3 ∈ V (G) be distinct, mutually adjacent vertices of G, and let T be

a lean triad in G with feet v1, v2, v3. Let v1, v2, v3 ∈ Z ⊆ V (T ); then G|Z is triangular

with respect to v1, v2, v3.

Proof: It suffices to show that G|V (T ) is triangular. Let a be the 3-valent vertex of

T , and for 1 ≤ i ≤ 3 let Pi be the path of T between a and vi. Let K = G|{v1, v2, v3}.

If G|V (T ) = T ∪ K then (ii) holds as required, and so we may assume that there exist

u, v ∈ V (T ), adjacent in G but not in T ∪K. Suppose first that u, v 6∈ {v1, v2, v3}. As in

(2) in (3.1), it follows that u, v are both adjacent in T to the 3-valent vertex a of T , and

G|V (T ) has no other edge not in T ∪ K. But then (iii) holds if {u, v, a} ⊆ Z, and (ii)

holds otherwise. We may therefore assume that u = v1 say. Since u, v are not adjacent

in T ∪ K it follows that v 6∈ {v1, v2, v3}, and v ∈ V (P2) say. Then |E(P1)| = 1, and

G|V (P2 ∪ P3) is a circuit, and so (i) holds.

Let v1, v2, v3 be distinct vertices of a graph G. By a tripod on v1, v2, v3 we mean a

subgraph P1 ∪ P2 ∪ P3 ∪Q1 ∪Q2 ∪Q3 of G consisting of

(i) two vertices a, b so that a, b, v1, v2, v3 are all distinct

(ii) three paths P1, P2, P3 of G between a and b, mutually disjoint except for a and

b, and each with at least one internal vertex, and

(iii) three paths Q1, Q2, Q3 of G, mutually disjoint, such that for i = 1, 2, 3, Qi

has ends ui and vi, where ui ∈ V (Pi) − {a, b}, and no vertex of Qi except ui

belongs to V (P1∪P2∪P3). (It is permitted that ui = vi and hence E(Qi) = ∅.)

We call Q1, Q2, Q3 the legs of the tripod.

20



(3.3) Let Z ⊆ V (G) such that there is no 3-separation (A,B) of G with Z ⊆ A and

|B − A| ≥ 2. Let H0 be a tripod in G with feet v1, v2, v3 ∈ Z and with no other vertex in

Z. Then there is a tripod H with feet v1, v2, v3 and with no other vertex in Z, such that

every leg of H is a subpath of a leg of H0, and there is a path from V(H) to Z disjoint

from all the legs of H.

Proof: Let H = P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3 (with the usual notation) be a tripod

in G with feet v1, v2, v3 and with no other vertex in Z, chosen with Q1 ∪Q2 ∪Q3 minimal.

Let the ends of P1, P2, P3 be a, b. From the hypothesis, there is a path P of G from

V (P1 ∪P2 ∪P3) to Z ∪ V (Q1 ∪Q2 ∪Q3) with no vertex in {u1, u2, u3}, where Qi has ends

ui, vi (1 ≤ i ≤ 3). Choose a minimal such path P with ends x ∈ V (P1 ∪ P2 ∪ P3) and

y ∈ Z ∪ V (Q1 ∪ Q2 ∪ Q3). We may assume from the symmetry that x and a belong to

the same component of P1 ∪ P2 ∪ P3\ {u1, u2, u3}. Suppose that y ∈ V (Q1). Let P ′ be

the subpath of P1 between x and u1 if x ∈ V (P1), or between a and u1 if x 6∈ V (P1). Let

H ′ be the tripod obtained from H ∪ P by deleting the edges and internal vertices of P ′;

then H ′ contradicts the choice of H. Consequently, y 6∈ V (Q1) and y 6∈ V (Q2), V (Q3)

similarly; and so y ∈ Z − {v1, v2, v3}, as required.

A tripod is legless if all its legs have no edges.

(3.4) Let v1, v2, v3 ∈ V (G) be distinct, so that there is a tripod on v1, v2, v3. If there

is no 3-separation (A,B) with v1, v2, v3 ∈ A, |A| ≥ 4 and |B − A| ≥ 2, then there is a

legless tripod on v1, v2, v3.

Proof: Let H be a tripod on v1, v2, v3 with legs Q1, Q2, Q3, chosen with Q1 ∪ Q2 ∪ Q3

minimal. Suppose that |E(Q1)| 6= ∅, and let v′1 be the neighbour of v1 in Q1. Let
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Z = {v1, v2, v3, v
′
1}. Then H\v1 is a tripod on v′1, v2, v3, and so by (3.3) we may assume

there is a path P of G between V (H\v1) and Z, disjoint from the legs of H\v1. Con-

sequently, v1 is an end of P , and as in (3.3) we may choose another tripod in H ∪ P

contradicting the choice of H. The result follows.

The following follows from [11, theorem (2.4)], and we omit the proof, which is similar

to that of (2.4).

(3.5) Let v1, v2, v3 ∈ V (G) be distinct, such that there is no (≤ 2)-separation (A,B)

of G with v1, v2, v3 ∈ A and |B−A| ≥ 2. Then either G contains a tripod on v1, v2, v3, or

G can be drawn in a disc with v1, v2, v3 on the boundary.

From (3.1), (3.4), (3.5) we deduce:

(3.6) Let v1, v2, v3 be mutually adjacent vertices of a 4-connected simple non-planar graph

G. Let Z ⊆ V (G) with v1, v2, v3 ∈ Z such that G|Z is not triangular. Then there is a

5-cluster

{{v1}, {v2}, {v3}, X1, X2}

in G such that Z ∩X1, Z ∩X2 6= ∅.

Proof: Since G is non-planar, it cannot be drawn in a disc with v1, v2, v3 on the boundary,

and since G is 3-connected it follows from (3.5) that there is a tripod on v1, v2, v3. By (3.4)

such a tripod can be chosen legless. Consequently, there are two triads T1, T2 on v1, v2, v3,

vertex-disjoint except for {v1, v2, v3}. By (3.1) we may assume that for i = 1, 2, Ti is

lean and there is only one Ti-flap. Consequently, we may choose T1, ..., Tn with n ≥ 2

maximum, such that
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(1) T1, .., Tn are lean triads on v1, v2, v3, mutually vertex-disjoint except for v1, v2, v3 ,

such that for each i there is only one Ti-flap.

We deduce:

(2) For 1 ≤ i ≤ n, Z 6⊆ V (Ti).

As G|Z is not triangular, this follows from (3.2).

(3) If Z ∩ V (Ti) 6= {v1, v2, v3} for some i then the theorem is true.

For let Z ∩ V (T1) 6= {v1, v2, v3}, say. Let X1 = V (T1) − {v1, v2, v3} and X2 = V (G) −

V (T1). Since there is only one T1-flap, X2 is a fragment, and Z ∩ X2 6= ∅ by (2). Thus

{{v1}, {v2}, {v3}, X1, X2} satisfies the theorem. This proves (3).

We may assume therefore that Z ∩ V (Ti) = {v1, v2, v3} for 1 ≤ i ≤ n. Let

H = G\{v1, v2, v3} and Si = Ti\{v1, v2, v3} (1 ≤ i ≤ n). Then H is connected, and

S1, ..., Sn are mutually disjoint non-null connected subgraphs of it.

(4) If there exist distinct j, j ′ with 1 ≤ j, j ′ ≤ n, and two disjoint paths P, P ′ of H

such that

(i) P has one end in Z, the other end in V (Sj), and no internal vertex in Si for

any i, and

(ii) P ′ has one end in Z, the other end in V (Sj′), and no internal vertex in Si for
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any i

then the theorem holds.

For P∪Sj and P ′∪Sj′ are disjoint connected subgraphs ofH, and so there exist disjoint

fragments X1, X2 of H with V (P ∪Sj) ⊆ X1 and V (P ′∪Sj′) ⊆ X2, with X1∪X2 maximal.

Since H is connected it follows that X1X2 are adjacent, and so {{v1}, {v2}, {v3}, X1, X2}

satisfies the theorem. This proves (4).

We assume therefore that there do not exist P, P ′ as in (4). By Menger’s theorem ap-

plied to the graph obtained from H by contracting all the edges of each Si, there is a sepa-

ration (X, Y ) of H with V (S1∪...∪Sn) ⊆ X and Z∩V (H) ⊆ Y , so that either |X∩Y | ≤ 1

or X ∩Y = V (Sj) for some j. The latter is impossible since H\V (Sj) is connected, n ≥ 2

and Z∩V (H) 6= ∅; and so |X∩Y | ≤ 1. Since |Z| ≥ 5 (because G|Z is not triangular) and

hence |Z ∩ V (H)| ≥ 2, we deduce that |Y | ≥ 2 and |X| ≥ |V (S1 ∪ ... ∪ Sn)| ≥ n ≥ 2. But

H is connected, and so |X ∩ Y | = 1, X ∩ Y = {u}, say; and H|X is connected. Let Tn+1

be a triad in G with feet v1, v2, v3 and with V (Tn+1) ⊆ (Y −{u})∪{v1, v2, v3}; this exists

since G is 4-connected and |Y | ≥ 2. By (3.1) we may choose Tn+1 lean and so that there

is only one Tn+1-flap in G, because H|X is connected. But then T1, ..., Tn+1 contradict

the choice of n. The result follows.

(3.7) Let G be a 5-connected simple non-apex graph with no K6-minor, let w ∈ V (G), and

let Z be the set of all neighbours of w. Let v1, v2, v3 ∈ Z be distinct and mutually adjacent.

Then G|Z is triangular with respect to v1, v2, v3. In particular, if G is 6-connected then

w belongs to ≤ 2 K4-subgraphs of G.

Proof: Suppose that G|Z is not triangular. By (3.6) applied to the 4-connected non-
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planar graph G\w, there is a 5-cluster

{{v1}, {v2}, {v3}, X1, X2}

in G\w such that Z ∩X1, Z ∩X2 6= ∅. But then

{{w}, {v1}, {v2}, {v3}, X1, X2}

is a 6-cluster in G, a contradiction. Thus G|Z is triangular with respect to v1, v2, v3. Now

suppose that G is 6-connected. By (2.7), no edge of G is in ≥ 4 triangles, and so G|Z has

maximum valency ≤ 3. Hence (ii) or (iii) holds in the definition of “triangular”. If G|Z

has ≥ 3 triangles, then (ii) holds and G|Z is isomorphic to K4, contrary to (2.8). Thus

G|Z has ≤ 2 triangles, as required.

The relevance of (3.7) to our problem about Hadwiger’s conjecture derives from the

following result of Mader [8]; it will often be used in the remainder of the paper without

explicit reference.

(3.8) Every Hadwiger graph is 6-connected.

4. NEARLY-DISJOINT K4’s

Let us say that X ⊆ V (G) is a 4-clique if |X| = 4 and every two vertices of X are

adjacent. A consequence of (3.7) and (3.8) is that in every non-apex Hadwiger graph,

every vertex is in at most two 4-cliques. In this section we prove a complementary result,

that there do not exist three 4-cliques pairwise meeting in ≤ 2 vertices.

First we need the following lemma.

(4.1) Let x1, y1, z1, x2, y2, z2, x3, y3, z3 be distinct vertices of a 6-connected simple graph G,

25



such that {x1, y1, z2, z3}, {x2, y2, z3, z1}, {x3, y3, z1, z2} are 4-cliques. Suppose, moreover,

that there is a partition X, Y of V (G)−{z1, z2, z3} with x1, x2, x3 ∈ X and y1, y2, y3 ∈ Y ,

such that x1y1, x2y2, x3y3 are the only edges of G with one end in X and the other in Y.

Then G has a K6-minor.

Proof: Let Z = {z1, z2, z3}.

(1) X, Y are fragments, and we may assume that |X|, |Y | ≥ 4.

For if G|X (say) is not connected, let D be a component of G|X with x3 6∈ V (D).

Then (V (D)∪ {y1, y2, z1, z2, z3}, V (G)− V (D)) is a 5-separation of G, contradicting that

G is 6-connected. Thus X, Y are fragments. If |X| ≤ 3 say, then X = {x1, x2, x3}. Since

x1 has valency ≥ 6 it is adjacent to x2, x3 and to every member of Z, and similarly for

x2, x3; but then Z ∪ {x1, x2, x3} is a 6-clique, as required.

Let f1, f2, f3 be the edges with ends z2z3, z3z1 and z1z2 respectively.

(2) G\{f1, f2, f3} is not planar.

For |E(G)| ≥ 3|V (G)| since G is 6-connected, and so |E(G\{f1, f2, f3})| ≥ 3|V (G)|−3;

and (2) follows.

Let C be the circuit of G formed by the six vertices z1, x2, z3, x1, z2, x3 in that order.

Let

H = G|(X ∪ Z)\({f1, f2, f3} ∪ E(C)).

From (2), we may assume by exchanging X and Y that H cannot be drawn in a disc

with V (C) on the boundary in order. There is no (≤ 3)-separation (A,B) of H with

V (C) ⊆ A 6= V (H), and so from [11, theorem (2.4)] (or from (2.4)), we deduce

26



(3) There are disjoint paths P, Q of H with ends p1, p2 and q1, q2 respectively, so that

p1, q1, p2, q2 ∈ V (C) and occur in C in that order, and no other vertices of P or Q lie in C.

(The requirement that “no other vertices of P or Q lie in C” is satisfied by choosing

P and Q with P ∪Q minimal.) Next, we claim

(4) If P, Q can be chosen with {p1, p2} ∩ {x1, x2, x3} 6= ∅ and {q1, q2} ∩ {x1, x2, x3} 6= ∅

then G has a K6-minor.

For if so, we may assume that p1 = x1 and q1 = x2. Then p2 6= z2, z3, and so

p2 ∈ {z1, x3}, and similarly q2 ∈ {z2, x3}. Choose disjoint fragments A,B of G|X with

V (P ) − Z ⊆ A and V (Q) − Z ⊆ B, with A ∪ B maximal. Since X is a fragment by (1),

it follows that AB are adjacent, and so by (1) again,

{{z1}, {z2}, {z3}, A, B, Y }

is a 6-cluster in G as required.

From (4), we may therefore assume that p1 = z1, p2 = z2, q1 = x3, and q2 ∈ {x1, z3, x2}.

(5) There are two disjoint paths of H\{z1, z2} from {x1, z3, x2} to V (P ) ∪ {x3}.

For if not, there is a (≤ 3)-separation (A,B) of H with Z ∪ {x1, x2} ⊆ A and V (P ) ∪

{x3} ⊆ B. Then (A ∪ Y ∪ {x3}, B) is a (≤ 4)-separation of G, and B 6= V (G), and

so A ∪ Y ∪ {x3} = V (G) since G is 6-connected; that is, V (H) = A ∪ {x3}. Since

V (P ) ⊆ B − {x3} ⊆ A ∩B and |V (P )| ≥ 3 ≥ |A ∩B| it follows that V (P ) = A ∩B, and

so V (Q) ∩ A ∩ B = ∅. Yet Q has one end in A and the other in B, a contradiction. The

claim follows.
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From (5) and the existence of Q, we deduce that there are two disjoint paths of

H\{z1, z2} from {x1, z3, x2} to V (P ) ∪ {x3}, both with no internal vertex in P , and one

ending at x3, which we may as well choose Q to be. In other words, we may assume that

there is a path R of H from {x1, z3, x2} to some r ∈ V (P ) − {z1, z2}, with no vertex in

P except r, with only one vertex in {x1, z3, x2}, and with no vertex in Q. If R has x1 or

x2 as one end then we may choose P,Q to satisfy (4). Thus we may assume that R has

ends z3, r; and Q has ends x1, x3, from the symmetry between x1 and x2.

(6) We may assume that there is a path S of H from x2 to some s ∈ V (Q) − {x1, x3}

with no vertex in Q except s, and disjoint from P ∪ R.

For let D be the component of G\V (C) containing r. Since G is 6-connected, every

vertex of C has a neighbour in V (D), and so there is a path of H from x2 to r and hence

to V (P ∪Q ∪ R) − V (C) with no vertex in C except x2. Let S be a minimal such path,

with ends x2, s say. Then s ∈ V (P ∪ Q ∪ R) − V (C), and no vertex of S except s is in

V (P ∪Q∪R). If s ∈ V (P ∪R) then P and Q can be chosen as in (4). We may therefore

assume that s ∈ V (Q). This proves (6).

Let B be the component of H\V (C ∪ Q ∪ S) which contains r. The only vertices of

G not in B which have a neighbour in B are in V (C)∪ V (Q∪ S), and there are ≥ 6 such

vertices since G is 6-connected. Since

|V (C) − V (Q ∪ S)| = 3

at least three of them are in Q∪S. We may therefore assume from the symmetry between

x1, x2 and x3, that there are two vertices u, v in Q with a neighbour in B, and v lies in

the component of Q\s containing x3, and u lies in Q between v and x1 (possibly u = x1).
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Let A be the component of Q\v containing u, s and x1. Then by (1),

{{z1}, {z2}, {z3}, V (B), V (A ∪ S), (V (Q) − V (A)) ∪ Y }

is a 6-cluster in G, and so G has a K6-minor, as required.

Secondly, we need Mader’s “H-Wege” theorem [7], the following. We say S ⊆ V (G) is

stable if no edge has both ends in S.

(4.2) Let G be a graph, let S ⊆ V (G) be stable, and let k ≥ 0 be an integer. Then

exactly one of the following holds:

(i) there are k paths of G, each with distinct ends both in S, such that each v ∈

V (G) − S is in at most one of the paths

(ii) there exist W ⊆ V (G)− S and a partition Y1, ..., Yn of V (G)− (S ∪W ), and

for 1 ≤ i ≤ n a subset Xi ⊆ Yi, such that

(a) |W | +
∑

1≤i≤nb
1
2
|Xi|c < k,

(b) no vertex in Yi −Xi has a neighbour in V (G) − (W ∪ Yi)

(c) every path of G\W with distinct ends both in S has an edge with

both ends in Yi for some i.

Let L1, ..., Lt be subsets of V (G), where G is a graph. A path P of G with ends u, v is

good if there exist distinct i, j with 1 ≤ i, j ≤ t such that u ∈ Li and v ∈ Lj. From (4.2)

we deduce:

(4.3) Let G be a graph, let L1, ..., Lt be subsets of V (G), and let k ≥ 0 be an integer.

Then exactly one of the following holds:

(i) there are k good paths of G, mutually vertex-disjoint
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(ii) there exists W ⊆ V (G) and a partition Y1, ..., Yn of V (G) −W , and for 1 ≤

i ≤ n a subset Xi ⊆ Yi, such that

(a) |W | +
∑

1≤i≤nb
1
2
|Xi|c < k

(b) for 1 ≤ i ≤ n, no vertex in Yi −Xi has a neighbour in

V (G) − (W ∪ Yi), and Yi ∩ Lj ⊆ Xi for 1 ≤ j ≤ t

(c) every good path P in G with V (P ) ∩W = ∅ has an edge with both

ends in Yi for some i.

Proof: For 1 ≤ i ≤ t let si be a new vertex, and add s1, ..., st to G, making si adjacent to

all vertices in Li (1 ≤ i ≤ t). Let S = {s1, ..., st}, and let the graph we construct be G′.

Then (4.3) follows by (4.2) applied to G′, S.

We use (4.3) to prove the following.

(4.4) Let G be a simple, 6-connected non-apex graph with no K6-minor. Then there

do not exist three 4-cliques L1, L2, L3 of G such that |Li ∩ Lj| ≤ 2 (1 ≤ i < j ≤ 3).

Proof: Suppose that such L1, L2, L3 exist, and choose them with |L1 ∪ L2 ∪ L3| mini-

mum. By (2.7), |Li ∩ Lj| ≤ 1 for 1 ≤ i < j ≤ 3, and by (3.7) L1 ∩ L2 ∩ L3 = ∅. Define

“good” as before.

(1) There do not exist 6 mutually disjoint good paths in G.

For suppose such paths exist, P1, ..., P6 say. For 1 ≤ i < i′ ≤ 6, V (Pi) meets ≥ 2 of

L1, L2, L3, and so does V (Pi′), and so there exists j with 1 ≤ j ≤ 3 such that V (Pi)∩Lj 6=

∅ 6= V (Pi′) ∩ Lj. Consequently, a vertex of Pi is adjacent to a vertex of Pi′, since G|Lj is

complete. Hence {V (P1), ..., V (P6)} is a 6-cluster in G, a contradiction.
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From (4.3) we deduce

(2) There exists W ⊆ V (G) and a partition Y1, ..., Yn of V (G) −W (we permit Yi = ∅),

and for 1 ≤ i ≤ n a subset Xi ⊆ Yi, such that

(a) |W | +
∑

1≤i≤nb
1
2
|Xi|c ≤ 5

(b) for 1 ≤ i ≤ n, no vertex in Yi −Xi has a neighbour in V (G) − (W ∪ Yi), and

Yi ∩ (L1 ∪ L2 ∪ L3) ⊆ Xi

(c) every good path disjoint from W has an edge with both ends in Yi for some i.

Choose W and Y1, ..., Yn, X1, ..., Xn as in (2) with W maximal. We may assume that

Yi 6= ∅ for each i since otherwise Yi may be omitted.

Define M = (L1 ∩ L2) ∪ (L2 ∩ L3) ∪ (L3 ∩ L1). Then |M | ≤ 3, from the hypothesis. If

v ∈M , then v forms a 1-vertex good path, and so v ∈ W by (2)(c). Consequently,

(3) M ⊆ W .

We claim:

(4) n ≥ 2.

For L1 ∪L2 ∪L3 ⊆ W ∪X1 ∪ ...∪Xn and |L1 ∪L2 ∪L3| = 12− |M | ≥ 9, and |W | ≤ 5

by (2)(a). Thus, n ≥ 1. Suppose that n = 1. Then

|W | + b
1

2
|X1|c ≤ 5,
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but

|W | + |X1| ≥ |L1 ∪ L2 ∪ L3| = 12 − |M | ≥ 12 − |W |,

by (3), and so

10 ≥ 2(|W |+ b
1

2
|X1|c) ≥ 2|W | + |X1| − 1 ≥ 11,

a contradiction. Thus n ≥ 2.

(5) For 1 ≤ i ≤ n, |Xi| is odd.

For suppose that |X1| is even, say. If X1 6= ∅, let v ∈ X1, let W ′ = W ∪ {v}, X ′
1 =

X1−{v}, Y ′
1 = Y1−{v}, and X ′

i = Xi, Y
′
i = Yi for 2 ≤ i ≤ n; then W ′, X ′

1, ..., X
′
n, Y

′
1 , ..., Y

′
n

satisfy (2), contrary to the maximality ofW . Hence X1 = ∅, and so (Y1∪W,Y2∪...∪Yn∪W )

is a separation of G. But n ≥ 2 by (4), and Y1, Y2 6= ∅, and so Y1 ∪ W 6= V (G) and

Y2 ∪ ... ∪ Yn ∪W 6= V (G). Since G is 6-connected it follows that |W | ≥ 6, contrary to

(2)(a). This proves (5).

For 1 ≤ i ≤ 3, let Zi be the union of the vertex sets of all paths P with V (P )∩W = ∅

such that P has no edge with both ends in Yj for 1 ≤ j ≤ n, and V (P ) ∩ Li 6= ∅.

(6) For 1 ≤ i ≤ 3, Li −W ⊆ Zi ⊆ V (G) −W , and Z1, Z2, Z3 are mutually disjoint.

The first claim is immediate, and the second follows from (2)(c).

(7) For 1 ≤ i ≤ 3, Zi ⊆ X1 ∪ ... ∪Xn.

For suppose that v ∈ Zi ∩ (Yj − Xj) for some j with 1 ≤ j ≤ n. Let P be a path

of G\W from v to Li such that for 1 ≤ j ≤ n, no edge of P has both ends in Yj. Since
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V (P ) 6= {v} (because v 6∈ Li), there is an edge e of P incident with v. By (2)(b), both

ends of e are in Yj, contrary to the choice of P . The claim follows.

(8) For 1 ≤ i, i′ ≤ 3 with i 6= i′, every path of G\W from Zi to Zi′ has ≥ 2 ver-

tices in Xj for some j.

Let Q be a path of G\W from v ∈ Z1 to w ∈ Z2, say. Let P be a path of G\W from

u ∈ L1 to v, and let R be a path of G\W from w to x ∈ L2, such that P and R both have

no edge with both ends in Yj for any j (1 ≤ j ≤ n). Let S ⊆ P ∪Q∪R be a path from u

to x. Then S is good, and so there exists e ∈ E(S) with both ends in Yj for some j. By

the choice of P and R, e 6∈ E(P ) ∪ E(R), and so e ∈ E(Q). Hence Q has ≥ 2 vertices in

Yj. But Q has ends v, w, and v ∈ Z1 ⊆ X1 ∪ ... ∪Xn and w ∈ Z2 ⊆ X1 ∪ ... ∪Xn by (7).

Thus by (2)(b), Q has at least two vertices in Xj, as required.

(9) For 1 ≤ i ≤ 3, |Zi| ≤ 5 − |W |.

For suppose that |Z1| ≥ 6 − |W |, say. Now |L2 ∪ L3| ≥ 7, and so

|L2 ∪ L3 −W | ≥ 7 − |W | ≥ 6 − |W |.

But G\W is (6 − |W |)-connected, and so there are 6 − |W | paths Pi (1 ≤ i ≤ 6 − |W |)

of G\W from Z1 to L2 ∪ L3 −W , mutually disjoint. By (8) each Pi has two vertices in

some Xj, and so
∑

1≤j≤n

b
1

2
|Xj|c ≥ 6 − |W |,

contrary to (2)(a).

(10) |W | ≤ 3.
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For by (9) and (6),

12 =
∑

1≤i≤3

|Li| ≤
∑

1≤i≤3

(|Zi| + |Li ∩W |) ≤ 3(5 − |W |) + 2|W | = 15 − |W |.

The claim follows.

Let Z0 = V (G) − (W ∪ Z1 ∪ Z2 ∪ Z3). Then Z0, Z1, Z2, Z3,W is a partition of V (G).

(11) If u, v ∈ V (G) − W are adjacent, then either u, v ∈ Zi for some i (0 ≤ i ≤ 3)

or u, v ∈ Yj for some j (1 ≤ j ≤ n).

For suppose that u ∈ Z1 ∩ Y1 and v ∈ Y2, say, and e ∈ E(G) has ends u, v. Then e

does not have both ends in Yj for 1 ≤ j ≤ n, and so v ∈ Z1 (since u ∈ Z1) by definition

of Z1, as required.

(12) For 1 ≤ j ≤ n, if |W ∪Xj| ≤ 5 then Xj = Yj.

For suppose that Xj 6= Yj. Since (W ∪ Yj, V (G)− (Yj −Xj)) is a separation of G and

V (G) − (Yj −Xj) 6= V (G) (since Xj 6= Yj) and W ∪ Yj 6= V (G) (since n ≥ 2 by (4)) and

G is 6-connected, it follows that |W ∪Xj| ≥ 6, as required.

(13) |Xj| ≥ 3 for 1 ≤ j ≤ n.

Reorder the indices so that |Xj| ≥ 3 for 1 ≤ j ≤ m and |Xj| = 1 for m < j ≤ n.

By (10) and (12), Xj = Yj for m < j ≤ n. Let U = Xm+1 ∪ ... ∪ Xn, and suppose that

0 ≤ i ≤ 3 and Zi∩U 6= ∅. Let N be the set of vertices in V (G)−(Zi∩U) with a neighbour

in Zi ∩ U . If v ∈ N − (W ∪ Zi), let v be adjacent to u ∈ Zi ∩ U ; by (11) there exists j

with 1 ≤ j ≤ n such that u, v ∈ Yj, and so |Yj| ≥ 2 and hence j ≤ m, contradicting that
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u ∈ U . There is therefore no such v, and so N ⊆ W ∪ Zi. Now for all i′ with 1 ≤ i′ ≤ 3,

∅ 6= V (Li′) −W ⊆ Zi′

by (6) and (10); and consequently W ∪Zi 6= V (G). Since G is 6-connected, it follows that

|N | ≥ 6, and so i = 0 by (9). In particular, N and Z1 ∪ Z2 ∪ Z3 are disjoint subsets of

W ∪X1 ∪ ... ∪Xm. Consequently

|N | +
∑

1≤i≤3

|Zi| ≤ |W | +
∑

1≤j≤m

|Xj|.

But |N | ≥ 6,
∑

1≤i≤3

|Zi| ≥
∑

1≤i≤3

|Li −W | ≥ 12 − 2|W |,

and by (2),
∑

1≤j≤m

|Xj| ≤ 3
∑

1≤j≤m

b
1

2
|Xj|c ≤ 3(5 − |W |);

and so

6 + (12 − 2|W |) ≤ |W | + (15 − 3|W |),

a contradiction. This proves (13).

(14) |X1 ∪ ... ∪ Xn − (L1 ∪ L2 ∪ L3 − W )| ≤ 3 + |M | − 2|W |, with strict inequality if

|Xj| > 3 for some j.

For let s = |X1 ∪ ... ∪Xn− (L1 ∪ L2 ∪ L3 −W )|. Then

|X1 ∪ ... ∪Xn| ≥ s+ 12 − |M | − |W |.

But |Xj| ≤ 3b1
2
|Xj|c for 1 ≤ j ≤ n, and so

3
∑

1≤j≤n

b
1

2
|Xj|c ≥

∑

1≤j≤n

|Xj| ≥ s+ 12 − |M | − |W |,

with strict inequality if |Xj| > 3 for some j. From (2)(a), we deduce that

3(5 − |W |) ≥ s+ 12 − |M | − |W |,

35



that is, s ≤ 3 + |M | − 2|W |; and again with strict inequality if |Xj| > 3 for some j, as

required.

(15) For 1 ≤ j ≤ n and 1 ≤ i ≤ 3, |Zi ∩Xj| <
1
2
|Xj|.

For suppose that |Z1 ∩ X1| ≥
1
2
|X1|. Since X1 6= ∅ by (5), there exists v ∈ Z1 ∩ X1.

Since |L2 ∪L3 −W | ≥ |L2 ∪L3|− |W | ≥ 7− |W |, and G\W is (6− |W |)-connected, there

are 6 − |W | paths of G\W between Z1 and L2 ∪ L3 −W , disjoint except possibly for v.

Choose them with no internal vertex in Z1. Each has two vertices in Xj for some j, by

(8); but at most
∑

2≤j≤n

b
1

2
|Xj|c ≤ 5 − |W | − b

1

2
|X1|c

of them have two vertices in Xj for some j 6= 1. Thus at least 1 + b 1
2
|X1|c of them have

two vertices in X1. But each has only one vertex in Z1, and so has a vertex in X1 which

does not belong to Z1; and all these vertices are different. Consequently,

|X1 − Z1| ≥ 1 + b
1

2
|X1|c

and the result follows.

(16) |W | ≤ 2.

For suppose that |W | ≥ 3. By (14), 3 + |M | − 2|W | ≥ 0 and by (3), |W | ≥ |M |; and

so W = M , and |W | = 3. By (13) and (14), |Xj| = 3 for all j, and

X1 ∪ ... ∪Xn = L1 ∪ L2 ∪ L3 −W.

But |L1 ∪ L2 ∪ L3 −W | = 6 since |W | = 3 and W = M , and so n = 2. For i = 1, 2, 3,

by (15) and (7), |Zi ∩X1| = 1 and |Zi ∩X2| = 1, and so |Zi| = 2. Since Li −W ⊆ Zi and
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|L1 ∪ L2 ∪ L3 −W | = 6 it follows that Zi = Li −W for 1 ≤ i ≤ 3. This contradicts (4.1)

(using (11)).

(17) For 1 ≤ j ≤ n, if |Xj| = 3 then Yj = Xj.

This follows from (12) since |W ∪Xj| ≤ 5 by (16).

(18) For 1 ≤ j ≤ n, if |Xj| = 3 then Xj ∩ Z0 = ∅.

For suppose that |X1| = 3, say, and v ∈ X1 ∩ Z0. By (17), Y1 = X1, and so by (11),

all neighbours of v belong to X1 ∪W ∪ (Z0 ∩ (X2 ∪ ... ∪Xn)). But by (14),

|Z0 ∩ (X1 ∪ ... ∪Xn)| ≤ |X1 ∪ ... ∪Xn − (L1 ∪ L2 ∪ L3 −W )| ≤ 3 + |M | − 2|W |,

and so v has at most

3 + |M | − 2|W | − |Z0 ∩X1|

neighbours not in X1 ∪ W ; and hence it has ≤ 5 + |M | − |W | − |Z0 ∩ X1| neighbours

altogether. But |Z0 ∩X1| ≥ 0 and |M | ≤ |W |, and so v has valency ≤ 5, a contradiction.

This proves (18).

(19) |Xj| ≥ 5 for 1 ≤ j ≤ n.

For suppose |X1| = 3 say. By (18), X1 ∩ Z0 = ∅, and so by (15), |Zi ∩ X1| = 1 for

1 ≤ i ≤ 3. By (17), Y1 = X1. Let X1 = {v1, v2, v3} where vi ∈ Zi (1 ≤ i ≤ 3). Let

1 ≤ i ≤ 3. By (11) every neighbour of vi is in W ∪X1 ∪ Zi; and by (9) |Zi| ≤ 5 − |W |.

Consequently,

|W ∪X1 ∪ Zi| ≤ |W | + |Zi| + |X1 − Zi| ≤ 7.
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Since vi has valency ≥ 6, it follows that vi is adjacent to every vertex in W ∪ X1 ∪ Zi

except vi. Suppose for a contradiction that w ∈ W , and let L0 = X1 ∪ {w}; then L0 is a

4-clique. Now L0 6= L1, L2, L3 since L0−W 6⊆ Z1, Z2, Z3, and so w belongs to at most two

of L0, L1, L2, L3, by (3.7). Consequently, w 6∈ M , and so M = ∅. From the minimality of

L1 ∪ L2 ∪ L3, it follows that L0 ∩ Li = ∅ for 1 ≤ i ≤ 3, and so X1 ∩ Li = ∅ for 1 ≤ i ≤ 3,

and w 6∈ L1 ∪ L2 ∪ L3; indeed, W ∩ (L1 ∪ L2 ∪ L3) = ∅. Thus

Σ|Xi| ≥ |X1| + |L1 ∪ L2 ∪ L3| = 15,

and so Σb1
2
|Xi|c ≥ 5; yet W 6= ∅, contrary to (2)(a). It follows that W = ∅. Now for

1 ≤ i ≤ 3, vi is adjacent to every other vertex of Zi ∪X1, as we saw; and |Zi| = 5. Hence

|Z1 ∪ Z2 ∪ Z3| = 15. But by (14),

|X1 ∪ ... ∪Xn| ≤ 3 + |L1 ∪ L2 ∪ L3| = 15

and so we have equality throughout. In particular |X1 ∪ ...∪Xn| = 15, and each |Xi| = 3

since we have equality in (14). Hence n = 5. Since L1 ⊆ Z1 and |L1| = 4, we may assume

that v1 6∈ L1, by the symmetry between X1, ..., X5; but then G|(L1 ∪ {v1}) is isomorphic

to K5, contrary to (2.8). This proves (19).

(20) n = 2.

For n ≥ 2 by (4). But by (2)(a), Σb 1
2
|Xi|c < 6, and so n ≤ 2 by (19).

(21) X1 ∪X2 = L1 ∪ L2 ∪ L3 −W , and W = M , and |W | ≤ 1.

For let s = |X1 ∪X2 − (L1 ∪ L2 ∪ L3 −W )|. As in (14),

|X1 ∪X2| ≥ s+ 12 − |M | − |W |.
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By (19), for j = 1, 2,

|Xj| ≤
5

2
b
1

2
|Xj|c,

and so from (2)(a),

5

2
(5 − |W |) ≥

5

2
b
1

2
|X1|c +

5

2
b
1

2
|X2|c ≥ |X1 ∪X2| ≥ s+ 12 − |M | − |W |,

that is,

2s ≤ 1 − 2(|W | − |M |) − |W |.

Hence s = 0, and |W | = |M | ≤ 1, as required.

(22) W = ∅.

For, if W 6= ∅, then by (21), |W | = 1, |M | = 1, and hence |X1∪X2| = 10 by (21) again.

By (19), |X1| = |X2| = 5. Let Xi = {ai, bi, ci, di, ei} (i = 1, 2), and W = {w}. Then by

(15), we may assume that L1 = {a1, b1, a2, w}, L2 = {c1, b2, c2, w}, L3 = {d1, e1, d2, e2}.

Since G is 6-connected, G\{w, a2, c1, d1, e1} is connected; and since Y1∪Y2∪{w} = V (G),

there exists u1 ∈ Y1−{c1, d1, e1} and u2 ∈ Y2−{a2} so that u1u2 are adjacent. By (2)(b),

u1 ∈ X1 and u2 ∈ X2; hence u1 ∈ {a1, b1}, and u2 ∈ {b2, c2, d2, e2}. But this contradicts

(11). Hence W = ∅, as required.

By (21) and (22), |X1 ∪X2| = 12, and so we may assume that |X1| = 5 and |X2| = 7.

By (12) Y1 = X1. Let X1 = {a1, b1, c1, d1, e1}, X2 = {a2, b2, c2, d2, e2, f2, g2}. By (15) we

may assume that L1 = {a1, b1, a2, b2}, L2 = {c1, d1, c2, d2}, L3 = {e1, e2, f2, g2}. Now by

(7), Z1 = {a1, b1, a2, b2}, and so |Z1 ∪X1| = 7. Hence by (11), a1, b1 are both adjacent to

every other vertex in X1, and similarly so are c1, d1. But then G|X1 is isomorphic to K5,

contrary to (2.8).
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Let us say two 4-cliques L1, L2 in G are close if |L1 ∩ L2| ≥ 3. Then we have

(4.5) Let G be 6-connected, simple, and non-apex, with no K6-minor. Then

(i) closeness is an equivalence relation on 4-cliques

(ii) each equivalence class has ≤ 2 members

(iii) there are ≤ 2 equivalence classes

(iv) there are ≤ 10 vertices in 4-cliques.

Proof: (i) follows from (2.7), and (ii) from (3.7), and (iii) from (4.4). To deduce (iv), we

see that from (ii), each equivalence class has ≤ 2 members and the union of its members

has cardinality ≤ 5; and so (iv) follows from (iii).

5. VERTICES OF VALENCY 6

So far, our results have been about non-apex 6-connected graphs with no K6-minor.

However, now we need to use some further properties of Hadwiger graphs. We shall need

the following throughout the paper.

(5.1) Let G be a Hadwiger graph, and let X1, ..., Xk be disjoint fragments of G. Let

Z ⊆ X1 ∪ ... ∪ Xk with Z 6= ∅ such that Xi − Z is stable for 1 ≤ i ≤ k. Then there is

a 5-colouring φ of G\Z such that for 1 ≤ i ≤ k, φ(x) = φ(y) for all x, y ∈ Xi − Z, and

such that for 1 ≤ i < j ≤ k, if XiXj are adjacent then φ(x) 6= φ(y) for x ∈ Xi − Z and

y ∈ Xj − Z.

Proof: We may assume that |Xi| ≥ 2 for some i, since otherwise the result is clear.

Let H be obtained from G by contracting all edges of G|Xi for 1 ≤ i ≤ k. Since H is a
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loopless minor ofG and |V (H)| < |V (G)|, there is a 5-colouring ψ ofH. For v ∈ V (G)−Z,

let u be the corresponding vertex of H, and define φ(v) = ψ(u); then φ satisfies (5.1).

The first application of (5.1) is the following.

(5.2) Let G be a Hadwiger graph, let v ∈ V (G), and let N be the set of neighbours

of v. Then G|N has no stable set of cardinality |N | − 3.

Proof: Suppose that A ⊆ N is stable and |A| = |N | − 3, and choose a ∈ A. By (5.1)

with X1 = A ∪ {v}, there is a 5-colouring φ of G\v such that φ(u) = φ(a) for all u ∈ A.

Choose α ∈ {1, ..., 5} with α 6= φ(a), φ(b), φ(c), φ(d), where N − A = {b, c, d}. Then

setting φ(v) = α defines a 5-colouring of G, a contradiction.

Figure 1: a diamond.

We call graphs isomorphic to the six-vertex graph shown in figure 1 diamonds. The next

result was also proved by J. Mayer [9, 10].

(5.3) Let v be a 6-valent vertex of a non-apex Hadwiger graph G, and let N be the set of

neighbours of v. Then G|N has exactly two triangles, and either G|N is a diamond, or

the two triangles are disjoint. In particular v belongs to exactly two 4-cliques, and every

edge incident with v is in ≥ 2 triangles of G.

Proof: Let N = {v1, ..., v6}. By (2.7) each edge of G is in ≤ 3 triangles, and so G|N

has maximum valency ≤ 3. By (5.2), G|N has no stable set of cardinality 3, and hence

it has a triangle by Ramsey’s theorem, with vertex set {v1, v2, v3} say. Suppose first that

some two of v4, v5, v6 are not adjacent, say v4v5. Since G|N has no 4-clique by (2.8) and
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no stable set of cardinality 3, we may assume that v1v4, v2v4 and v3v5 are adjacent. Since

G|N has maximum valency ≤ 3, v1v5, v1v6, v2v5, v2v6, v3v4 and v3v6 are non-adjacent.

Hence v4v6 and v5v6 are adjacent and G|N is a diamond. We may assume therefore that

v4v5, v5v6 and v4v6 are all adjacent. Since G|N has maximum valency ≤ 3 it has exactly

two triangles and again the result is true.

(5.4) Let G be a non-apex Hadwiger graph, and let u, v ∈ V (G) be adjacent, with the

edge uv in ≥ 3 triangles. If u has valency 6 then v has valency ≥ 8.

Proof: By (2.7), uv is in exactly three triangles; let the neighbours of u be x1, x2, x3, v, u1, u2

where x1, x2, x3 are adjacent to v. Since G has no K5-subgraph by (2.8), we may assume

that x1x2 are non-adjacent.

By (5.2), {x1, x2, x3} is not stable, and so x3 is adjacent to x1 or to x2; and so we may

assume x2x3 are adjacent. Since ux3 is in ≤ 3 triangles by (2.7), not both u1 and u2 are

adjacent to x3, and so we may assume that u1x3 are non-adjacent. We suppose that v has

valency ≤ 7. Let N be the set of two or three neighbours of v different from u, x1, x2, x3.

(1) |N | = 3 and each y ∈ N is adjacent to one of x1, x2.

For otherwise we may choose A ⊆ {x1, x2} ∪ N , stable, with x1, x2 ∈ A and with

|N − A| ≤ 2. By (5.1) with X1 = A ∪ {v}, X2 = {u1, u, x3} and Z = {u, v}, there

is a 5-colouring φ of G\{u, v} such that φ(u1) = φ(x3) and φ(y) = φ(x1) for all y ∈ A.

Choose α1 ∈ {1, ..., 5} with α1 6= φ(x1), φ(x3), and φ(y) for all y ∈ N − A; and choose

α2 ∈ {1, ..., 5} with α2 6= α1, φ(x1), φ(x3), φ(u2). Setting φ(u) = α2 and φ(v) = α1 defines

a 5-colouring of G, a contradiction. This proves (1).
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Let N = {v1, v2, v3}. Since x2x3 are adjacent, and vx2 is in ≤ 3 triangles, it follows

that at most one of v1, v2, v3 is adjacent to x2; and since vx1 is in ≤ 3 triangles, at most

two of v1, v2, v3 are adjacent to x1. By (1) we may therefore assume that v1x1, v2x1, v3x2

are adjacent, and hence v1x2, v2x2, v3x1 are non-adjacent. Since vx1 is in ≤ 3 triangles,

x1x3 are non-adjacent. By (1) with x2 and x3 exchanged, v3x3 are adjacent, and v1x3, v2x3

are therefore non-adjacent since vx3 is in ≤ 3 triangles.

Since {u, v, x2, x3} and {v, x2, x3, v3} are 4-cliques, it follows that {v, x1, v1, v2} is not

a 4-clique, because v is in ≤ 2 4-cliques by (3.7). Hence v1v2 are not adjacent, and

so {v1, v2, x2} is stable. By (5.1) with X1 = {v1, v2, x2, v} and X2 = {x1, x3, u}, there

is a 5-colouring φ of G\{u, v} such that φ(v1) = φ(v2) = φ(x2) and φ(x1) = φ(x3).

Choose α1 ∈ {1, ..., 5} with α1 6= φ(x1), φ(x2), φ(u1), φ(u2), and choose α2 ∈ {1, ..., 5}

with α2 6= α1, φ(x1), φ(x2), φ(v3); then setting φ(u) = α1 and φ(v) = α2 defines a 5-

colouring of G, a contradiction.

(5.5) Let G be a non-apex Hadwiger graph; then every 4-clique of G contains at most one

6-valent vertex.

Proof: Let {u, v, x1, x2} be a 4-clique, and suppose that u, v are both 6-valent. By (5.4)

uv is in exactly 2 triangles. Let the neighbours of u be v, x1, x2, u1, u2, u3, and let the

neighbours of v be u, x1, x2, v1, v2, v3 where u1, u2, u3 6= v1, v2, v3. By (5.2), {u1, u2, v} is

not stable, and so u1u2 are adjacent, and similarly u1u3 and u2u3 are adjacent. Hence

{u, u1, u2, u3} is a 4-clique, and similarly so is {v, v1, v2, v3}, and so is {u, v, x1, x2}, con-

trary to (4.4).

We deduce
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(5.6) Let G be a non-apex Hadwiger graph. Then at most two vertices of G have va-

lency 6, and all others have valency ≥ 7.

Proof: By (5.3) every 6-valent vertex belongs to two 4-cliques, and by (5.5) every 4-

clique contains at most one 6-valent vertex. From (4.5) there are at most four 4-cliques,

and the result follows.

This concludes step 1 of the proof sketched in the introduction.

6. SEPARATIONS OF ORDER 6

The second step in the main proof is to show that every non-apex Hadwiger graph

is 7-connected except for its (≤ 2) 6-valent vertices. In this section, we begin to inves-

tigate possible 6-separations. First, we need a trivial strengthening of a result of Mader [8].

(6.1) If G is a simple graph with |V (G)| ≥ 4 and with no K6-minor, then |E(G)| ≤

4|V (G)| − 10. Moreover, if equality holds and |V (G)| ≥ 5 then every edge of G is in ≥ 3

triangles.

Proof: The inequality was proved by Mader [8]. Suppose that equality holds and |V (G)| ≥

5, and let e ∈ E(G) be in T triangles. Form H from G by contracting e and deleting the

T parallel edges that result; then

|E(H)| = |E(G)| − T − 1 = (4|V (G)| − 10) − T − 1.

From Mader’s inequality applied to H,

|E(H)| ≤ 4|V (H)| − 10 = 4|V (G)| − 14,
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and so T ≥ 3, as required.

The following result is mainly for reassurance.

(6.2) Every non-apex Hadwiger graph has ≥ 18 vertices.

Proof: Let G be a non-apex Hadwiger graph with n vertices. By (5.6), 2|E(G)| ≥ 7n− 2;

but by (6.1), |E(G)| ≤ 4n− 10. Hence 2(4n− 10) ≥ 7n− 2, and so n ≥ 18.

(6.3) Let (A,B) be a 6-separation of a non-apex Hadwiger graph G, with |A − B| ≥ 2

and |B − A| ≥ 1. Then |A− B| ≥ 5.

Proof: Suppose first that |A − B| = 2, A − B = {a1, a2} say. Since a1, a2 have va-

lency ≥ 6 there are ≥ 4 vertices in A ∩ B adjacent to both a1 and a2. By (2.7), a1a2

are non-adjacent; and so a1 and a2 are 6-valent and both are adjacent to every vertex

in A ∩ B. By (5.3), G|A ∩ B has a triangle, with vertex set {v1, v2, v3} say. Let C be a

component of G|(B −A). Since G is 6-connected, every vertex in A ∩B has a neighbour

in C. Let v4, v5 ∈ A ∩B − {v1, v2, v3} be distinct. Then

{{v1}, {v2}, {v3}, {a1, v4}, {a2, v5}, V (C)}

is a 6-cluster in G, a contradiction.

Consequently, |A−B| ≥ 3, and so by (5.6) there is a vertex a1 ∈ A−B with valency

≥ 7. It therefore has a neighbour a2 in A−B. Since A−{a1, a2} contains every neighbour

of a1 except a2, and every neighbour of a2 except a1, it follows that the edge a1a2 is in

at least δ(a1) + δ(a2) − |A| triangles, where δ(ai) denotes the valency of ai. By (2.7),

3 + |A| ≥ δ(a1) + δ(a2), and if equality holds, then by (5.4), δ(a1) + δ(a2) ≥ 14. Since
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in any case, δ(a1) + δ(a2) ≥ 13, we deduce that 3 + |A| ≥ 14, that is, |A − B| ≥ 5, as

required.

If (A,B) is a separation of G, we define η(A,B) to be the maximum h such that there

exist |A ∩B| disjoint fragments Xi (1 ≤ i ≤ |A ∩B|) of G|B, each containing one vertex

of A ∩ B, and there are h pairs i, j with 1 ≤ i < j ≤ |A ∩ B| and XiXj adjacent.

(6.4) Let (A,B) be a separation of a simple graph G of order k ≥ 4, let v ∈ B−A, and let

there be k paths of G|B between v and A∩B, mutually disjoint except for v. Suppose that

there is no separation (C,D) of G|B with C ∩D = {v} and |C ∩ A|, |D ∩ A| ≥ 2. Then

η(A,B) ≥ 2k−3; and if there is a circuit in G|A∩B of length < k, then η(A,B) ≥ 2k−2.

Proof: Let P be a set of k paths of G|B from v to A ∩ B, mutually disjoint except

for v. Since k ≥ 4, we may partition P into two sets P1,P2 both of cardinality ≥ 2; and

from the non-existence of (C,D) as in the theorem, there is a path of G|(B − {v}) from

some member of P1 to some member of P2. Consequently, there exists P1 ∈ P such that

there is a path of G|(B − {v}) from V (P1) to

⋃

(V (P ) : P ∈ P − {P1}) − {v}.

Define X1 = V (P1)−{v}. We define X2, ..., Xk−1 and P2, ..., Pk−1 ∈ P inductively, as fol-

lows. Suppose that 2 ≤ j ≤ k − 1, and we have defined fragments X1, ..., Xj−1 and paths

P1, ..., Pj−1 ∈ P, in such a way that X1, ..., Xj−1 ⊆ B−{v} and are mutually disjoint, and

V (Pi) − {v} ⊆ Xi for 1 ≤ i ≤ j − 1, and for 2 ≤ i ≤ j − 1 some vertex of Xi is adjacent

to a vertex in X1 ∪ ... ∪Xi−1. We shall define Xj, Pj using (1).

(1) There is a path Q of G|(B − {v}) from

⋃

(V (P ) : P ∈ P − {P1, ..., Pj−1}) − {v}
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to X1 ∪ ... ∪Xj−1.

For if not, then j ≥ 3 (from our choice of P1), and there is a separation (C,D) of G|B

with C ∩ D = {v}, X1 ∪ ... ∪ Xj−1 ⊆ C, and V (P ) ⊆ D for all P ∈ P − {P1, ..., Pj−1}.

Since j ≥ 3 it follows that |C ∩ A| ≥ j − 1 ≥ 2; and since j < k it follows that

|D ∩ A| ≥ |P − {P1, ..., Pj−1}| = k − (j − 1) ≥ 2.

But then (C,D) contradicts the hypothesis. This proves (1).

To complete the definition of Xj and Pj, choose Q as in (1) with Q minimal, with ends

a, b, where a ∈ V (Pj) for some Pj ∈ P − {P1, ..., Pj−1} and b ∈ X1 ∪ ... ∪ Xj−1. Define

Xj = V (Pj ∪Q) − {b, v}. This completes the definition of Xj and Pj. We see that Xj is

disjoint from X1, ..., Xj−1, that Xj is a fragment, that V (Pj) − {v} ⊆ Xj, and that some

vertex in Xj is adjacent to a vertex in X1 ∪ ... ∪Xj−1.

Let {Pk} = P−{P1, ..., Pk−1}, and let Xk = V (Pk). Since v ∈ Xk it follows that XiXk

are adjacent for 1 ≤ i ≤ k − 1; and for 2 ≤ j ≤ k − 1 there exists i with 1 ≤ i < j such

that XiXj are adjacent. Consequently, there are ≥ 2k − 3 adjacent pairs altogether, and

so η(A,B) ≥ 2k − 3. This proves the first claim of the theorem.

For the second, suppose that v1, ..., vh ∈ A ∩ B are the vertices of a circuit in order,

where h < k. Choose P as before, and for 1 ≤ i ≤ h let Pi ∈ P have ends v, vi. Then

setting Xi = V (Pi)−{v} for 1 ≤ i ≤ h satisfies the conditions of the inductive definition,

and so we may choose Xh+1, ..., Xk as before. Then, as before, there are ≥ 2k − 3 pairs

i, j with 1 ≤ i < j ≤ k such that XiXj are adjacent, counting only one pair i, j for each

value of j < k. But for j = h, there are two pairs i, j namely 1, j and j − 1, j; and so in

total there are ≥ 2k − 2 pairs.

(6.5) Let (A,B) be a k-separation with k ≥ 6 of a non-apex Hadwiger graph G, and

let Z ⊆ A ∩ B with |Z| = z ≥ 2. Define δ = 0 if some vertex in A − B has valency 6,
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and δ = 1 otherwise. Define ε = 0 if every vertex in Z has ≤ 2 neighbours in A− B and

there are ≤ z vertices in A−B with a neighbour in Z, and ε = 1 otherwise. Then either

(i) some vertex in Z has at most one neighbour in A− B, or

(ii) η(A,B) + z + δ + ε ≤ 4k − 12, or

(iii) there are two 6-valent vertices in A− B both with no neighbour in A− B, or

(iv) let H be the subgraph of G with V (H) = (A − B) ∪ Z and with E(H) =

E(G|V (H))−E(G|Z); then H cannot be drawn in a plane so that every vertex

in Z is incident with the infinite region.

Proof: We assume that (i), (iii) and (iv) are false. Let |A−B| = n. Let there be α edges

of G with both ends in A−B, β edges with one end in A−B and the other in Z, and γ

with one end in A−B and the other in A ∩B − Z. Define ε′ = 0 if some edge of G with

both ends in A− B is in ≤ 2 triangles, and ε′ = 1 otherwise.

(1) 2α + β + γ ≥ 7n + δ + ε′ − 2.

For suppose the inequality is false. Then, if δ(v) denotes the valency of a vertex v, we

have

Σ(δ(v) : v ∈ A− B) = 2α + β + γ ≤ 7n+ δ + ε′ − 3.

Hence some vertex in A − B has valency 6, and so δ = 0. Therefore, from the same

inequality, at least two vertices a1, a2 in A − B have valency 6, and by (5.6) all other

vertices in A−B are 7-valent. Since (iii) is false, we may assume that a1 has a neighbour

a3 ∈ A−B. Then a3 is 6- or 7-valent, and so by (5.4), a1a3 is in ≤ 2 triangles; and hence

ε′ = 0, and the inequality of (1) holds.
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(2) α− η(A,B) ≥ 3n− 4k + δ + 9.

For let X1, ..., Xk be disjoint fragments of G|B each containing one vertex of A ∩ B,

such that XiXj are adjacent for η(A,B) pairs i, j with 1 ≤ i < j ≤ k. Let J be obtained

from G by deleting all vertices in B −X1 ∪ ... ∪Xk, contracting all edges with both ends

in Xi for 1 ≤ i ≤ k, and deleting any parallel edges. Then J is simple, and has n + k

vertices and α + β + γ + η(A,B) edges. Since k ≥ 6, it follows from (6.1) that

α + β + γ + η(A,B) ≤ 4(n+ k) − 10

with equality only if every edge of J is in ≥ 3 triangles. In particular if ε′ = 0 then

equality does not hold, and so

α + β + γ + η(A,B) ≤ 4(n+ k) − 11 + ε′.

Then (2) follows from (1) by subtracting.

(3) α ≤ 3n− z − 3 − ε.

For let H be as in (iv); since (i) and (iv) are false, H can be drawn in the plane so that

every vertex in Z is incident with the infinite region, and every vertex in Z has valency

≥ 2 in H. Let there be z + z′ vertices incident with the infinite region in the drawing of

H. Since Z is stable in H, we may add 2z− 3 new edges to H joining pairs of vertices in

Z so that the result, H ′ say, is still simple and planar. Consequently,

|E(H)| + 2z − 3 = |E(H ′)| ≤ 3(n+ z) − 6,

and so |E(H)| ≤ 3n+ z−3. Also, since every vertex in Z has ≥ 2 neighbours in A−B, it

follows that β ≥ 2z. Suppose that we have equality in both; that is, |E(H)| = 3n+ z− 3
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and β = 2z. It follows that H ′ is a planar triangulation, and so z′ ≤ z; but also, every

vertex in A − B with a neighbour in Z is incident with the infinite region since every

vertex in Z is 2-valent (because β = 2z), and so there are ≤ z ′ ≤ z such vertices. Hence

if we have equality in both inequalities then ε = 0; and so,

(3n + z − 3 − |E(H)|) + (β − 2z) ≥ ε.

Since |E(H)| = α + β this proves (3).

By combining (2) and (3), we deduce that (ii) holds.

(6.6) Let G be a non-apex Hadwiger graph, and let (A,B) be a 6-separation with |A−B| ≥

2 and |B − A| ≥ 2. Let A ∩ B = {v1, ..., v6}, and let H be the subgraph of G with

V (H) = A−{v5, v6} and E(H) = E(G|V (H))−E(G|{v1, ..., v4}). Then there is a cluster

in H traversing {v1, v2, v3, v4}.

Proof: We proceed by induction on |A|.

(1) We may assume that v1, ..., v4 all have valency ≥ 2 in H.

For suppose that for some v ∈ A − B, v1 has no neighbour in A − (B ∪ {v}). Then

(A−{v1}, B∪{v}) is a 6-separation ofG, and |(A−{v1})−(B∪{v})| ≥ 2 since |A−B| ≥ 3

by (6.3). From the inductive hypothesis there is a 4-cluster {X1, X2, X3, X4} of H\v1 with

v ∈ X1 and vi ∈ Xi (i = 2, 3, 4). But then {X1 ∪ {v1}, X2, X3, X4} satisfies the theorem.

This proves (1).

(2) We may assume that there is no trisection (C1, C2, D) of H of order 2 with

|(C1 −D) ∩ {v1, ..., v4}| = |(C2 −D) ∩ {v1, ..., v4}| = 1.
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For suppose that C1, C2, D is such a trisection, with v1 ∈ C1 − D, v2 ∈ C2 − D,

and v3, v4 ∈ D say. Let C1 ∩ C2 ∩ D = {a1, a2}. Since (C1, C2 ∪ D) is a 2-separation

of H, it follows that (C1 ∪ {v5, v6}, C2 ∪ D ∪ B) is a 5-separation of G. Consequently,

C2 ∪D ∪ B = V (G), and similarly C1 ∪D ∪ B = V (G). Hence D = (A− B) ∪ {v3, v4}.

Since v1 ∈ C1 − D and v1 has two neighbours in A − B which therefore belong to C1,

it follows that a1, a2 ∈ A− B, and a1, a2 are both adjacent to v1; and similarly they are

both adjacent to v2. Now (B ∪ {a1, a2}, A− {v1, v2}) is a 6-separation of G, and

|(A− {v1, v2}) − (B ∪ {a1, a2})| ≥ 2

since |A−B| ≥ 4 by (6.3). From the inductive hypothesis, there is a 4-cluster {X1, X2, X3, X4}

of H\{v1, v2} with a1 ∈ X1, a2 ∈ X2, v3 ∈ X3, v4 ∈ X4; but then

{X1 ∪ {v1}, X2 ∪ {v2}, X3, X4}

satisfies the theorem. This proves (2).

(3) There is no (≤ 3)-separation (C, D) of H with v1, ..., v4 ∈ C, |D − C| ≥ 2, and

|{v1, ..., v4} ∩D| ≤ 2.

For if (C,D) is such a separation, then (C ∪ B,D ∪ {v5, v6}) is a (≤ 5)-separation of

G, and yet B ∪ C 6= V (G) since |D − C| ≥ 1, a contradiction. This proves (3).

(4) η(A,B) ≥ 9.

Let us apply (6.4), taking k = 6. Choose v ∈ B − A arbitrarily; then by the 6-

connectivity of G, the k paths of (6.4) exist. We claim there is no separation (C,D) of

G|B with C ∩ D = {v} and |C ∩ A|, |D ∩ A| ≥ 2. For suppose that (C,D) is such a

separation. Then (C ∪ A,D) is a separation of G, of order

|C ∩D| + |A ∩D| = |C ∩D| + 6 − |A ∩ C| ≤ 5
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and so C∪A = V (G); and similarly D∪A = V (G) . Hence B−A = {v}, a contradiction.

Thus there is no such (C,D), and the claim follows from (6.4).

(5) H cannot be drawn in a disc with v1, v2, v3, v4 on the boundary in some order.

For let us apply (6.5), taking k = 6 and Z = {v1, v2, v3, v4}. Certainly (6.5)(i) is false,

by (1), and (6.5)(ii) is false, by (4). Also, (6.5)(iii) is false, for otherwise there would be

a 6-separation (C,D) of G with |C − D| = 2 and |D − C| ≥ 2, contrary to (6.3). Thus

(6.5)(iv) holds, as required.

From (2.6) (applied to H), (2), (3), and (5), we deduce the theorem.

(6.7) Let (A, B) be a 6-separation of a non-apex Hadwiger graph G, with |A−B|, |B−A| ≥

2. Then G|A ∩ B has no circuit of length 4.

Proof: Suppose that A ∩ B = {v1, ..., v6}, where v1v2, v2v3, v3v4, v4v1 are adjacent. By

(6.6), there is a cluster {X1, X3, X5, X6} of G|(A − {v2, v4}) with vi ∈ Xi (i = 1, 3, 5, 6);

and there is a cluster {Y2, Y4, Y5, Y6} of G|(B − {v1, v3}) with vi ∈ Yi (i = 2, 4, 5, 6). But

then

{X1, Y2, X3, Y4, X5 ∪ Y5, X6 ∪ Y6}

is a 6-cluster in G, a contradiction.

(6.8) Let G be a non-apex Hadwiger graph, and let W ⊆ V (G) with |W | = 6. Then

G\W has ≤ 2 components.

Proof: Let the vertex sets of the components of G\W be C1, ..., Ck, and suppose that

k ≥ 3. Now |Ci| = 1 for at most one value of i, since if |C1| = |C2| = 1 say then the
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separation

(C1 ∪ C2 ∪W,C3 ∪ ... ∪ Ck ∪W )

fails to satisfy (6.3). In particular we may assume that |C1| > 1. By (6.6) there is a 4-

cluster {X1, X2, X3, X4} in G|(W ∪ C1) with vi ∈ Xi (1 ≤ i ≤ 4), where W = {v1, ..., v6}.

Then

{X1, X2, X3, X4, C2, C3 ∪ {v5}}

is a 6-cluster, a contradiction.

Let G be a graph, let Z ⊆ V (G) with |Z| = 6, and let v1, v2, v3 ∈ Z be distinct. An

octopus on Z in G with base v1, v2, v3 is a set of eight disjoint fragments of G, that can be

numbered {X1, ..., X8} so that

(i) vi ∈ Xi (1 ≤ i ≤ 3) and |Z ∩Xi| = 1 (4 ≤ i ≤ 6)

(ii) for 1 ≤ i ≤ 3, XiX7 and XiX8 are both adjacent

(iii) for 4 ≤ i ≤ 6, one of XiX7, XiX8 is adjacent

(iv) X7X8 are adjacent.

(See figure 2, where each Xi has been contracted to a single vertex. This shows one of

the two basic types of octopus; in the other type, X4, X5, X6 are all adjacent to X7 and

not to X8, or vice versa.)

Figure 2: an octopus.

(6.9) Let (A, B) be a 6-separation of a non-apex Hadwiger graph G, with |A − B| ≥ 2

and |B − A| ≥ 2. Let A ∩ B = {v1, ..., v6}. Then there is an octopus in G|A on A ∩ B

with base v1, v2, v3.
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Proof: We proceed by induction on |A|.

(1) We may assume that there is no 6-separation (A′, B′) of G with A′ ⊆ A and B ⊆ B′

such that |A′ − B′| ≥ 2 and |A′| < |A|.

For if (A′, B′) is such a separation, by Menger’s theorem, there are six disjoint paths

P1, ..., P6 of G|(A ∩ B′), where Pi has ends vi and v′i ∈ A′ ∩ B′ say, for 1 ≤ i ≤ 6.

From the inductive hypothesis, there is an octopus {X ′
1, ..., X

′
8} in G|A′ on A′ ∩ B′ with

base v′1, v
′
2, v

′
3, where v′i ∈ X ′

i (1 ≤ i ≤ 6). Let Xi = X ′
i ∪ V (Pi) (1 ≤ i ≤ 6) and

Xi = X ′
i (i = 7, 8); then {X1, ..., X8} satisfies the theorem.

From (1) and (6.3) it follows that

(2) v1, v2, v3 all have ≥ 2 neighbours in A− B.

Moreover,

(3) There is no (≤ 3)-separation (C,D) of G|(A − {v4, v5, v6}) with v1, v2, v3 ∈ C and

|D − C| ≥ 2 and D 6= A− {v4, v5, v6}.

For if (C,D) is such a separation, (C∪B,D∪{v4, v5, v6}) is a separation of G of order

≤ 6. By (1), D ∪ {v4, v5, v6} = A, a contradiction.

(4) There are ≥ 4 vertices in A− B with a neighbour in {v1, v2, v3}.

For let the set of such vertices be N . Then (A− {v1, v2, v3}, B ∪N) is a separation of

G, of order |N | + 3. Suppose that |N | ≤ 3. Then this separation has order ≤ 6, and yet

|(A− {v1, v2, v3}) − (B ∪N)| ≥ 2

since |A− B| ≥ 5 by (6.3). This contradicts (1).
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(5) G|(A− {v4, v5, v6}) cannot be drawn in a disc with v1, v2, v3 on the boundary.

For let us apply (6.5), taking k = 6 and Z = {v1, v2, v3}, and ε = 1 (by (4)). (6.5)(i)

does not hold, by (2); (6.5)(ii) does not hold, since η(A,B) ≥ 9 by (6.4); and (6.5)(iii)

does not hold, by (6.8). Thus (6.5)(iv) holds, and (5) follows.

From (5), (3), (3.4), (3.5) and the 6-connectivity of G, there is a legless tripod in

G|(A−{v4, v5, v6}) with feet v1, v2, v3. Consequently, there are disjoint fragments X, Y ⊆

A− B of G such that X and Y both contain neighbours of v1, v2 and v3. Choose X and

Y with X ∪ Y maximal; then every vertex in V (G) −X ∪ Y with a neighbour in X ∪ Y

belongs to A∩B, from the maximality of X ∪Y , and hence v4, v5, v6 all have a neighbour

in X ∪ Y . Moreover, by (6.8), XY are adjacent. Consequently,

{{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, X, Y }

is the desired octopus.

7. REDUCTIONS FOR 6-SEPARATIONS

Now we use the results of the last section to eliminate most possibilities for 6-separations.

We begin with the following lemma.

(7.1) Let G be a graph, let Z ⊆ V (G) with |Z| = 5, and suppose that X1, X2 is fea-

sible in G for all disjoint X1, X2 ⊆ Z with |X1| = |X2| = 2. Then there is at most one

X ⊆ Z with |X| = 2 such that X,Z −X is infeasible in G.

Proof: Let Z = {z1, ..., z5} and suppose that {z1, z2}, {z3, z4, z5} is infeasible.

(1) X,Z −X is feasible for all X ⊆ {z3, z4, z5} with |X| = 2.
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For let X = {z3, z4} say. Since {z1, z2}, {z3, z4} is feasible, there are disjoint connected

subgraphs H1, H2 with z1, z2 ∈ V (H1) and z3, z4 ∈ V (H2). Since {z1, z2}, {z4, z5} is

feasible, there is a path from z5 to z4. Hence there is a minimal path Q from z5 to

V (H1 ∪H2). If the end of Q is in V (H1) then {z1, z2, z5}, {z3, z4} is feasible as required;

and if the end of Q is in V (H2) then {z1, z2}, {z3, z4, z5} is feasible, a contradiction. This

proves (1).

In view of (1), we may suppose for a contradiction that {z1, z3}, {z2, z4, z5} is infeasi-

ble. Hence there is symmetry between z2 and z3.

(2) There is a path P between z2 and z3, and a path Q between z4 and z5, with V (P ∩Q) =

∅, and a path R from z1 to an internal vertex of P , with |V (R∩P )| = 1 and V (R∩Q) = ∅.

For since {z1, z2}, {z4, z5} is feasible, there are disjoint paths S,Q with ends z1, z2 and

z4, z5 respectively. Since {z3, z4}, {z1, z2} is feasible, there is a path from z3 to V (Q) in

G\{z1, z2}. Hence there is a path from z3 to V (Q∪S) in G\{z1, z2}. Take a minimal such

path T , and let its ends be z3, r. Now r 6∈ V (Q) since {z1, z2}, {z3, z4, z5} is infeasible.

Consequently, r ∈ V (S). Let P be the path in S ∪ T between z2 and z3, and let R be the

subpath of S from z1 to r; then (2) holds.

Choose P,Q,R as in (2) with |E(R)| minimum. Let R have ends z1, r. Now since

{z2, z4}, {z3, z5} is feasible, there are two disjoint paths from V (P ) to V (Q), and hence

there is one, S say, with r 6∈ V (S). Choose such a path S, minimal, with ends p ∈ V (P )

and q ∈ V (Q). Since r 6∈ V (S), we may assume from the symmetry that p lies in the

component of P\r containing z2. Then S has no vertex in P except p, and none in Q

except q, by the minimality of S.

Now S ∩ R is null; for otherwise, let s be the vertex of S ∩ R closest to p in S, and

let P ′ be the union of the subpath of P from z2 to p, the subpath of S from p to s, the

subpath of R from s to r, and the subpath of P from r to z3; and let R′ be the subpath
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of R from z1 to s. Then P ′, Q,R′ satisfy (2), contrary to the minimality of |E(R)|. This

proves that R and S are disjoint.

Let H1 be the union of R and the subpath of P from r to z3, and let H2 be the union

of Q, S and the subpath of P from z2 to p. Then H1, H2 are disjoint and connected, and

so {z1, z3}, {z2, z4, z5} is feasible, a contradiction. The result follows.

(7.1) is best possible in the sense that there may be one X as in (7.1) with X,Z −X

infeasible. For example, let G′ be a graph which can be drawn in the plane, and let

z1, z2, z3, z4, z5, z6 be vertices incident with the infinite region, in order. Let z6 be 4-

valent, with neighbours a, b, c, d in order. Let G be obtained from G′ by deleting z6 and

adding edges ac and bd. Then if G is sufficiently connected, it satisfies the hypotheses of

(7.1) with Z = {z1, ..., z5}, and yet {z1, z3, z5}, {z2, z4} is infeasible. The existence of this

construction will give us a lot of trouble.

Throughout the remainder of this section, G is a non-apex Hadwiger graph, and (A,B)

is a 6-separation of G with |A−B|, |B−A| ≥ 2. Let A∩B = {v1, ..., v6}. From (6.6), we

have

(7.2) For all disjoint X1, X2 ⊆ A ∩ B with |X1| = |X2| = 2, X1, X2 is feasible in

G|((A−B) ∪X1 ∪X2) and in G|((B − A) ∪X1 ∪X2).

Consequently, from (7.1) we have

(7.3) For all Z ⊆ A ∩ B with |Z| = 5, there is at most one X ⊆ Z with |X| = 2

such that X,Z −X is infeasible in G|((B−A)∪Z), and at most one such that X,Z −X

is infeasible in G|((A− B) ∪ Z).

On the other hand, we have
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(7.4) Let Z1, ..., Zk be a partition of A ∩ B into stable sets, such that ZiZj are adja-

cent for 1 ≤ i < j ≤ k. Then Z1, ..., Zk is infeasible in one of G|A,G|B.

Proof: Suppose that Z1, ..., Zk is feasible in G|A, via X1, ..., Xk. By (5.1) there is a

5-colouring φ2 of G|B such that for 1 ≤ i ≤ k, φ2(u) = φ2(v) for all u, v ∈ Zi, and for

1 ≤ i < j ≤ k, φ2(u) 6= φ2(v) for u ∈ Zi and v ∈ Zj. Hence we may assume that φ2(u) = i

for u ∈ Zi (1 ≤ i ≤ k). Similarly if Z1, ..., Zk is feasible in G|B, there is an analogous

5-colouring φ1 of G|A. Let φ(v) = φ1(v) if v ∈ A, and φ(v) = φ2(v) if v ∈ B; then φ is a

5-colouring of G, a contradiction.

(7.5) A ∩ B is not the union of a clique and a stable set.

Proof: Suppose that A ∩ B = X ∪ Y , where X ∩ Y = ∅, G|X is complete, and Y is

stable. Choose Y maximal; then each v ∈ X has a neighbour in Y . But the partition of

A∩B into Y and the sets {v}(v ∈ X) is feasible in both G|A and G|B, contrary to (7.4).

The following is a generalization of (7.4).

(7.6) Let Z1, ..., Zk be a partition of A ∩ B into stable sets, where k ≥ 3 and ZiZj

are adjacent for all i, j with 1 ≤ i < j ≤ k except possibly for (i, j) = (1, 2), (1, 3). Then

either

(i) there do not exist disjoint fragments X1, ..., Xk of G|A with Zi ⊆ Xi (1 ≤ i ≤

k) such that X1X2 are adjacent, or

(ii) there do not exist disjoint fragments Y1, ..., Yk of G|B with Zi ⊆ Yi (1 ≤ i ≤ k)

such that Y1Y3 are adjacent.
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Proof: Suppose X1, ..., Xk exist as in (i). By (5.1) there is a 5-colouring φ2 of G|B such

that for 1 ≤ i ≤ k, φ2(u) = φ2(v) for all u, v ∈ Zi; and moreover, if φ2(Zi) denotes the

common value of φ2(u) for u ∈ Zi, then φ2(Zi) 6= φ2(Zj) for all i, j with 1 ≤ i < j ≤ k

except possibly (i, j) = (1, 3). Now suppose also that Y1, ..., Yk exist as in (ii); then

similarly there is a 5-colouring φ1 of G|A and values φ1(Zi) (1 ≤ i ≤ k) such that for

1 ≤ i ≤ k, φ1(u) = φ1(Zi) for all u ∈ Zi and for 1 ≤ i < j ≤ k, φ1(Zi) 6= φ1(Zj) except

possibly for (i, j) = (1, 2).

If φ1(Z1) 6= φ1(Z2) and φ2(Z1) 6= φ2(Z3), we may assume that φ1(Zi) = φ2(Zi) = i

for 1 ≤ i ≤ k; but then setting φ(v) = φ1(v) (v ∈ A) and φ(v) = φ2(v) (v ∈ B)

defines a 5-colouring of G, a contradiction. We may therefore assume that φ1(Z1) =

φ1(Z2), and hence Z1 ∪ Z2 is stable. Now Z1 ∪ Z2, Z3, ..., Zk is feasible in G|A, via

X1 ∪ X2, X3, ..., Xk, since X1X2 are adjacent. By (5.1) there is a 5-colouring φ3 of G|B

and values φ3(Z1∪Z2), φ3(Z3), ..., φ3(Zk) such that φ3(u) = φ3(Z1∪Z2) for all u ∈ Z1∪Z2,

and φ3(u) = φ3(Zi) for all u ∈ Zi (3 ≤ i ≤ k). Since Z1 ∪ Z2, Z3, ..., Zk are mutually

adjacent, it follows that φ3(Z1 ∪ Z2), φ3(Z3), ..., φ3(Zk) are all distinct. Hence we may

assume that φ1(u) = φ3(u) for all u ∈ A ∩ B. But then setting φ(u) = φ1(u) (u ∈ A),

φ(u) = φ3(u) (u ∈ B) defines a 5-colouring of G, a contradiction.

If Z1, ..., Zk ⊆ V (G) are disjoint, we say that Z1, ..., Zk is strongly feasible (viaX1, ..., Xk)

if there are disjoint fragments X1, ..., Xk with Zi ⊆ Xi (1 ≤ i ≤ k) such that for 1 ≤ i ≤ k,

if |Zi| = 3 then G|Xi contains a triad with set of feet Zi.

(7.7) Under the hypothesis of (7.6), if (7.6)(i) holds, then

(i) if Z1Z2 are adjacent, then Z1, Z2, ..., Zk is infeasible in G|A

(ii) if |Z1| = |Z2| = 1, then Z1 ∪ Z2, Z3, ..., Zk is infeasible in G|A

(iii) if |Z1 ∪ Z2| = 3, then Z1 ∪ Z2, Z3, ..., Zk is not strongly feasible in G|A.
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In each case the proof is clear.

(7.8) If v1v2, v1v3, v1v4 are all adjacent then v5v6 are adjacent.

Proof: Suppose not. Since G|A ∩ B has no circuit of length 4 by (6.7), each of v5 and v6

is adjacent to at most one of v2, v3, v4. We may therefore assume that v4v5 and v4v6 are

not adjacent. Hence by (7.5), v2v3 are not adjacent.

(1) {v1}, {v2, v3}, {v4, v5, v6} is infeasible in G|A and in G|B.

For suppose that {v1}, {v2, v3}, {v4, v5, v6} is feasible in G|A, say. Let Z1 = {v2}, Z2 =

{v3}, Z3 = {v4, v5, v6}, Z4 = {v1}. By (7.5), Z2Z3 are adjacent. By (7.7)(ii) there exist

disjoint fragments X1, ..., X4 of G|A with Zi ⊆ Xi (1 ≤ i ≤ 4) such that X1X2 are adja-

cent. Moreover, there exist disjoint fragments Y1, ..., Y4 of G|B with Zi ⊆ Yi (1 ≤ i ≤ 4)

such that Y1Y3 are adjacent, by the 6-connectivity of G. This contradicts (7.6).

(2) For i = 2, 3, vi is not adjacent to both v5 and v6.

Suppose that v2v5 and v2v6 are both adjacent, say. Then {v3, v5, v6} is stable and so

by (7.5), v2v4 are not adjacent. By (1) and (7.3), {v1}, {v2, v4}, {v3, v5, v6} is feasible in

both G|A and G|B, contrary to (7.4). This proves (2).

Now by (6.7), not both v2v4 and v3v4 are adjacent, and so we may assume that v3v4

are not adjacent. By (2), we may also assume (exchanging v5 and v6 if necessary) that

v2v6 and v3v5 are not adjacent. By (1) and (7.3), {v1}, {v2, v6}, {v3, v4, v5} is feasible in

both G|A and G|B, and by (7.5) {v2, v6}, {v3, v4, v5} are adjacent, contrary to (7.5).
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(7.9) G|A ∩B has maximum valency ≤ 3.

Proof: Suppose that v1v2, v1v3, v1v4, v1v5 are all adjacent. By (7.8), v5v6 and v4v6 are

adjacent, contrary to (6.7).

(7.10) If {v1, v2, v3} is a 3-clique then so is {v4, v5, v6}.

Proof: Suppose that v1v2, v2v3, v1v3 are all adjacent and v4v5 are not. By (7.5) we may

assume that v5v6 are adjacent. Since G|A∩B has no circuits of length 4 and has maximum

valency ≤ 3, we may assume that there are no edges between {v1, v2, v3} and {v4, v5, v6}

except possibly v1v4, v2v5 and v3v6.

(1) We may assume that {v1}, {v2, v6}, {v3, v4, v5} and {v2}, {v1, v6}, {v3, v4, v5} are in-

feasible in G|A.

For suppose that at least one of them is feasible in G|A, and also at least one is

feasible in G|B. By (7.4) neither of these partitions is feasible in both G|A and G|B,

and so we may assume that {v1}, {v2, v6}, {v3, v4, v5} is feasible in G|A and {v2}, {v1, v6},

{v3, v4, v5} is feasible in G|B. Let Z1 = {v6}, Z2 = {v2}, Z3 = {v1}, Z4 = {v3, v4, v5}; then

by (7.7)(ii), (7.6) is contradicted. This proves (1).

By (6.9), there is an octopus {X1, ..., X8} in G|A with base v3, v4, v5 with vi ∈ Xi

(1 ≤ i ≤ 6). By exchanging X7 and X8, we may assume that X6X8 are adjacent. By (1),

X1X8 are not adjacent, and so X1X7 are adjacent; and similarly X2X7 are adjacent. By

(6.6) there is a 4-cluster {Y1, Y2, Y4, Y6} of G|(B − {v3, v5}) with vi ∈ Yi (i = 1, 2, 4, 6).

But then

{X1 ∪ Y1, X2 ∪ Y2, X3 ∪X8, X4 ∪ Y4, X5 ∪X7, X6 ∪ Y6}
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is a 6-cluster in G, a contradiction.

(7.11) G|A ∩B has no triangle.

Proof: Suppose that {v1, v2, v3} is a 3-clique. Then by (7.10), {v4, v5, v6} is a 3-clique. By

(7.9) and (6.7), we may assume that there is no edge between {v1, v2, v3} and {v4, v5, v6}

except possibly v1v4. Now by (7.2), {v1}, {v4}, {v2, v5}, {v3, v6} is feasible in both G|A

and G|B, and so by (7.4), v1v4 are not adjacent. Hence G|A ∩ B is the disjoint union of

two triangles.

We claim that in G|A there are three disjoint paths from {v1, v2, v3} to {v4, v5, v6}. For

if not, then there is a (≤ 2)-separation (X, Y ) of G|A with v1, v2, v3 ∈ X and v4, v5, v6 ∈ Y .

Then (X,B ∪ Y ) is a separation of G of order

|X ∩ Y | + |X ∩ (B − Y )| ≤ |X ∩ Y | + |(A ∩B) − Y | ≤ 5

and so B ∪ Y = V (G); and similarly B ∪ X = V (G). Since |X ∩ Y | ≤ 2, it follows

that |A − B| ≤ 2, contrary to (6.3). This proves that there are three disjoint paths

of G from {v1, v2, v3} to {v4, v5, v6}; and therefore from the symmetry we may assume

that {v1, v4}, {v2, v5}, {v3, v6} is feasible in G|A. But {v1}, {v4}, {v2, v5}, {v3, v6} is fea-

sible in G|B by (7.2), contrary to (7.6) and (7.7)(i),(ii), taking Z1 = {v1}, Z2 = {v4},

Z3 = {v2, v5}, Z4 = {v3, v6}. This completes the proof.

(7.12) G|A ∩B has no circuit.

Proof: From (7.11), G|A∩B has no triangle, and from (6.7), it has no circuit of length 4.

Suppose that {v1, v2, v3, v4, v5} ⊆ A∩B is the vertex set of a circuit of length 5, numbered

in order. By (6.7) and (7.11), v6 has valency ≤ 1 in G|A ∩ B and G|{v1, ..., v5} has no

more edges. Suppose first that v5v6 are adjacent. From (7.4), {v5}, {v2, v4}, {v1, v3, v6} is
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infeasible in one of G|A,G|B, say G|A.

By (6.9) there is an octopus {X1, ..., X8} in G|A on A ∩ B with base v1, v3, v4 with

vi ∈ Xi (1 ≤ i ≤ 6). From the symmetry we may assume that X2X7 are adjacent.

Then X6X8 are not adjacent since {v5}, {v2, v4}, {v1, v3, v6} is infeasible in G|A, and so

X6X7 are adjacent. By (6.6) there is a 4-cluster {Y2, Y3, Y4, Y5} in G|(B − {v1, v6}) with

vi ∈ Yi (i = 2, 3, 4, 5). Then

{X1 ∪X8, X2 ∪ Y2, X3 ∪ Y3, X4 ∪ Y4, X5 ∪ Y5, X6 ∪X7}

is a 6-cluster in G, a contradiction.

This proves that v5v6 are not adjacent, and so v6 has valency 0 in G|A∩B. By a crux

we mean a partition Z1, Z2, Z3 of {v1, ..., v6} such that |Z1| = 1, |Z2| = 2, |Z3| = 3, and

Z1, Z2, Z3 are all stable. Necessarily, v6 ∈ Z3. There are ten cruces in total. For 1 ≤ i ≤ 5,

there are two cruces Z1, Z2, Z3 with Z1 = {vi}, and one of them is feasible in G|A, by

(7.3). Thus at least five cruces are feasible in G|A, and at least five in G|B. On the other

hand, no crux is feasible in both G|A and G|B by (7.4), and so for each i (1 ≤ i ≤ 5)

there is exactly one crux Z1, Z2, Z3 with |Z1| = {vi} feasible in G|A. Moreover, every crux

is feasible in exactly one of G|A,G|B.

If Z1, Z2, Z3 is a crux its mate is the unique crux Z ′
1, Z

′
2, Z

′
3, with Z ′

3 = Z3 and Z ′
1 6= Z1.

This provides an involution among the set of cruces, and since an odd number of cruces

are feasible in G|A, there is one feasible in G|A such that its mate is infeasible in G|A.

We may therefore assume that {v1}, {v2, v4}, {v3, v5, v6} is feasible in G|A, and its mate

{v2}, {v1, v4}, {v3, v5, v6} is infeasible in G|A. Consequently, the latter is feasible in G|B,

contrary to (7.6) and (7.7)(ii), taking Z1 = {v4}, Z2 = {v2}, Z3 = {v1}, Z4 = {v3, v5, v6}.

This proves that G|A∩B has no circuit of length 5. To complete the proof, we suppose

that G|A∩B has a circuit of length 6; and then, by (7.11) and (6.7), it has no more edges.

Let A∩B = {v1, ..., v6} numbered in order on the circuit. By (7.4), {v1, v3, v5}, {v2, v4, v6}
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is infeasible in one of G|A,G|B, say G|A. By (6.9) there is an octopus {X1, ..., X8} in

G|A on A ∩ B with base v2, v4, v6, with vi ∈ Xi (1 ≤ i ≤ 6).

Now not all X1, X3, X5 are adjacent to X7 since {v1, v3, v5}, {v2, v4, v6} is not fea-

sible in G|A, and similarly they are not all adjacent to X8. Thus we may assume

that X1X7, X3X8, X5X8 are adjacent. By (6.6) there is a 4-cluster {Y1, Y2, Y3, Y5} in

G|(B − {v4, v6}) with vi ∈ Yi (i = 1, 2, 3, 5). But then

{X1 ∪ Y1, X2 ∪ Y2, X3 ∪ Y3, X4 ∪X7, X5 ∪ Y5, X6 ∪X8}

is a 6-cluster in G, a contradiction.

(7.13) G|A ∩B has maximum valency ≤ 2.

Proof: By (7.9), G|A ∩ B has maximum valency ≤ 3. Suppose that v1 is adjacent to

v2, v3, v4. Then by (7.8), v5v6 are adjacent. By (7.3), one of

{v1}, {v2, v5}, {v3, v4, v6}

{v1}, {v3, v5}, {v2, v4, v6}

{v1}, {v4, v5}, {v2, v3, v6}

is feasible in both G|A and G|B, and so by (7.4) one of these sets is not stable. From the

symmetry and (7.12) we may assume that v2v5 are adjacent; and then by (7.12) G|A∩B

has no more edges. By (7.3), one of

{v1}, {v4, v5}, {v2, v3, v6}

{v1}, {v3, v5}, {v2, v4, v6}

{v1}, {v2, v6}, {v3, v4, v5}

is feasible in both G|A and G|B, contrary to (7.4).
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(7.14) G|A ∩B has ≥ 3 edges.

Proof: By (7.5) no vertex of G|A∩B meets all its edges, and so we may assume that v1v2

are adjacent and v3v4 are adjacent, and G|A ∩B has no more edges.

(1) {v1, v3}, {v2, v4, v5, v6} is infeasible in G|A and in G|B.

For let Z1 = {v1}, Z2 = {v3}, Z3 = {v2, v4, v5, v6}; the claim follows from (7.6), (7.7)(i)

and (7.7)(ii). ((7.6)(ii) does not hold since Z1Z3 are adjacent.)

Now by (7.3), one of

{v6}, {v1, v3}, {v2, v4, v5}

{v6}, {v2, v3}, {v1, v4, v5}

{v6}, {v1, v4}, {v2, v3, v5}

is feasible in both G|A and G|B. (This does not contradict (7.4).) From the symmetry

we may assume the first. Consequently, there are disjoint fragments X1, X2 of G|A with

v1, v3 ∈ X1 and v2, v4, v5 ∈ X2. Choose X1, X2 maximal. Then v6 ∈ X1 ∪X2, and by (1)

v6 6∈ X2. Thus v6 ∈ X1. We have therefore proved that {v1, v3, v6}, {v2, v4, v5} is feasible

in G|A. But by symmetry it is also feasible in G|B, contrary to (7.4).

(7.15) G|A ∩B has ≥ 4 edges.

Proof: Suppose it has only three. Suppose that it has ≥ 2 vertices of valency 0; then

we may assume its edges are v1v2, v2v3, v3v4. Then {v1, v4, v5, v6} is stable and v2v3 are

adjacent, contrary to (7.5).

Thus G|A∩B has at most one vertex of valency 0. Suppose it has one. Then we may
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assume its edges are v1v2, v3v4, v4v5. By (7.3) one of

{v4}, {v1, v3}, {v2, v5, v6}

{v4}, {v1, v5}, {v2, v3, v6}

{v4}, {v2, v3}, {v1, v5, v6}

is feasible in both G|A and G|B, contrary to (7.4).

Hence G|A ∩ B has minimum valency ≥ 1; and hence we may assume its edges are

v1v2, v3v4, and v5v6.

(1) If {v1, v3, v5}, {v2, v4, v6} is strongly feasible in G|A, then {v5}, {v1, v3}, {v2, v4, v6}

is infeasible in G|B.

For take Z1 = {v5}, Z2 = {v1, v3}, Z3 = {v2, v4, v6}; the claim follows from (7.6) and

(7.7)(iii).

By (6.9) there is an octopus {X1, ..., X8} in G|A on A∩B with base v1, v3, v5, and an

octopus {Y1, ..., Y8} in G|B on A ∩ B with base v1, v3, v5. From the symmetry we may

assume that X2X7 and Y2Y7 are adjacent.

(2) Not both X4X7 and X6X7 are adjacent.

For suppose they are. Then {v1, v3, v5}, {v2, v4, v6} is strongly feasible in G|A. If Y4Y7

are adjacent, then {v6}, {v2, v4}, {v1, v3, v5} is feasible in G|B contrary to (1). Thus Y4Y8

and similarly Y6Y8 are adjacent. But then {v2}, {v4, v6}, {v1, v3, v5} is feasible in G|B,

contrary to (1).

We may therefore assume that X6X7 are not adjacent, and hence X6X8 are adja-

cent. Hence there is symmetry between X7 and X8 (exchanging v1, v2 with v5, v6 and

exchanging Y7, Y8 if necessary), and so we may assume that X4X7 are adjacent. Now
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{v1, v3, v6}, {v2, v4, v5} is strongly feasible in G|A, and so Y4Y7 are not adjacent, since

{v6}, {v1, v3}, {v2, v4, v5} is infeasible in G|B by (1); and Y6Y8 are not adjacent, since

{v4}, {v2, v5}, {v1, v3, v6} is infeasible in G|B by (1). Hence Y4Y8 and Y6Y7 are adjacent.

But then {v2}, {v4, v5}, {v1, v3, v6} is feasible in G|B contrary to (1).

(7.16) G|A ∩B is a 5-edge path.

Proof: If not, then from (7.15), (7.12) and (7.13), G|A ∩ B is the disjoint union of two

paths. There are three cases depending on the lengths of these paths.

First, we assume that vi is adjacent to vi+1 for i = 1, 2, 3, 4, and v6 has valency 0.

(1) {v1, v3, v5, v6}, {v2, v4} is infeasible in G|A and in G|B.

For let Z1 = {v2}, Z2 = {v4}, Z3 = {v1, v3, v5, v6}; the claim follows from (7.6) and

(7.7)(ii).

By (7.4), {v3}, {v2, v5}, {v1, v4, v6} is infeasible in one of G|A and G|B, say in G|B.

Hence by (7.3), {v3}, {v1, v4}, {v2, v5, v6} is feasible in G|B and hence not in G|A, by (7.4).

There is still symmetry between A and B (exchanging v1 and v5). By (7.4), {v1, v3, v5},

{v2, v4, v6} is infeasible in one of G|A and G|B, say in G|A. By (6.9) there is an octopus

{X1, ..., X8} in G|A on A ∩ B with base v1, v3, v5, with vi ∈ Xi (1 ≤ i ≤ 6), and there is

an octopus {Y1, ..., Y8} in G|B on A ∩ B with base v1, v3, v5 , with vi ∈ Yi (1 ≤ i ≤ 6).

We may assume that X2X7 are adjacent. Now either X6X7 or X6X8 are adjacent, and

yet both

{v1, v3, v5}, {v2, v4, v6}

{v1, v3, v5, v6}, {v2, v4}

are infeasible in G|A, and so X4X7 are not adjacent. Hence X4X8 are adjacent. Since

67



{v3}, {v1, v4}, {v2, v5, v6} is infeasible in G|A, it follows that X6X7 are not adjacent, and

so X6X8 are adjacent.

We may assume that Y2Y7 are adjacent. If Y6Y8 are adjacent, then either Y4Y7 are

adjacent or Y4Y8 are adjacent, and yet

{v1, v3, v5, v6}, {v2, v4}

{v3}, {v2, v5}, {v1, v4, v6}

are both infeasible in G|B, which is impossible. Thus Y6Y8 are not adjacent, and so Y6Y7

are adjacent. But then

{X1 ∪ Y1 ∪ Y8, X2 ∪ Y2 ∪X7, X3 ∪ Y3 ∪X4 ∪ Y4, X5 ∪ Y5, X6 ∪ Y6 ∪ Y7, X8}

is a 6-cluster in G (recall that X7X8 are adjacent), a contradiction. This concludes the

first case.

Now we assume that vivi+1 are adjacent for i = 1, 2, 3, 5. By (7.4), we may assume

that {v3}, {v2, v5}, {v1, v4, v6} is infeasible in G|A. By (7.3), {v3}, {v2, v6}, {v1, v4, v5} is

feasible in G|A, and hence not in G|B, by (7.4). By (7.3), {v3}, {v2, v5}, {v1, v4, v6} is

feasible in G|B. Suppose that {v2}, {v3, v5}, {v1, v4, v6} is feasible in G|A. Take Z1 =

{v5}, Z2 = {v3}, Z3 = {v2}, Z4 = {v1, v4, v6}; then (7.6) is contradicted. This proves

that {v2}, {v3, v5}, {v1, v4, v6} is infeasible in G|A, and, by the symmetry, {v2}, {v3, v6},

{v1, v4, v5} is infeasible in G|B.

Let {X1, ..., X8} be an octopus on A∩B in G|A with base v1, v3, v6, with vi ∈ Xi (1 ≤

i ≤ 6). We may assume that X4X7 are adjacent. Since {v2}, {v3, v5}, {v1, v4, v6} is

infeasible in G|A, it follows that X5X8 are not adjacent, and hence X5X7 are adjacent.

Suppose that X2X7 are adjacent. By (6.6) there is a 4-cluster {C1, C2, C4, C6} in

G|(B − {v3, v5}) with vi ∈ Ci (i = 1, 2, 4, 6). But then

{X1 ∪ C1, X2 ∪ C2, X3 ∪X8, X4 ∪ C4, X5 ∪X7, X6 ∪ C6}
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is a 6-cluster in G, a contradiction. Thus X2X8 are adjacent.

Now, there is a symmetry exchanging A with B, v5 with v6, v1 with v4 and v2 with

v3. Consequently, there is an octopus {Y1, ..., Y8} in G|B with base v2, v4, v5, with vi ∈

Yi (1 ≤ i ≤ 6), and with Y1Y7, Y6Y7, Y3Y8 adjacent. But then

{X1 ∪ Y1 ∪X7, X2 ∪ Y2, X3 ∪ Y3, X4 ∪ Y4 ∪ Y7, X5 ∪ Y5 ∪ Y8, X6 ∪ Y6 ∪X8}

is a 6-cluster, a contradiction. This concludes the second case.

In the third case, we assume that vivi+1 are adjacent for i = 1, 2, 4, 5. By (7.4),

{v5}, {v2, v4}, {v1, v3, v6} is infeasible in one ofG|A,G|B, say G|A. By (7.3), {v5}, {v2, v6},

{v1, v3, v4} is feasible in G|A, and hence not in G|B.

Let {X1, ..., X8} be an octopus in G|A on A∩B with base v1, v3, v4 with vi ∈ Xi (1 ≤

i ≤ 6). We may assume that X2X7 are adjacent. Since

{v5}, {v2, v4}, {v1, v3, v6}

is infeasible in G|A it follows that X6X8 are not adjacent, and so X6X7 are adjacent.

Suppose that X5X8 are adjacent; let {C2, C3, C4, C5} be a 4-cluster in G|(B − {v1, v6})

with vi ∈ Ci (i = 2, 3, 4, 5), and then

{X1 ∪X8, X2 ∪ C2, X3 ∪ C3, X4 ∪ C4, X5 ∪ C5, X6 ∪X7}

is a 6-cluster, a contradiction. Hence X5X8 are not adjacent, and so X5X7 are adjacent.

Let {Y1, ..., Y8} be an octopus in G|B on A ∩ B with base v1, v2, v6, with vi ∈ Yi (1 ≤

i ≤ 6). We may assume that Y3Y7 are adjacent. Then Y4Y7 are not adjacent, since

{v5}, {v2, v6}, {v1, v3, v4} is infeasible in G|B. Hence, Y4Y8 are adjacent. But then

{X1 ∪ Y1, X2 ∪ Y2, X3 ∪ Y3 ∪X8, X4 ∪ Y4 ∪ Y8, X5 ∪ Y5 ∪X7, X6 ∪ Y6 ∪ Y7}

is a 6-cluster in G, a contradiction.
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The remaining case, when G|A ∩ B is a 5-edge path, unfortunately resists attack by

these methods, and we need another technique, which we develop in the next two sections.

8. THE INFEASIBLE PARTITIONS

Now we use the methods of the last section to learn what we can about the case left

open by (7.16). We need the following lemma.

(8.1) Let X, Y, Z be finite sets of integers, with |X|, |Y |, |Z| ≥ 3. Then either

(i) for one of X, Y, Z, say X, there are two members x1, x2 ∈ X and y ∈ Y and

z ∈ Z with x1 < y < x2 and x1 < z < x2, or

(ii) for some integer n, let I, J be the sets of integers ≤ n and ≥ n respectively;

then both I and J include one of X, Y, Z, and X, Y, Z are all subsets of one

of I, J.

Proof: Let x1 be the smallest member of X, and x2 the largest; and define y1, y2, z1, z2

similarly. We may assume that x2 − x1 ≥ y2 − y1, z2 − z1. Let A = {n : x1 < n < x2}.

If A ∩ Y 6= ∅ and A ∩ Z 6= ∅ then (i) holds, and so we may assume that A ∩ Y = ∅. If

y1 < x2 and y2 > x1 then it follows that y1 ≤ x1 (since y1 6∈ A) and similarly y2 ≥ x2;

and since x2 − x1 ≥ y2 − y1, we deduce that Y = {y1, y2}, a contradiction since |Y | ≥ 3.

Thus, either x2 ≤ y1 or y2 ≤ x1, and from the symmetry we may assume that x2 ≤ y1. If

x2 ≤ z1, then (ii) holds, and so we may assume that z1 < x2, and similarly y1 < z2. But

then (i) holds (with z1, x2, y1, z2).

We use (8.1) to prove the following.

(8.2) Let G be a graph and let v1, ..., v5 ∈ V (G) be distinct. Suppose that
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(i) there is a circuit of G containing v1, v2, v3, disjoint from a path of G with ends

v4, v5,

(ii) {v1, v2, v3} is stable,

(iii) there is no 5-separation (A,B) of G with {v1, ..., v5} ⊆ A, |A| > 5 and |B −

A| ≥ 2, and

(iv) there is no (≤ 4)-separation (A,B) of G with {v1, ..., v5} ⊆ A and |B−A| ≥ 1.

Then {v1, v2, v3}, {v4, v5} is strongly feasible in G.

Proof: Let C be a circuit of G with v1, v2, v3 ∈ V (C), and let P be a path of G with ends

v4, v5, with P ∩ C null. Let the path of C between v1 and v2 not containing v3 be C12,

and define C13, C23 similarly. Since {v1, v2, v3} is stable, it follows that |E(C12)| ≥ 2, and

so there is a unique component H12 of G\(V (P ) ∪ {v1, v2, v3}) containing C12\{v1, v2}.

Define H13, H23 similarly, and choose P and C so that H12 ∪H13 ∪H23 is maximal.

(1) We may assume that v3 has no neighbour in V (H12), and similarly for v2, V (H13)

and for v1, V (H23); and in particular H12, H13, H23 are all distinct.

For if V (H12) contains a neighbour of v3, then V (H12) ∪ {v1, v2, v3} contains a triad

with feet v1, v2, v3, and so the theorem is true.

Let X3 be the set of vertices in V (P ) with a neighbour in V (H12), and define X2, X1,

similarly for V (H13), V (H23).

(2) |X1|, |X2|, |X3| ≥ 3.
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For if |X3| ≤ 2 say, let B = V (H12) ∪ {v1, v2} ∪ X3 and A = V (G) − V (H12); then

A ∩B = {v1, v2} ∪X3 and so (A,B) is a (≤ 4)-separation of G; but {v1, ..., v5} ⊆ A, and

B − A = V (H12) 6= ∅

contrary to hypothesis (iv).

(3) Let v ∈ V (P ), and let P1, P2 be the subpaths of P between v and v4, v5 respectively.

Then it is not true that X1, X2 ⊆ V (P1) and X3 ⊆ V (P2).

For suppose this is true. We may assume that v ∈ X3. Let

A = V (H12) ∪ {v1, v2, v3, v4} ∪ V (P2),

B = V (H13 ∪H23) ∪ {v1, v2, v3} ∪ V (P1).

Since {v1, ..., v5} ⊆ A, |A| > 5, |B − A| ≥ 2 and A ∩ B = {v, v1, v2, v3, v4}, it follows

from hypothesis (iii) that there is a path Q of G from A to B with V (Q) ∩ A ∩ B = ∅;

choose Q minimal, with ends a ∈ A − B and b ∈ B − A say. By the minimality of

Q, V (Q) ∩ (A ∪B) = {a, b}. If a ∈ V (H12) then

V (Q) ∩ (V (P ) ∪ {v1, v2, v3}) ⊆ V (Q) ∩ (A ∪B − {a}) = {b},

and hence Q\b ⊆ H12; but then b ∈ B − A has a neighbour in V (H12), and hence

b ∈ X3 ⊆ A, a contradiction. Thus a 6∈ V (H12), and similarly b 6∈ V (H13 ∪ H23). Since

a, b 6∈ A ∩ B, it follows that a ∈ V (P2) − {v}, and similarly b ∈ V (P1) − {v, v4}. Let P ′

be obtained from P ∪ Q by deleting the edges and vertices of P strictly between a and

b; then P ′ ∩ C is null, and V (H12), V (H13), V (H23) are all disjoint from V (P ′ ∪ C), and

v 6∈ V (P ′∪C) and has a neighbour in V (H12) (since v ∈ X3). This contradicts the choice

of P,C. This proves (3).
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From (2), (3) and (8.1), we may assume that there exist a, b ∈ X3, such that if

R denotes the subpath of P between a and b, then for i = 1, 2 there exists xi ∈

Xi ∩ V (R) − {a, b}. Let P ′ be a path of G between v4 and v5 obtained from P by

replacing R by a path from a to b with vertex set in {a, b} ∪ V (H12). Let T be the

union of C13, a minimal path in {x2} ∪ V (H13) between V (C13) − {v1, v3} and x2, the

subpath of P between x2 and x1, a minimal path in {x1} ∪ V (H23) between x1 and some

u ∈ V (C23) − {v2, v3}, and the subpath of C23 between u and v2; then T is a triad with

feet v1, v2, v3, disjoint from P ′. Hence the result is true.

(8.3) Let G be a graph, let v1, ..., v5 be distinct, and let C be a circuit of G\{v4, v5}

with v1, v2 ∈ V (C). Let R3 be a path of G\{v1, v2, v4, v5} from v3 to h3 ∈ V (C), with no

vertex in C except h3. Let C12 be the path of C between v1 and v2 not containing h3, and

for i = 1, 2, let Ci3 be the path of C between vi and h3 not containing v3−i. Let Hi be

the component of G\V (C ∪ R3) containing vi for i = 4, 5, and suppose that for i = 4, 5

both V (C13)−{v1, h3} and V (C23)−{v2, h3} contain a vertex with a neighbour in V (Hi).

Suppose also that

(i) {v1, v2, v3} is stable,

(ii) there is no 5-separation (A,B) of G with {v1, ..., v5} ⊆ A, |A| > 5 and |B −

A| ≥ 2, and

(iii) there is no (≤ 4)-separation (A,B) of G with {v1, ..., v5} ⊆ A and |B−A| ≥ 1.

Then {v1, v2, v3}, {v4, v5} is strongly feasible.

Proof: For i = 4, 5, choose hi ∈ V (Hi) such that there are three paths Pi, Qi, Ri of

G, mutually disjoint except for hi, where
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(i) Pi is from hi to V (C13)−{v1, h3}, and has no vertex in C ∪R3 except its end

pi ∈ V (C13) − {v1, h3}

(ii) Qi is from hi to V (C23)−{v2, h3}, and has no vertex in C ∪R3 except its end

qi ∈ V (C23) − {v2, h3}

(iii) Ri is from hi to vi, and is disjoint from C ∪R3.

Moreover, choose C, h4, h5 etc., so that |E(R3)| + |E(R4)| + |E(R5)| is minimum.

(1) We may assume that (P4 ∪Q4 ∪R4) ∩ (P5 ∪Q5 ∪ R5) ⊆ C.

For otherwise there is a path from v4 to v5 disjoint from C∪R3; and hence if E(R3) 6= ∅

this path is disjoint from a triad with feet v1, v2, v3 as required, and if E(R3) = ∅ the result

follows from (8.2).

Let

A = V (C12 ∪R3 ∪ R4 ∪ R5)

B = V (C13 ∪ C23 ∪ P4 ∪Q4 ∪ P5 ∪Q5).

Then A ∩ B = {v1, v2, h3, h4, h5} and |B − A| ≥ 2 (since C13, C23 both have internal

vertices) and |A| ≥ 6 (since |V (C12)| ≥ 3), and so from the hypothesis there is a path Q

of G from A to B with V (Q) ∩A ∩B = ∅. Choose Q minimal, with ends a ∈ A−B and

b ∈ B−A, and hence with V (Q)∩ (A∪B) = {a, b}. From the symmetry we may assume

that a ∈ V (C12 ∪ R3 ∪R4) − {v1, v2, h3, h4} and b ∈ V (C13 ∪ P4 ∪ P5) − {v1, h3, h4, h5}.

Suppose first that a ∈ V (C12). Then

Q ∪ C12 ∪ (P4\h4) ∪ (P5\h5) ∪ C13 ∪ R3
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contains a triad with feet v1, v2, v3, disjoint from the path between v4 and v5 in R4 ∪Q4 ∪

(C23\{v2, h3}) ∪Q5 ∪R5, and so the result is true. Now suppose that a ∈ V (R4) − {h4}.

Then since b ∈ V (C13 ∪ P4 ∪ P5), this contradicts the minimality of |E(R3)| + |E(R4)| +

|E(R5)|, as we see by replacing an appropriate subpath of P4 by Q. Finally, suppose that

a ∈ V (R3) − {h3}. Then we can replace C13 by a path between v1 and a in

((C13 ∪R3)\h3) ∪Q ∪ (P4\h4) ∪ (P5\h5),

replace h3 by a, and change C23 and R3 accordingly, again contrary to the minimality of

|E(R3)| + |E(R4)| + |E(R5)|. The result follows.

(8.4) Let G be a graph, and let v1, ..., v5 ∈ V (G) be distinct, such that

{v1}, {v2, v3}, {v4, v5}

{v2}, {v1, v3}, {v4, v5}

{v3}, {v1, v2}, {v4, v5}

{v1, v2, v3}, {v4, v5}

are all feasible in G. Suppose also that

(i) {v1, v2, v3} is stable

(ii) there is no 5-separation (A,B) of G with v1, ..., v5 ∈ A, |A| > 5 and |B−A| ≥

2, and

(iii) there is no (≤ 4)-separation (A,B) of G with v1, ..., v5 ∈ A and |B − A| ≥ 1.

Then {v1, v2, v3}, {v4, v5} is strongly feasible.

Proof: Let P be the partition {v1, v2, v3}, {v4, v5}. Since P is feasible, we may assume
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that there is a path H of G with ends v1, v2 and with v3 ∈ V (H), and a path J of G with

ends v4, v5, such that H ∩J is null. Since {v3}, {v1, v2}, {v4, v5} is feasible, there is a path

P of G\v3 with ends v1, v2 and a path Q of G\v3 with ends v4, v5, such that P ∩Q is null.

Choose H, J, P,Q so that H ∪ J ∪ P ∪Q is minimal.

By an arc we mean a subpath of P ∪Q with distinct ends both in V (H ∪ J) and with

no edge or internal vertex in H ∪ J .

(1) We may assume that every arc has one end in V (H) and the other in V (J).

For let R be an arc with ends a, b say. If a, b ∈ V (J), let J ′ be obtained from J ∪R by

deleting the edges and vertices of J strictly between a and b; then H, J ′, P, Q contradicts

the minimality of H ∪ J ∪ P ∪ Q. Thus not both a, b ∈ V (J). Similarly not both a, b

belong to the subpath of H between v1 and v3, or to the subpath between v2 and v3.

Consequently, if a, b ∈ V (H) then we may assume that v1 and a belong to one component

of H\v3, and v2 and b to the other. If v1 = a and v2 = b then P is strongly feasible by

(8.2); and otherwise P is strongly feasible since R∪H includes a triad with feet v1, v2, v3.

This proves (1).

(2) Both P and Q include arcs.

For since P has ends v1, v2 and v3 6∈ V (P ), it follows that P 6⊆ H∪J and so P includes

an arc. Suppose that Q includes no arc; then Q = J , and so the arc in P has both ends

in V (H), contrary to (1).

Let P1 and P2 be the arcs in P closest in P to v1 and to v2 respectively; these exist

by (2). Let Pi have ends v′i and ui, where v′i lies in P between ui and vi (i = 1, 2). Let

Ri be the subpath of P between vi and v′i. Then Ri ⊆ H ∪ J , and so Ri ⊆ H since
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vi ∈ V (Ri ∩H). By (1), u1, u2 ∈ V (J).

Let Q4 and Q5 be the arcs in Q closest to v4 and to v5 respectively; for i = 4, 5 let Qi

have ends v′i and ui, where v′i lies in Q between ui and vi. Let Ri be the subpath of Q

between vi and v′i. Then Ri ⊆ J (i = 4, 5), and by (1), u4, u5 ∈ V (H).

(3) u4 and u5 belong to the same component of H\v3.

For suppose that u4 and v1 belong to one component, H1 say, and u5 and v2 to the

other, H2 say. For i = 1, 2, 4, 5, let v′′i be the vertex of H ∪ J which

(i) belongs to the same component of H ∪ J as vi

(ii) belongs to V (P ∪Q)

(iii) does not belong to V (Ri)

(iv) subject to (i)-(iii), is closest in H ∪ J to vi.

Since u4 ∈ V (H1) and u4 6∈ V (R1), it follows that v′′1 lies in H strictly between v′1 and v3,

and similarly v′′2 lies in H strictly between v3 and v′2. If v′′1 ∈ V (P ), let P ′ be obtained

from P by replacing the subpath of P between v′1 and v′′1 by the subpath of H between

these vertices; then P ′ ∩ Q is null, contrary to the minimality of H ∪ J ∪ P ∪ Q. Thus

v′′1 ∈ V (Q) and similarly v′′2 ∈ V (Q), v′′4 ∈ V (P ), v′′5 ∈ V (P ). Let P ′ be the union of the

subpath of H between v1 and v′′1 , the subpath of Q between v′′1 and v′′2 , and the subpath

of H between v′′2 and v2. Let Q′ be the union of the subpath of J between v4 and v′′4 , the

subpath of P between v′′4 and v′′5 , and the subpath of J between v′′5 and v5. Then P ′ ∩Q′

is null, contrary to the minimality of H ∪ J ∪ P ∪Q. This proves (3).

From (3) we may assume that u4, u5, v1 all belong to the same component of H\v3.
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(4) We may assume that v′2 = v2.

For let S be the union of R4, Q4, the subpath of H between u4 and u5, Q5, and R5. If

v′2 6= v2 then there is a triad with feet v1, v2, v3 disjoint from S in the union of the subpath

of H between v2 and v3, P2, the subpath of J between u1 and u2, P1 and R1, and so P is

strongly feasible as required. This proves (4).

From (3) and (4) we deduce that the hypotheses of (8.3) hold (with v1, v3 exchanged),

taking C to be the union of the subpath of H between v′1 and v′2 = v2, P2, the subpath of

J between u1 and u2, and P1. The result follows from (8.3).

It is convenient to prove a slight strengthening of (8.4). Let v1, ..., v5 ∈ V (G) be dis-

tinct. A bat in G on {v1, ..., v5} with feet v4, v5 is a set of six disjoint fragments of G,

which can be numbered X1, ..., X6 so that X4X5 are adjacent, and for 1 ≤ i ≤ 5, vi ∈ Xi

and XiX6 are adjacent.

(8.5) Under the hypothesis of (8.4), there is a bat in G on {v1, ..., v5} with feet v4, v5.

Proof: By (8.4), {v1, v2, v3}, {v4, v5} is strongly feasible, and so there is a path P between

v4 and v5 and a fragment X6 of G such that X6, V (P ), {v1, v2, v3} are mutually disjoint

and v1, v2, v3 all have neighbours in X6. Choose X6 maximal, and let N be the set of all

v ∈ V (G) − X6 with a neighbour in X6. Then (V (G) − X6, N ∪ X6) is a separation of

G. Since v1, ..., v5 ∈ V (G) − X6 6= V (G), it follows that this separation has order ≥ 5

(by(8.4)(iii)), and so |N | ≥ 5. But N − V (P ) ⊆ {v1, v2, v3} by the maximality of X6,

and so |N ∩ V (P )| ≥ 2. Choose an edge e of P so that N meets both components of

P\e; and let these components have vertex sets X4, X5 where vi ∈ Xi (i = 4, 5). Let

Xi = {vi} (i = 1, 2, 3); then {X1, ..., X6} is the desired bat.
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Let v1, ..., v6 ∈ V (G) be distinct. We denote by P1, ...,P12 the following partitions:

P1 : {v1}, {v3, v5}, {v2, v4, v6}

P2 : {v2}, {v3, v5}, {v1, v4, v6}

P3 : {v3}, {v2, v5}, {v1, v4, v6}

P4 : {v4}, {v2, v5}, {v1, v3, v6}

P5 : {v5}, {v2, v4}, {v1, v3, v6}

P6 : {v6}, {v2, v4}, {v1, v3, v5}

P7 : {v1, v3}, {v2, v5}, {v4, v6}

P8 : {v1, v4}, {v2, v5}, {v3, v6}

P9 : {v1, v4}, {v2, v6}, {v3, v5}

P10 : {v1, v5}, {v2, v4}, {v3, v6}

P11 : {v1, v6}, {v2, v4}, {v3, v5}

P12 : {v1, v3, v5}, {v2, v4, v6}.

(8.6) Let G be a non-apex Hadwiger graph, and let (A,B) be a 6-separation of G with

|A−B|, |B−A| ≥ 2, chosen with A minimal. Let G|A∩B be a path with vertices v1, ..., v6

in order. Then P1, ...,P12 are infeasible in G|A.

Proof: We show first that

(1) There is an octopus {Y1, ..., Y8} in G|B on {v1, ..., v6} with base v1, v4, v6 such that

Y2Y7, Y3Y7, Y5Y8 are adjacent.

For by (6.9) there is an octopus {Y1, ..., Y8} in G|B on {v1, ..., v6} with base v1, v4, v6.
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We may assume by exchanging Y7 and Y8 that Y2Y7 are adjacent. If Y3Y8 and Y5Y7 are

adjacent, let {C1, C3, C4, C5} be (by (6.6)) a 4-cluster in G|(A−{v2, v6}) with vi ∈ Ci (i =

1, 3, 4, 5); then

{Y1 ∪ C1, Y2 ∪ Y7, Y3 ∪ C3, Y4 ∪ C4, Y5 ∪ C5, Y6 ∪ Y8}

is a 6-cluster, a contradiction. If Y3Y8 and Y5Y8 are adjacent, let {C1, C2, C5, C6} be a

4-cluster in G|(A− {v3, v4}) with vi ∈ Ci (i = 1, 2, 5, 6); then

{Y1 ∪ C1, Y2 ∪ C2, Y3 ∪ Y8, Y4 ∪ Y7, Y5 ∪ C5, Y6 ∪ C6}

is a 6-cluster, a contradiction. Thus Y3Y8 are not adjacent, and so Y3Y7 are adjacent. If

Y5Y7 are adjacent, let {C1, C3, C5, C6} be a 4-cluster in G|(A−{v2, v4}) with vi ∈ Ci (i =

1, 3, 5, 6); then

{Y1 ∪ C1, Y2 ∪ Y7, Y3 ∪ C3, Y4 ∪ Y8, Y5 ∪ C5, Y6 ∪ C6}

is a 6-cluster, a contradiction. Thus Y5Y8 are adjacent. This proves (1).

(2) P1, ...,P6 are infeasible in G|A.

For let Y1, ..., Y8 be as in (1). Now {v2, v4, v6} is stable. Moreover, if (A′, B′) is a

separation of G|(A−{v1}) with {v2, ..., v6} ⊆ A′ and B′−A′ 6= ∅, then (A′∪B,B′∪{v1})

is a separation of G of order |A′ ∩ B′| + 1, and so |A′ ∩ B′| ≥ 5, and by the minimality

of A, either B′ ∪ {v1} = A (that is, |A′| = 5) or |B′ − A′| = 1. Hence the hypotheses

of (8.5) applied to G|(A − {v1}) are satisfied. Suppose that P1 is feasible. By (6.6) and

(8.5) applied to G|(A− {v1}), there is a bat {X2, X3, X4, X5, X6, X7} in G|(A− {v1}) on

{v2, ..., v6} with vi ∈ Xi (2 ≤ i ≤ 6) and with feet v3, v5. Then

{Y1 ∪ Y2 ∪X2 ∪ Y8, X3 ∪ Y3, X4 ∪ Y4, X5 ∪ Y5, X6 ∪ Y6 ∪ Y7, X7}
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is a 6-cluster, a contradiction. Thus P1 is infeasible, and so is P6, by symmetry.

Suppose that P2 is feasible. By (6.6) and (8.5) there is a bat {X1, X3, X4, X5, X6, X7}

in G|(A − {v2}) on {v1, v3, v4, v5, v6} with vi ∈ Xi (i = 1, 3, 4, 5, 6) and with feet v3, v5.

Then

{X1 ∪ Y1 ∪ Y2 ∪ Y8, X3 ∪ Y3, X4 ∪ Y4, X5 ∪ Y5, X6 ∪ Y6 ∪ Y7, X7}

is a 6-cluster, a contradiction. Hence P2 is infeasible, and by symmetry so is P5.

Finally, suppose that P3 is feasible. By (6.6) and (8.5) there is a bat {X1, X2, X4, X5, X6, X7}

in G|(A − {v3}) on {v1, v2, v4, v5, v6} with vi ∈ Xi (i = 1, 2, 4, 5, 6) and with feet v2, v5.

Then

{X1 ∪ Y1 ∪ Y8, X2 ∪ Y2, Y3 ∪X4 ∪ Y4, X5 ∪ Y5, X6 ∪ Y6 ∪ Y7, X7}

is a 6-cluster, a contradiction. Hence P3 and similarly P4 are infeasible. This proves (2).

(3) P7 is infeasible in G|A.

For suppose that P1, P2, P3 are three disjoint paths of G|A, where P1 has ends v1v3, P2

has ends v4v6, and P3 has ends v2v5. We claim that there are two disjoint paths of

G|(A− {v1, v3, v4, v6}) from (V (P1)− {v1, v3}) ∪ {v2} to (V (P2)− {v4, v6}) ∪ {v5}. For if

not, there is a (≤ 1)-separation (X, Y ) ofG|(A−{v1, v3, v4, v6}) with V (P1)−{v1, v3} ⊆ X,

v2 ∈ X, V (P2)−{v4, v6} ⊆ Y and v5 ∈ Y . Then (X∪B, Y ∪{v1, v3, v4, v6}) has order ≤ 6,

and so from the minimality of A, either X ∪ B = B or |V (G) − (X ∪ B)| ≤ 1. The first

is impossible since V (P1) ⊆ X and P1 has an internal vertex (for v1v3 are not adjacent).

Thus the second holds, and so |Y − (X ∪B)| ≤ 1. Similarly |X − (Y ∪B)| ≤ 1; but also

|X∩Y −B| ≤ 1, and so |V (G)−B| ≤ 3, contrary to (6.3). This proves our claim that there

exist two disjoint paths Q1, Q2 of G|(A − {v1, v3, v4, v6}) from (V (P1) − {v1, v3}) ∪ {v2}

to (V (P2)−{v4, v6})∪ {v5}; and because of the existence of P3, we may choose Q1, Q2 so
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that v2 is an end of one of them, and so is v5, and Q1, Q2 have no vertex in V (P1) except

for p1, say, and no vertex in V (P2) except for p2, say. Now if one of Q1, Q2 has ends v2v5

and the other has ends p1p2, then P4 is feasible in G|A, contrary to (2); while if one of

Q1, Q2 has ends v2p2 and the other has ends p1v5 then P1 is feasible contrary to (2). This

proves (3).

(4) P8,P9,P10 are infeasible in G|A.

Now P8 is infeasible by (7.6) and (6.6), taking Z1 = {v2}, Z2 = {v5}, Z3 = {v1, v4}, Z4 =

{v3, v6}. P9 is infeasible by (7.6) and (6.6), taking Z1 = {v3}, Z2 = {v5}, Z3 = {v1, v4}, Z4 =

{v2, v6}. P10 is infeasible by symmetry.

(5) P11 is infeasible in G|A.

For suppose that there are disjoint paths P,Q and R of G|A with ends v1v6, v2v4

and v3v5 respectively. Let S be a minimal path of G|(A − {v2, v5}) between V (P ) and

V (Q ∪ R); let S have ends p ∈ V (P ) and q ∈ V (Q) say. (This exists since there is a

path of G|A between v1 and v3 with no vertex in {v2, v5}, because any component of

G\B contains neighbours of all of v1, ..., v6.) Since q 6= v2 it follows that P2 is feasible, a

contradiction. This proves (5).

(6) P12 is infeasible in G|A.

For suppose it is feasible. Since P1 and P6 are infeasible, it follows that there are four

paths P13, P15, P26, P46 of G|A, mutually disjoint except for their ends, where each Pij has

ends vivj. But by (1), {v3}, {v1, v5}, {v2, v4, v6} is feasible in G|B. This contradicts (7.6)
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with Z1 = {v3}, Z2 = {v1, v5}, Z3 = {v2, v4, v6}.

The result follows.

In addition to (8.6) we need to prove that one further structure does not appear in

G|A. Let v1, ..., v5 be distinct vertices of a graph G. A turkey in G on (v1, ..., v5) (note

that here v1, ..., v5 are ordered, unlike the octopus and bat) is a set {X0, X1, X2, X3, X5}

of disjoint fragments of G, such that

(i) v1, v4 ∈ X1, and vi ∈ Xi for i = 2, 3, 5, and

(ii) X0X1, X0X2, X0X3, X2X5 and X3X5 are adjacent.

If (v1, ..., v6) is a 6-term sequence, and 1 ≤ k ≤ 6, the 5-term sequence obtained by omit-

ting the kth term vk of (v1, ..., v6) is denoted by (v1, ..., v̂k, ..., v6).

(8.7) Let G,A,B, v1, ..., v6 be as in (8.6). Let 1 ≤ k ≤ 6; then there is no turkey

in G|A on (v1, ..., v̂k, ..., v6).

Proof: Suppose that for some k there exists such a turkey. Let (v1, ..., v̂k, ..., v6) =

(a1, ..., a5). Then there are five paths Ri of G|A with ends ai, bi (1 ≤ i ≤ 5), mutually

disjoint except that b1 = b4; and two paths Qi of G|A between bi and b5 (i = 2, 3); a

vertex c ∈ A − V (R1 ∪ ... ∪ R5 ∪ Q1 ∪ Q2), and three paths Pi from c to bi (i = 1, 2, 3),

so that all these paths are disjoint except for their ends. (Note that it is possible that

ai = bi for some values of i.) See figure 3.

Figure 3: a turkey skeleton on (a1, ..., a5).

Let H = R1 ∪ ... ∪ R5 ∪Q1 ∪Q2 ∪ P1 ∪ P2 ∪P3; we call H a skeleton.
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Now since G is 6-connected, there are six paths L1, ..., L6 ofG|A between c and v1, ..., v6

respectively, mutually disjoint except for c. Choose k,H and L1, ..., L6 so that

(1) H ∪ L1 ∪ ... ∪ L6 is minimal.

Let R be the minimal subpath of Lk between vk and V (H), and let R have ends vk, h.

Thus, if vk ∈ V (H) then h = vk.

(2) For 1 ≤ i ≤ 5, if ai and vk are consecutive in the sequence (v1, ..., v6), then h 6∈ V (Ri).

For suppose that ai and vk are consecutive in (v1, ..., v6) and h ∈ V (Ri). We obtain a

new skeleton H ′ by replacing the subpath R′ of Ri between ai and h by R. But

H ′ ∪ L1 ∪ ... ∪ L6 ⊆ H ∪ L1 ∪ ... ∪ L6,

and so by (1) equality holds; and hence R′ ⊆ L1 ∪ ... ∪ L6, which is impossible since

R ⊆ Lk, R
′ ⊆ Li, R ∩ R′ is non-null (since h ∈ V (R ∩ R′)), and L1, ..., L6 are disjoint

except for c. This proves (2).

(3) For 1 ≤ i ≤ 5, h 6∈ V (Ri).

Suppose that h ∈ V (Ri). By (2), ai and vk are not consecutive in (v1, ..., v6). There

are several cases.

Suppose that k = 1, and hence i ≥ 2 and ai = vi+1. Then i 6= 2 (for otherwise P4

is feasible, contrary to (8.6); in the remaining cases we abbreviate this to “(P4)”), and

i 6= 3 (P3). Now h 6= b4 since h 6∈ V (R1), and so i 6= 4 (P10), and i 6= 5 (P4). Hence

k 6= 1.
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Suppose that k = 2, and hence i 6= 1, 2. Then i 6= 3 (P6), i 6= 4 (P3) since h 6= b4, and

i 6= 5 (P12). Thus, k 6= 2.

Suppose that k = 3. Then i 6= 1 or 4 (P6), and i 6= 5 (P10). Hence k 6= 3.

Suppose that k = 4. Then i 6= 1 (P8) since h 6= b1, and i 6= 2 (P6) and i 6= 5 (P12).

Thus, k 6= 4.

Suppose that k = 5. Then i 6= 1 (P10) since h 6= b1, and i 6= 2 (P8), and i 6= 3 (P9).

Hence, k 6= 5.

Suppose that k = 6. Then i 6= 1 or 4 (P3), i 6= 2 (P9) and i 6= 3 (P8). Hence, k 6= 6.

In each case we therefore obtain a contradiction, and (3) follows.

(4) h 6∈ V (Q2 ∪Q3).

For suppose first that h ∈ V (Q2). Since h 6∈ V (R2 ∪ R5) by (3), h 6= b2 and h 6= b5.

Then k 6= 1 (P4), k 6= 2 (P12), k 6= 3 (P10), k 6= 4 (P6), k 6= 5 (P8), and k 6= 6 (P9), a

contradiction. Hence h 6∈ V (Q2). Suppose now that h ∈ V (Q3). By (3), h 6= b3, b5. Hence

k 6= 1 (P3), k 6= 2 (P6), k 6= 3 (P10), k 6= 4 (P12), k 6= 5 (P9), and k 6= 6 (P8). This proves

(4).

From (3) and (4), we deduce that h ∈ V (P1 ∪ P2 ∪ P3). By (3), h 6= b1, b2, b3. Hence

k 6= 1 (P3), k 6= 2 (P10), k 6= 3 (P12), k 6= 4 (P10), k 6= 5 (P8), and k 6= 6 (P3). This is a

contradiction, and so there is no such turkey, as required.

9. CHASING A TURKEY

Let a1, ..., a5 be distinct vertices of a graph G, fixed throughout this section. P denotes

the partition {a1, a3, a5}, {a2, a4}, and we assume the following three hypotheses:
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(9.1) (Hypothesis) P is infeasible in G.

(9.2) (Hypothesis) There is no turkey in G on (a1, .., a5) or on (a5, ..., a1).

(9.3) (Hypothesis) G is simple, and there is no separation (X, Y ) of G of order ≤ 3 with

a1, ..., a5 ∈ X and |V (G) −X| ≥ 2, and none of order ≤ 2 with a1, ..., a5 ∈ X 6= V (G).

A frame on (a1, ..., a5) (see figure 4) is a subgraph H of G with a1, ..., a5 ∈ V (H),

consisting of the union of:

(i) five paths Pi with ends uiai (1 ≤ i ≤ 5), mutually vertex-disjoint, where

u1 6= a1 and u5 6= a5

(ii) two disjoint paths R17, R56, with ends u1u7 and u5u6 respectively, meeting

V (P1 ∪ ... ∪ P5) in {u1} and {u5} respectively

(iii) six paths Q12, Q26, Q36, Q37, Q47, Q45, mutually disjoint except for their ends,

where each Qij has ends uiuj, and each Qij is disjoint from P1, ..., P5 and

R17, R56 except for its ends.

Figure 4: a frame.

This definition implies that the paths P1, P5, Q12, Q26, Q36, Q37, Q47, Q45 each have at

least one edge, but the paths P2, P3, P4, R17, R56 may have no edges. In particular, we

permit u5 = u6 and u1 = u7. We call P1, P2, P3, P4, P5, Q12, Q26, Q36, Q37, Q47, Q45 the

sides of the frame, and denote their union by I(H). We define the cost of H to be

|E(R17)| + |E(R56)|. A frame in G on (a1, ..., a5) is minimal if its cost is minimum over

all frames in G on (a1, ..., a5).
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The objective of this section is to analyze the structure of G implied by (9.1)-(9.3),

assuming there is a frame. Roughly, we shall show that G can be drawn in a disc with

a1, ..., a5 on the boundary in order, except for one part of G (associated with R17 ∪ R56)

which is separated from the remainder of G by a (≤ 4)-separation.

If H is a subgraph of G, let us say an H-path in G is a path of G with distinct ends

both in V (H), and with no other vertex or edge in H. We begin with the following.

(9.4) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5) with notation

as above. There is no path in G\{u1, u5, u6, u7} between V (R17 ∪ R56) − {u1, u5, u6, u7}

and V (I(H)) − {u1, u5, u6, u7}.

Proof: Suppose there is such a path; then there is an H-path P in G with ends

x ∈ V (R17 ∪ R56) and y ∈ V (I(H)), with x, y 6∈ {u1, u5, u6, u7}. From the symmetry

we may assume that x ∈ V (R17).

(1) y 6∈ V (P1 ∪Q12 ∪ P2 ∪Q26).

For if y ∈ V (P2 ∪Q26) we replace Q12 by P to obtain a new frame with smaller cost,

a contradiction. If y ∈ V (P1) or y ∈ V (Q12) we replace the subpath of P1 or Q12 respec-

tively between y and u1 by P , again obtaining a frame with smaller cost. This proves (1).

(2) y 6∈ V (Q36 ∪ P3 ∪Q37) and y 6∈ V (Q47 ∪ P4 ∪Q45).

For if y ∈ V (Q36 ∪ P3 ∪Q37) we replace Q37 (or a part of it) by P , obtaining a frame

with smaller cost. If y ∈ V (Q47 ∪ P4 ∪Q45), we similarly replace Q47 (or a part of it) by

P .
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From (1) and (2) we deduce that y ∈ V (P5) − {u5}. But then P is feasible, contrary

to (9.1).

Given a frame H and Pi’s and Qij’s as before, we define

R1 = P1 ∪Q12 ∪ P2

R2 = Q12 ∪Q26

R3 = P2 ∪Q26 ∪Q36 ∪ P3

R4 = Q36 ∪Q37

R5 = P3 ∪Q37 ∪Q47 ∪ P4

R6 = Q47 ∪Q45

R7 = P4 ∪Q45 ∪ P5.

Then R1, ..., R7 are all paths of I(H).

(9.5) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5). Let P be an

H-path of G with ends x, y ∈ V (H). Then either x, y ∈ V (Ri) for some i (1 ≤ i ≤ 7), or

x, y ∈ V (R17 ∪R56).

Proof: First, suppose that x ∈ V (P1) − {u1}. We must show that y ∈ V (R1). Now

since P is not feasible, a1, a3, a5 do not belong to the same component of G\V (P2 ∪Q12 ∪

R17 ∪Q47 ∪ P4), and so

y 6∈ V (Q26 ∪Q36 ∪ P3 ∪Q37 ∪ R56 ∪Q45 ∪ P5) − {u2, u4, u7}.

We deduce by (9.4) that y ∈ V (P4 ∪Q47) ∪ V (R1). Now if y ∈ V (P4 ∪Q47) − {u7}, then

taking

X1 = V (P1 ∪ P ∪ P4 ∪Q47) − {u1, u7}
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X2 = V (P2)

X3 = V (P3)

X5 = V (P5 ∪R56 ∪Q26 ∪Q36) − {u2, u3}

X0 = V (Q12 ∪ R17 ∪Q37) − {u2, u3}

defines a turkey on (a1, ..., a5) contrary to (9.2). If y = u7 6= u1, then replacing the sub-

path of P1 between x and u1 by P yields a frame with smaller cost, a contradiction. It

follows that if y ∈ V (P4 ∪ Q47) then y = u7 = u1 and so y ∈ V (R1). Hence the result

holds if x ∈ V (P1) − {u1}. We may therefore assume by symmetry that

(1) x, y 6∈ V (P1) − {u1} and x, y 6∈ V (P5) − {u5}.

Next, we claim we may assume that

(2) x, y 6= u1, u5.

For if not then by symmetry we may assume that x = u1. If

y ∈ V (Q36 ∪ P3 ∪Q37 ∪Q47 ∪ P4 ∪Q45) − {u5, u6, u7}

then from the minimality of H, it follows (by replacing all or a part of one of Q37, Q47)

that u1 = u7, and hence x, y ∈ V (Ri) for i = 4, 5 or 6 and the result is true. By (1),

y 6∈ V (P5) − {u5}. Thus either y = u5 or u7 (in which case x, y ∈ V (R17 ∪ R56)) or

y ∈ V (R1) ∪ V (R2), and then x, y ∈ V (Ri) for i = 1 or 2. This proves (2).

Next, we claim we may assume that

(3) x, y 6∈ V (Q12) − {u2} and x, y 6∈ V (Q45) − {u4}.
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For otherwise, by (2) we may assume that x ∈ V (Q12) − {u1, u2}. Now by (9.1),

y 6∈ V (P4 ∪Q47 ∪Q45)− {u5, u7}, since otherwise a1, a3, a5 belong to the same component

of

G\(V (P2 ∪Q12 ∪ P ∪ P4 ∪Q47 ∪Q45) − {u1, u5, u7}).

By the minimality of H, y 6= u7 (for if y = u7 then u7 6= u1 by (2), and so replacing part

of Q12 by P produces a frame with smaller cost). If y ∈ V (Q36 ∪ P3 ∪ Q37) − {u6, u7},

then taking

X1 = V (P1 ∪R17 ∪Q47 ∪ P4)

X2 = V (P2 ∪Q26) − {u6}

X3 = V (Q36 ∪ P3 ∪Q37) − {u6, u7}

X5 = V (P5 ∪R56)

X0 = V (Q12 ∪ P ) − {u1, u2, y}

defines a turkey on (a1, ..., a5) contrary to (9.2). By (1) and (2), y 6∈ V (P5); and so

y ∈ V (R1) ∪ V (R2) as required. This proves (3).

Next, we claim we may assume that

(4) x, y 6∈ V (P2 ∪Q26) − {u6} and x, y 6∈ V (P4 ∪Q47) − {u7}.

For suppose that x ∈ V (P2 ∪Q26) − {u6} say. By (1)-(3),

y ∈ V (P4 ∪Q47 ∪Q37 ∪ R3).

Now y 6∈ V (P4∪Q47)−{u7} since P is not feasible. Also, y 6= u7, for if y = u7 then u7 6= u1

by (2), and replacing Q12 by P contradicts the minimality of H. If y ∈ V (Q37)−{u3, u7},

then taking

X1 = V (P1 ∪ R17 ∪Q47 ∪ P4)
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X2 = V (P2 ∪Q26 ∪ P ) − {u6, y}

X3 = V (Q36 ∪ P3) − {u6}

X5 = V (P5 ∪ R56)

X0 = V (Q37) − {u3, u7}

defines a turkey on (a1, ..., a5), a contradiction. Hence y ∈ V (R3) as required. This proves

(4).

From (1)-(4), x, y ∈ V (P3 ∪ Q36 ∪ Q37), and so x, y ∈ V (Ri) for i = 3, 4 or 5, as

required.

If C ⊆ V (G), we denote by N(C) the set of all v ∈ V (G)−C with a neighbour in C. We

recall that if H is a subgraph of G, an H-flap is the vertex set of a component of G\V (H).

(9.6) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5). If C is an

H-flap and N(C) meets each of V (Q12) − {u2}, V (P2) − {u2}, V (Q26) − {u2}, then

N(C) ⊆ V (Q12 ∪ P2 ∪Q26). An analogous result holds for Q36, P3, Q37.

Proof. Since N(C) ∩ (V (P2) − {u2}) 6= ∅, it follows from (9.5) that N(C) ⊆ V (R1 ∪R3).

Similarly N(C) ⊆ V (R1 ∪ R2), and N(C) ⊆ V (R2 ∪ R3). Hence

N(C) ⊆ V (R1 ∪R3) ∩ V (R1 ∪R2) ∩ V (R2 ∪ R3) = V (Q12 ∪ P2 ∪Q26).

The proof is analogous for Q36, P3, Q37.

(9.7) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5). There is no

triad in G with feet in V (Q12) − {u2}, V (P2) − {u2} and V (Q26) − {u2} respectively and

with no other vertex in V (H).

Proof: Suppose that T is such a triad with feet x1, x2, x3 say, where x1 ∈ V (Q12)−{u2},
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x2 ∈ V (P2) − {u2} and x3 ∈ V (Q26) − {u2} respectively. Then T ∪ P2 ∪ Q12 ∪ Q26 is a

tripod with feet u1, a2, u6 and with no other vertex in

Z = V (H) − (V (P2 ∪Q12 ∪Q26) − {u1, a2, u6}).

By (3.3) and (9.3), we may assume (by the symmetry between the two triads in the tripod)

that there is a path ofG from V (T )−{x1, x2, x3} to Z disjoint from P2∪Q12∪Q26, contrary

to (9.6).

A virtually identical proof yields:

(9.8) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5). There is no

triad in G with feet in V (Q36) − {u3}, V (P3) − {u3} and V (Q37) − {u3} respectively and

with no other vertex in V (H).

(9.9) Assuming (9.1)− (9.3), let H be a minimal frame on (a1, ..., a5). For any H-flap C,

either N(C) ⊆ V (R17 ∪ R56) or N(C) ⊆ V (Ri) for some i (1 ≤ i ≤ 7).

Proof: We may assume that there exists x ∈ N(C) − V (R17 ∪ R56). By (9.4), N(C) ⊆

V (I(H)). If x can be chosen with x ∈ V (P1) − {u1} then by (9.5), N(C) ⊆ V (R1) as re-

quired, and we may therefore assume that N(C)∩V (P1) ⊆ {u1} and N(C)∩V (P5) ⊆ {u5}

similarly. If N(C) ⊆ V (Q36 ∪P3 ∪Q37), then by (9.8), N(C) ⊆ V (Ri) for i = 3, 4 or 5, as

required. From the symmetry, we may therefore assume that

N(C) ∩ V (Q12 ∪ P2 ∪Q26) 6⊆ {u6}.

From (9.5),

N(C) ⊆ V (Q12 ∪ P2 ∪Q26 ∪Q36 ∪ P3).

We may assume that N(C) 6⊆ V (R3), and so N(C) ∩ V (Q12) 6⊆ {u2}. By (9.5), N(C) ⊆

V (Q12 ∪ P2 ∪Q26). Then the result follows from (9.7).
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(9.10) Assuming (9.1)−(9.3), let H be a minimal frame on (a1, ..., a5). There do not exist

disjoint H-paths P, Q with ends p1p2 and q1q2 respectively, such that p1, q1 ∈ V (P1)−{u1},

p2, q2 ∈ V (Q12) − {u1}, and a1, p1, q1, p2, q2, a2 are in order on R1.

Proof: Suppose that such P and Q exist. Let P ′ be the subpath of P1 between u1

and p1. Now P1 ∪Q12 ∪ P ∪Q is a tripod with feet a1, u1, u2 and with no other vertex in

Z = V (H) − (V (P1 ∪Q12) − {a1, u1, u2}).

By (3.3) we may therefore assume that there is a path R from a ∈ V (P ′∪Q)−{u1, p1, q2}

to b ∈ Z with no vertex in H ∪ P ∪ Q except a and b, and with a1, u1, u2 6= a, b. (We

use here that every leg of the tripod “output” by (3.3) is a subpath of the corresponding

leg of the “input” tripod, so that the leg incident with u1 remains null, and we use the

symmetry between q1 and p2.) By (9.5), b ∈ V (R1), and so

b ∈ V (R1) ∩ Z − {a1, u1, u2} = V (P2) − {u2}.

But then P is feasible, a contradiction.

(9.11) Assuming (9.1)−(9.3), let H be a minimal frame on (a1, ..., a5). There do not exist

disjoint H-paths P, Q with ends p1p2 and q1q2 respectively, such that p1, q1 ∈ V (Q26)−{u6},

p2, q2 ∈ V (Q36) − {u6}, and a2, p1, q1, p2, q2, a3 are in order in R3.

Proof: Suppose such P,Q exist. Let P ′ be the subpath of Q26 between p1 and u6.

As in (9.10), we may assume by (3.3) that there is a path R with ends a ∈ V (P ′∪Q) and

b ∈ V (H) − V (Q26 ∪Q36), with no other vertex in V (H ∪ P ∪Q) and with no vertex in

{p1, q2, u6}. By (9.5), b ∈ V (R2∪R3), and so either b ∈ V (P2)−{u2}, or b ∈ V (P3)−{u3},

or b ∈ V (Q12) − {u2}.
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Suppose first that b ∈ V (P2) − {u2}. Let H ′ be obtained from H by deleting the

edges and internal vertices of the subpath of P2 between b and u2, and adding R (if

a ∈ V (Q26)) or adding R and the subpath of Q between a and q1 (if a ∈ V (Q)). Then H ′

is a minimal frame on (a1, ..., a5), and yet it does not satisfy (9.5), because of the H ′-path

P , a contradiction. Thus b 6∈ V (P2) − {u2}.

Now suppose that b ∈ V (P3) − {u3}. Then taking

X1 = V (P1 ∪ R17 ∪Q47 ∪ P4)

X2 = V (P2 ∪Q26) − (V (P ′) − {p1})

X3 = V (P3) − {u3}

X5 = V (P5 ∪ R56 ∪ P
′ ∪Q ∪ R) − {p1, b, q2}

X0 = V (P ∪Q36 ∪Q37) − {p1, u6, u7}

defines a turkey on (a1, ..., a5) contrary to (9.2). Thus b 6∈ V (P3) − {u3}.

Consequently, b ∈ V (Q12) − {u2}. Let Q′ be the subpath of Q36 between u6 and p2.

Then taking

X1 = V (P1 ∪R17 ∪Q47 ∪ P4 ∪Q12) − {u2}

X2 = V (P2) ∪ (V (Q26) − V (P ′)) ∪ (V (P ) − {p2})

X3 = V (P3) ∪ (V (Q36) − V (Q′))

X5 = (P5 ∪ R56 ∪Q
′)

X0 = V (R ∪ P ′ ∪Q) − {b, p1, u6, q2}

defines a turkey on (a1, ..., a5) contrary to (9.2). (The reader may see what seems to be a

simpler way to dispose of this case, but there is a difficulty with it if b = u1 = u7.) The

result follows.

We recall that P1, ..., P5 and the Qij’s are called the sides of H.
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(9.12) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5). Let P, Q be

disjoint H-paths of G, with ends p1p2 and q1q2 respectively, and let k with 1 ≤ k ≤ 7 be

such that p1, q1, p2, q2 all lie in Rk, in order. Then one of {p1, p2}, {q1, q2} is a subset of

the vertex set of some side of H.

Proof: Suppose first that k = 1; then we may assume that a1, p1, q1, p2, q2, a2 are in

order in R1. If q2 6∈ V (P2)−{u2}, then the result holds by (9.10), and so we assume that

q2 ∈ V (P2) − {u2}. Suppose that p1 6∈ V (P1) − {u1}. Then either the result holds, or

p1, q1 ∈ V (Q12) − {u2} and p2, q2 ∈ V (P2) − {u2}; but in the latter case by replacing the

subpath of P2 between q2 and u2 by Q, we obtain a minimal frame in which (9.7) is not

satisfied, a contradiction. Hence we may assume p1 ∈ V (P1)− {u1}. Consequently, if the

result does not hold, there are disjoint paths in R1\{p1, q2} with ends q1, u1 and p2, u2

respectively, and hence P is feasible, a contradiction. Thus if k = 1 the result holds.

If k = 2 the result holds, for otherwise there is a minimal frame violating (9.7), and

similarly (using (9.8)) the result holds if k = 4. By the symmetry we may therefore

assume that k = 3 and a2, p1, q1, p2, q2, a3 are in order in R3. By (9.7), the result holds

if q2 ∈ V (P2 ∪ Q26), and by (9.8) it holds if p1 ∈ V (Q36 ∪ P3). We assume therefore

that p1 ∈ V (P2 ∪ Q26) − {u6}, and q2 ∈ V (Q36 ∪ P3) − {u6}. If p2 ∈ V (P2 ∪ Q26), then

p1 ∈ V (P2)−{u2} and p2 ∈ V (Q26)−{u2} (unless the result holds), and by replacing the

subpath of Q26 between u2 and p2 by P we obtain a minimal frame violating (9.5). Thus

we may assume that p2 ∈ V (Q36 ∪ P3) − {u6}. Similarly if q1 ∈ V (Q36 ∪ P3), we may

assume that q2 ∈ V (P3)−{u3} and q1 ∈ V (Q36)−{u3}, and then by replacing the subpath

of Q36 between q1 and u3 by Q, we obtain a minimal frame violating (9.5). We therefore

assume that q1 ∈ V (P2∪Q26)−{u6}. If p1 ∈ V (P2)−{u2} and q2 ∈ V (P3)−{u3} then P

is feasible, a contradiction. Thus if p1 ∈ V (P2) − {u2}, then q2 ∈ V (Q36); but then there
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is a turkey on (a1, ..., a5), taking

X1 = V (P1 ∪ R17 ∪Q47 ∪ P4)

X2 = V (P ′)

X3 = V (P3 ∪Q
′)

X5 = V (P5 ∪ R56 ∪Q36 ∪ P ) − (V (Q′) ∪ {p1})

X0 = V (Q12 ∪ P2 ∪Q26 ∪Q) − (V (P ′) ∪ {u1, u6, q2})

where P ′ is the subpath of P2 between a2 and p1, and Q′ is the subpath of Q36 between

q2 and u3. Consequently, p1 ∈ V (Q26) − {u6}.

By (9.11), q2 6∈ V (Q36) (since q2 6= u6), and so q2 ∈ V (P3)−{u3}. But then there is a

turkey on (a1, ..., a5), taking

X1 = V (P1 ∪ R17 ∪Q47 ∪ P4),

X2 = V (P2 ∪ P
′)

X3 = V (Q′)

X5 = V (P5 ∪ R56 ∪Q26 ∪Q) − (V (P ′) ∪ {q2)}

X0 = V (P3 ∪Q36 ∪Q37 ∪ P ) − (V (Q′) ∪ {p1, u6, u7})

where P ′ is the subpath of Q26 between u2 and p1, and Q′ is the subpath of P3 between

a3 and q2. This completes the proof.

(9.13) Assuming (9.1) − (9.3), let H be a minimal frame on (a1, ..., a5), and let S be

a side of H. There do not exist disjoint H-paths P, Q with ends p1p2 and q1q2 respectively,

such that

(i) p1, q1, p2 lie in V (S) in order on S, and q2 ∈ V (Rk) − V (S) for some k with

S ⊆ Rk (1 ≤ k ≤ 7), and
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(ii) there is a path R in G from V (P ) − {p1, p2} to V (Rk ∪ Q) − V (S) with no

internal vertex in V (H ∪ P ∪Q).

Proof: First we prove that

(1) There do not exist such P, Q, R with Q ∩ R null.

For suppose such P,Q,R exist with Q ∩R null. Let R have ends a ∈ V (P )− {p1, p2}

and b ∈ V (Rk)−V (S). Let us examine the order of occurrence of p1, p2, q1, q2, b in Rk. We

may assume that p1, q1, p2, q2 occur in Rk in order, and since b 6∈ V (S) and p1, p2 ∈ V (S),

it follows that the order of the five vertices is one of

p1, q1, p2, q2, b

p1, q1, p2, b, q2

b, p1, q1, p2, q2.

In the first and third cases let j = 2, and in the second case let j = 1. Then the vertices

q1, q2, pj, b occur in the orders

q1, pj, q2, b

pj, q1, b, q2

b, q1, pj, q2

in the three cases. But there are disjoint H-paths with ends q1q2 and pjb respectively,

and so from (9.12), there is a side S ′ containing ≥ 3 of q1, q2, pj, b. Now S ′ 6= S since

b, q2 6∈ V (S); and so q1 6∈ V (S ′) since S is the only side containing q1. Consequently,

{q2, pj, b} ⊆ V (S ′), and so V (S ∩ S ′) = {pj}. Thus j = 2 since p1, q1, p2, q2 are in order in

Rk, and so p1, q1, p2, q2, b are in order in Rk. Let H ′ be the minimal frame obtained from
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H by deleting the edges and internal vertices of the subpath of S between p1 and p2, and

adding P ; then R is an H ′-path and so is the union of Q and the subpath of S between

p1 and q1, and they are disjoint, contrary to (9.12) applied to H ′. This proves (1).

From (1) it follows that if P,Q,R, S exist then P ∪ Q ∪ R ∪ S is a tripod with feet

s1, s2, q2 and with no other vertex in Z = V (H) − (V (S) − {s1, s2}), where S has ends

s1, s2. Consequently, by (3.3) we may choose P,Q,R, S and H so that there is a path R′

from V (P ) − V (S) to V (H) − V (S) disjoint from V (Q ∪ S). But by (9.9), R′ has both

ends in V (Rk), contrary to (1).

A frame H on (a1, ..., a5) in G is secure if, with the usual notation,

(a) it is minimal

(b) each side is induced (that is, every edge of G with both ends in the side is an

edge of the side), and

(c) for each H-flap C, there is no side S of H with N(C) ⊆ V (S).

(9.14) Assuming (9.1)-(9.3), if there is a frame on (a1, ..., a5) then there is a secure frame

on (a1, ..., a5).

Proof: Let H be a minimal frame on (a1, ..., a5). An H-flap C is good (with respect

to H) if N(C) 6⊆ V (S) for each side S of H; and bad otherwise. Let C1, ..., Cr be the good

H-flaps, ordered with

|V (C1)| ≥ |V (C2)| ≥ ... ≥ |V (Cr)|,

and let D1, ..., Ds be the bad H-flaps, ordered with

|V (D1)| ≥ |V (D2)| ≥ ... ≥ |V (Ds)|.
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The sequence

(|V (C1)|, ..., |V (Cr)|, |V (D1)|, ..., |V (Ds)|

is called the signature of H. Among all minimal frames, choose H so that its signature

is maximum, using the lexicographic order of signatures; that is, if H has signature

(α1, ..., αn), then no frame has signature (β1, ..., βm) where for some j ≤ min(n,m− 1),

(i) αi = βi for 1 ≤ i ≤ j, and

(ii) either n = j or αj+1 < βj+1.

We shall show that H is secure.

Let S be a side of H, and suppose that a, b ∈ V (S) are adjacent in G but not in S.

Let H ′ be obtained from H by replacing the subpath of S between a and b by the edge

ab; then H ′ is a minimal frame. Each H-flap is a subset of an H ′-flap, and each good

H-flap is a subset of a good H ′-flap. Consequently, the signature of H ′ is greater than

that of H, a contradiction. This proves that each side is induced.

Suppose that there is a bad H-flap, and choose a bad H-flap C with |V (C)| minimum.

Thus |V (C)| is the last term of the signature of H. Choose a side S with N(C) ⊆ V (S).

Let a, b ∈ V (S) ∩ N(C) be the first and last members of N(C) in S. From (9.3), there

is an H-flap C ′ 6= C such that some member of N(C ′) lies in S strictly between a and

b. Let H ′ be obtained from H by replacing the subpath of S between a and b by a path

between a and b with all its internal vertices in C. Then H ′ is minimal. Moreover, every

H-flap except C is a subset of an H ′-flap, and every good H-flap is a subset of a good

H ′-flap. Since C ′ is a proper subset of an H ′-flap, it follows that the signature of H ′ is

greater than that of H, a contradiction. Thus there is no bad H-flap, and so H is secure.
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Assuming (9.1)-(9.3), let H be a secure frame on (a1, ..., a5). It follows from (9.9) and

the definition of “secure” that for every H-flap C, either N(C) ⊆ V (R17 ∪R56), or there

is a unique i (1 ≤ i ≤ 7) such that N(C) ⊆ V (Ri). We define G0 to be the subgraph of

G induced on

V (R17 ∪ R56) ∪
⋃

(C : C is an H-flap with N(C) ⊆ V (R17 ∪R56))

and for 1 ≤ i ≤ 7 we define Gi to be the subgraph of G induced on

V (Ri) ∪
⋃

(C : C is an H-flap with N(C) ⊆ V (Ri) and N(C) 6⊆ V (R17 ∪R56)).

Then every edge of G not in H belongs to exactly one of G0, G1, ..., G7, and

G = G0 ∪G1 ∪ ... ∪G7.

(9.15) Assuming (9.1) − (9.3), let H be a secure frame on (a1, ..., a5), and let 1 ≤ i ≤ 7.

Then Gi (defined as above ) can be drawn in a disc with Ri drawn on the boundary.

Proof: There is no (≤ 3)-separation (X, Y ) of Gi with V (Ri) ⊆ X and |Y −X| ≥ 2, for

otherwise (X ′, Y ) would violate (9.3), where

X ′ = X ∪
⋃

(V (Gj) : 0 ≤ j ≤ 7, j 6= i).

Consequently, by (2.4) it suffices to show that there do not exist disjoint Ri-paths P,Q in

Gi with ends p1p2 and q1q2 respectively, so that p1, q1, p2, q2 occur in Ri in order. Suppose

then that there exist such P,Q. By (9.12) there is a side S containing ≥ 3 of p1, q1, p2, q2,

and S is a subpath of Ri. We may assume that p1, q1, p2 lie in S in order.

(1) q2 ∈ V (S).
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For suppose not; then q2 ∈ V (Ri) − V (S). Since P ⊆ Gi and H is secure and

V (P ) 6= {p1, p2} (because S is induced) there is a path R of G from V (P ) − {p1, p2} to

V (Ri ∪ Q) − V (S), with no internal vertex in V (H ∪ P ∪ Q), contrary to (9.13). This

proves (1).

By (1) we may assume that p1, q1, p2, q2 are in V (S) in order. Since P,Q belong to Gi

and H is secure there is a minimal path R from V (P ∪Q)−{p1, p2, q1, q2} to V (Ri)−V (S)

with no internal vertex in V (H). We may assume that R has one end a ∈ V (Q)−{q1, q2}

and the other b ∈ V (Ri) − V (S). Let Q′ be the path in Q ∪ R from q1 to b; then P,Q′

violate (1), a contradiction. The result follows.

Let z1, ..., z9 be distinct vertices of a graph J which can be drawn in a disc with z1, ..., z9

on the boundary in order. Let J1 be obtained from J by identifying z6 with z8; let J2 be

obtained from J by identifying z7 with z9; and let J3 be obtained from J by identifying

z6 with z8 and z7 with z9. If K ∈ {J, J1, J2, J3}, we call (K, z1, ..., z5) a twisted graph with

twist the set of at most four vertices corresponding to z6, z7, z8, z9. Finally, we deduce the

main result of this section, the following.

(9.16) Assuming (9.1) − (9.3), if there is a frame on (a1, ..., a5) then there is a (≤ 4)-

separation (X, Y ) of G with a1, ..., a5 ∈ X, such that ((G|X)\E(G|X ∩ Y ), a1, ..., a5) is a

twisted graph with twist X ∩ Y .

Proof: Let H be a secure frame; this exists by (9.14). Let X =
⋃

(V (Gi) : 1 ≤ i ≤ 7)

and Y = V (G0). By (9.4), (X, Y ) is a (≤ 4)-separation of G and the result follows from

(9.15).

10. 7-CONNECTIVITY OF HADWIGER GRAPHS

In this section we combine the results of sections 8 and 9 to close the gap left by (7.16).
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We need the following lemma. (P1, ...,P12 were defined in section 8.)

(10.1) Let G be a graph, let v1, ..., v6 ∈ V (G) be distinct, so that P1, ...,P12 are infeasible

in G, and for 1 ≤ k ≤ 6 there is no turkey in G on (v1, ..., v̂k, ..., v6). For 1 ≤ i ≤ 5 let

vivi+1 be adjacent. Let H be obtained from G by adding five new vertices a1, ..., a5, where

ai has neighbours vi and vi+1 (1 ≤ i ≤ 5). Then {a1, a3, a5}, {a2, a4} is infeasible in H

and there is no turkey on (a1, ..., a5) in H.

Proof: We denote the partition {a1, a3, a5}, {a2, a4} by P. Suppose first that P is

strongly feasible in H. Thus, there is a triad T on H with feet a1, a3, a5 and a path

S with ends a2, a4 such that S ∩ T is null. Choose S, T with V (S ∪ T ) minimal. For

1 ≤ i ≤ 5, ai has valency 1 in S ∪ T ; let its neighbour in S ∪T be bi. Then bi ∈ {vi, vi+1},

and b1, ..., b5 are all distinct. Either b3 = v3 or b3 = v4, so from the symmetry we may

assume that b3 = v3, and hence b1 = v1 and b2 = v2.

Suppose first that b4 = v4. Then v5 6∈ V (S) by the minimality of V (S ∪ T ), and

v6 6∈ V (S) since P12 is not feasible in G. Hence v5 ∈ V (T ) since P5 is not feasible, and

v6 ∈ V (T ) since P6 is not feasible. By the minimality of V (S ∪ T ), v5 and v6 both belong

to the path of T between v1 and v3, and hence one of P10,P11 is feasible, a contradiction.

Thus b4 6= v4, and so b4 = v5 and b5 = v6. Then v4 6∈ V (S) by the minimality of

V (S ∪ T ), and v4 ∈ V (T ) since P4 is not feasible. By the minimality of V (S ∪ T ), v3 and

v4 both belong to the path of T between v1 and v6, and hence one of P7,P8 is feasible, a

contradiction. This proves that P is not strongly feasible in H.

Now suppose that P is feasible in H. Since it is not strongly feasible, we may write

{a1, a3, a5} = {c1, c2, d} in such a way that there are three paths P1, P2, Q of H, disjoint

except for their ends, where Q has ends a2a4, and Pi has ends cid (i = 1, 2). Suppose

first that d = a1; then we may assume that c1 = a3 and c2 = a5. Consequently, v1, v2 ∈
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V (P1 ∪ P2), and so v3 ∈ V (Q), v4 ∈ V (P1), v5 ∈ V (Q) and v6 ∈ V (P2). But then P9

is feasible in G if v1 ∈ V (P1) and P11 is feasible in G if v2 ∈ V (P1), in either case a

contradiction. Thus d 6= a1, and by symmetry d 6= a5; hence d = a3, and we may assume

that c1 = a1 and c2 = a5. Hence v3, v4 ∈ V (P1∪P2), and so v2, v5 ∈ V (Q), v1 ∈ V (P1) and

v6 ∈ V (P2). Then P7 is feasible in G if v3 ∈ V (P1) and P8 is feasible in G if v4 ∈ V (P1),

in either case a contradiction. This proves that P is not feasible in H.

Now suppose that {X1, X2, X3, X5, X0} is a turkey in H on (a1, ..., a5), with a1, a4 ∈

X1, a2 ∈ X2, a3 ∈ X3, a5 ∈ X5.

(1) |Xi| ≥ 2 for i = 1, 2, 3, 5.

This is trivial for i = 1 since a1, a4 ∈ X1. Suppose first that |X2| = 1, and hence

X2 = {a2}. Since X2X0 and X2X5 are adjacent, it follows that one of v2, v3 is in X0

and the other is in X5. Consequently v1 ∈ X1. Since v3 6∈ X3 and X0X3, X3X5 are both

adjacent, it follows that v4 ∈ X0∪X3∪X5, and hence v5 ∈ X1 and v6 ∈ X5. If v2 ∈ X0, then

v3 ∈ X5 and v4 ∈ X0 ∪X3, and so P10 is feasible, via X1, X0∪X3, X5. On the other hand,

if v2 6∈ X0, then v2 ∈ X5, v3 ∈ X0, v4 ∈ X3 ∪X5 and P12 is feasible, via X0 ∪X1, X3 ∪X5.

This shows that |X2| ≥ 2. Now suppose that |X3| = 1; then v1, v5 ∈ X1, v2 ∈ X2, v6 ∈ X5,

and one of v3, v4 is in X0, and the other is in X5. If v3 ∈ X0 then P12 is feasible, via

X1 ∪X0, X2 ∪X5; and if v3 ∈ X5 then P10 is feasible, via X1, X2 ∪X0, X5. Thus |X3| ≥ 2.

Finally, suppose that |X5| = 1. Then v1, v4 ∈ X1, v2 ∈ X2, v3 ∈ X3, and one of v5, v6 is in

X2 and the other is in X3. If v5 ∈ X2 then P8 is feasible, via X1, X2, X3; and if v5 ∈ X3

then P9 is feasible via X1, X2, X3. This proves (1).

From (1), it follows that there exist 1 ≤ i1 < i2 < i3 < i4 < i5 ≤ 6 such that vij ∈ Xj

for j = 1, 2, 3, 5 and vi4 ∈ X1. Let Yj = Xj − {a1, ..., a5} (j = 1, 2, 3, 5, 0). We claim that

{Y1, Y2, Y3, Y5, Y0} is a turkey in G on (vi1 , vi2 , vi3 , vi4, vi5).
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Let {i, j} be one of {0, 1}, {0, 2}, {0, 3}, {2, 5}, {3, 5}; we claim that YiYj are adjacent

in G. For XiXj are adjacent in H, and so we may assume that there exist u ∈ Xi, v ∈ Xj

which are adjacent in H with {u, v} 6⊆ V (G). By exchanging i and j if necessary we may

assume that u 6∈ V (G), and so u = ah for some h with 1 ≤ h ≤ 5. But u ∈ Xi, and so

h = i if i 6= 1, and h ∈ {1, 4} if i = 1. Now ah has only two neighbours in H, namely vh

and vh+1, and so one of these is v, and the other, w say, is in Xi by (1). Hence, v, w are

adjacent, since vhvh+1 are adjacent, and so YiYj are adjacent as required.

To complete the proof that {Y1, Y2, Y3, Y5, Y0} is a turkey, we must show that each Yi

is a fragment of G. Let i ∈ {1, 2, 3, 5, 0} and let C be a component of G|Yi; and suppose

that C 6= G|Yi. Let G|(Yi − V (C)) = D. Since Xi is a fragment of H, there exists h with

1 ≤ h ≤ 5 such that ah ∈ Xi and ah has neighbours in both V (C) and V (D). But the two

neighbours of ah are adjacent, contradicting that C is a component of G|Yi. Thus each

Yi is a fragment of G, and so {Y1, Y2, Y3, Y5, Y0} is a turkey in G on (vi1, vi2 , vi3 , vi4, vi5),

contrary to the hypothesis.

Now let us apply (10.1) and the results of sections 8 and 9 to our problem.

(10.2) Let G be a non-apex Hadwiger graph. Then there is no (≤ 6)-separation (A,B) of

G with |A− B|, |B − A| ≥ 2.

Proof: Suppose that there is a (≤ 6)-separation (A,B) with |A − B|, |B − A| ≥ 2.

Choose it with |A| minimum. By (7.16), G|A∩B is a 5-edge path, with vertices v1, ..., v6,

say, in order.

Let G∗ be obtained from G|A by adding five new vertices a1, ..., a5, where ai is adjacent

to vi and to vi+1 (1 ≤ i ≤ 5). By (10.1), (8.6) and (8.7), we deduce

(1) {a1, a3, a5}, {a2, a4} is infeasible in G∗, and there is no turkey in G∗ on (a1, ..., a5) or
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on (a5, ..., a1).

Moreover,

(2) G∗ is simple, and there is no (≤ 3)-separation (X, Y ) of G∗ with a1, ..., a5 ∈ X 6=

V (G∗).

For suppose that (X, Y ) is such a separation, and choose it with X maximal. Suppose

that 1 ≤ i ≤ 6 and vi 6∈ X. From the symmetry, we may assume that i < 6 and that

vi+1 ∈ X, since one of v1, ..., v6 belongs to X. Now ai ∈ X, and since vi ∈ Y −X it follows

that ai ∈ X ∩ Y . Let X ′ = X ∪ {vi}, Y
′ = Y −{ai}. Then (X ′, Y ′) is a separation of G∗,

since vi, vi+1 ∈ X ′, and (X ′, Y ′) has the same order as (X, Y ). From the maximality of

X, it follows that X ′ = V (G∗), and so X = V (G∗) − {vi}. But vi has ≥ 2 neighbours in

A−B (from (6.3) and the minimality of A) and ≥ 2 neighbours in (A ∩B) ∪ {a1, ..., a5}

(actually, ≥ 4 neighbours unless i = 1 or 6), and hence vi has valency ≥ 4 in G∗, a

contradiction since (X, Y ) has order ≤ 3. This proves that vi ∈ X for 1 ≤ i ≤ 6. But

then (Y ∩ A, (X ∩ A) ∪B) is a (≤ 3)-separation of G, a contradiction. This proves (2).

(3) There is a frame in G∗ on (a1, ..., a5).

Define u1 = v1, u2 = a2, u6 = v3, u3 = a3, u7 = v4, u4 = a4, u5 = v6. Let R17, R56 be

disjoint paths of G|(A− {v2, v5}), where R17 has ends v1v4 and R56 has ends v3v6; these

exist by (7.2). Let P2, P3, P4 be 1-vertex paths, with vertex ai (i = 2, 3, 4); and let P1, P5

be 1-edge paths, formed by the edges a1v1 and a5v6 respectively. Let Q12 consist of the

edges v1v2 and v2a2; let Q45 consist of the edges a4v5 and v5v6; and let every remaining

Qij needed for the frame be the 1-edge path formed by the edge uiuj. This proves (3).
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We deduce from (1), (2), (3) and (9.16) that

(4) There is a (≤ 4)-separation (X, Y ) of G∗ with a1, ..., a5 ∈ X, such that

((G∗|X)\E(G∗|X ∩ Y ), a1, ..., a5)

is a twisted graph with twist X ∩ Y .

From the definition of a twist, it follows that a1, ..., a5 6∈ X ∩ Y , and so v1, ..., v6 ∈ X.

Hence (A ∩X,A ∩ Y ) is a (≤ 4)-separation of G|A with A ∩B ⊆ A ∩X, and so A ⊆ X;

and hence V (G∗) = X.

Let |A−B| = n, and let e be the number of edges of G with both ends in A−B, and

f the number with one end in A−B and the other in A ∩B. By (5.6), 2e+ f ≥ 7n− 2.

Since f ≥ 12 by (6.3) and the minimality of A, it follows that 2e+ 2f ≥ 7n+ 10; and so

|E(G|A)| ≥ 7n/2 + 10, since G|(A ∩B) has five edges. Thus |E(G∗)| ≥ 7n/2 + 20. But

((G∗|X)\E(G∗|X ∩ Y ), a1, ..., a5)

is a twisted graph with twist X∩Y ; let J, z1, ..., z9 be as in the definition of twisted graph.

Let |Y | = k; then |X ∩ Y | = k, and k = 2, 3 or 4, and |E(G|Y )| ≤ 1
2
k(k − 1). Now

|V (J)| = |X| + 4 − k = n + 15 − k

and J can be drawn in a disc with z1, ..., z9 on the boundary in order. Since z6, z7, z8, z9

are mutually non-adjacent in J and so are z1, z2, z3, z4, z5, it follows that

|E(J)| ≤ 3|V (J)| − 6 − 13 = 3(n+ 15 − k) − 19 = 3n− 3k + 26.

But |E(G∗)| ≤ |E(J)| + 1
2
k(k − 1), since X = V (G∗), and so

|E(G∗)| ≤ 3n+ 26 − 3k +
1

2
k(k − 1).
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Since k = 2, 3 or 4, and so −3k + 1
2
k(k − 1) ≤ −5, it follows that

|E(G∗)| ≤ 3n+ 21.

Yet |E(G∗)| ≥ 7n/2 + 20, and so 7n/2 + 20 ≤ 3n + 21, that is, n ≤ 2, contrary to (6.3).

The result follows.

11. FORBIDDEN SUBGRAPHS

With the aid of (10.2) we now prove the absence of several kinds of subgraph in a

non-apex Hadwiger graph. We begin with the following.

(11.1) Let G be a non-apex Hadwiger graph, and let X ⊆ V (G), with |E(G|X)| = g

and |V (G) −X| = n. Then |E(G\X)| ≥ 3n− 4|X| + 8 + g.

Proof: Let |E(G\X)| = e, and let f be the number of edges with one end in X and the

other in V (G)−X. Then by (5.6), 2e+f ≥ 7n−2. But by (6.1), e+f+g ≤ 4(n+|X|)−10.

Hence, subtracting, e− g ≥ 3n− 4|X| + 8, as required.

(11.2) Let G be a non-apex Hadwiger graph, and let X ⊆ V (G) with |X| = 3. Let

v1, v2, v3, v4 ∈ V (G) −X be distinct. Then there is a 4-cluster {X1, ..., X4} of G\X with

vi ∈ Xi (i = 1, ..., 4).

Proof: Let |V (G) − X| = n. By (11.1), |E(G\X)| ≥ 3n − 4 > 3n − 6 and hence

G\X is non-planar. But G\X is 3-connected and has no 3-separation (A,B) with

|A− B|, |B − A| ≥ 2, by (10.2), and the result follows from (2.6).

(11.3) Let G be a non-apex Hadwiger graph, let v ∈ V (G) have valency 6, and let N

be the set of neighbours of v. If G|N has two disjoint triangles then it has no more edges.
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Proof: Let N = {v1, ..., v6}, where v1, v3, v5 are mutually adjacent, and so are v2, v4, v6;

and suppose v5, v6 are adjacent. By (11.2) there is a 4-cluster {X1, ..., X4} in G\{v, v5, v6}

with vi ∈ Xi (1 ≤ i ≤ 4); but then {X1, X2, X3, X4, {v}, {v5, v6}} is a 6-cluster in G, a

contradiction.

Figure 5: forbidden subgraphs.

Let F1, ..., F10 be the graphs shown in figure 5. By an Fi-subgraph of G we mean a

subgraph of G isomorphic to Fi.

(11.4) Let G be a non-apex Hadwiger graph. Then for 1 ≤ i ≤ 5, G has no Fi-subgraph.

Proof: G has no F1-subgraph by (2.7). Suppose it has an F2-, F3-, F4- or F5-subgraph.

In each case there are seven distinct vertices x, y, z, v1, v2, v3, v4 of G such that xy, yz are

adjacent and for 1 ≤ i ≤ 4, xvi are adjacent and either yvi are adjacent or zvi are adja-

cent. By (11.2) there is a 4-cluster {X1, ..., X4} in G\{x, y, z} with vi ∈ Xi (1 ≤ i ≤ 4).

But then {X1, ..., X4, {x}, {y, z}} is a 6-cluster in G, a contradiction.

If v is a vertex of a graph G, we denote the set of neighbours of v in G by N(v).

(11.5) Let G be a non-apex Hadwiger graph. Then |(N(u) ∪ N(v)) − {u, v}| ≥ 8 for

any two distinct vertices u,v of G, with equality only if both u and v are 6-valent.

Proof: Since G has no F3-subgraph by (11.4), |N(u) ∩ N(v)| ≤ 4. Consequently, if

uv are not adjacent,

|(N(u) ∪N(v)) − {u, v}| = |N(u) ∪N(v)| ≥ |N(u)| + |N(v)| − 4 ≥ 8,
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and the result holds. We assume then that uv are adjacent, and so

|(N(u) ∪N(v)) − {u, v}| = |N(u)| + |N(v)| − |N(u) ∩N(v)| − 2.

If |N(u)∩N(v)| ≤ 2 the result therefore holds. If |N(u)∩N(v)| ≥ 3, then |N(u)∩N(v)| = 3

by (2.7), and |N(u)| + |N(v)| ≥ 14 by (5.4), and again the result holds.

(11.6) Let G be a non-apex Hadwiger graph, and let (A,B) be a 7-separation of G with

|A− B| ≥ 2. Then |A−B| ≥ 4.

Proof: For all distinct u, v ∈ A−B we have

|(N(u) ∪N(v)) − {u, v}| ≤ |A| − 2 = |A− B| + 5.

Hence by (11.5), |A − B| ≥ 3. Moreover, if |A − B| = 3 then all vertices in A − B are

6-valent by (11.5), contrary to (5.6).

We recall that η(A,B) was defined just before (6.4).

(11.7) Let G be a non-apex Hadwiger graph, and let (A,B) be a 7-separation with

|A − B|, |B − A| ≥ 2. Let A ∩ B = {v1, ..., v7}. Suppose that either η(A,B) ≥ 12

or every vertex in A − B has valency ≥ 7. Then there is a 4-cluster {X1, ..., X4} in

G|(A− {v5, v6, v7}) with vi ∈ Xi (1 ≤ i ≤ 4).

Proof: We suppose, for a contradiction, that for some (A,B) there is no such 4-cluster,

and choose |A| as small as possible.

(1) There is no 7-separation (A′, B′) of G with A′ ⊆ A, B ⊆ B′, |A′ − B′| ≥ 2 and
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|A′| < |A|.

For suppose that (A′, B′) is such a separation. Let P1, ..., P7 be disjoint paths of

G|(A ∩ B′), where Pi has ends vi and v′i ∈ A′ ∩ B′ (1 ≤ i ≤ 7). (These exist by (10.2).)

If η(A,B) ≥ 12 then η(A′, B′) ≥ 12, while if every vertex in A − B has valency ≥ 7

then every vertex in A′ − B′ has valency ≥ 7. Consequently, from the minimality of |A|,

there is a 4-cluster {X ′
1, ..., X

′
4} in G|(A′ − {v′5, v

′
6, v

′
7}) with v′i ∈ X ′

i (1 ≤ i ≤ 4). Let

Xi = X ′
i ∪ V (Pi) (1 ≤ i ≤ 4); then {X1, ..., X4} satisfies the theorem, a contradiction.

This proves (1).

We deduce from (1) and (11.6) that

(2) Every vertex in A ∩B has ≥ 2 neighbours in A− B.

Let H = G|(A− {v5, v6, v7}).

(3) There is no trisection (C1, C2, D) of H of order 2 with |(Ci −D)∩ {v1, v2, v3, v4}| = 1

for i = 1, 2.

For suppose that (C1, C2, D) is such a trisection, with vi ∈ Ci − D (i = 1, 2) say.

Let C1 ∩ C2 ∩ D = {a, b}, and let C = C1 ∪ C2. Since (D ∪ {v5, v6, v7}, C ∪ B) is a

(≤ 7)-separation of G, and v1, v2 6∈ D, it follows from (1) that |V (G)− (B ∪C)| ≤ 1, that

is,

|D − {a, b, v3, v4}| ≤ 1.

Also, (C∪{v5, v6, v7}, D∪B) is a (≤ 7)-separation of G, and so either C∪{v5, v6, v7} = A

or |V (G) − (D ∪B)| ≤ 1.
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Suppose that C ∪ {v5, v6, v7} = A. Then D = {v3, v4}, since |C ∩D| = 2; and hence

C1 ∩ C2 = D. Since |A − B| ≥ 4 by (11.6), we may assume that |C1 − B| ≥ 2, and so

(C1 ∪ {v5, v6, v7}, D ∪ B ∪ C2) is a 6-separation of G violating (10.2).

Hence C∪{v5, v6, v7} 6= A, and so |V (G)−(D∪B)| ≤ 1, that is, |C−{a, b, v1, v2}| ≤ 1.

But |D−{a, b, v3, v4}| ≤ 1, and by (11.6), |A−B| ≥ 4, and so |A−B| = 4, and a, b ∈ A−B,

and C = {a, b, v1, v2, c} and D = {a, b, v3, v4, d}, where A− B = {a, b, c, d}; and we may

assume that C1 = {v1, a, b, c}, C2 = {v2, a, b}. It follows that c is not adjacent to v2,

and hence c is 6-valent, with neighbours v5, v6, v7, a, b, and v1. If d is adjacent to all of

v5, v6, v7, a, b then G has an F3-subgraph, contrary to (11.4). Thus d is also 6-valent,

adjacent to v3, v4 and to four of v5, v6, v7, a, b.

Suppose that ab are not adjacent. Since c, d are 6-valent, it follows that a, b have va-

lency ≥ 7, and hence have ≥ 5 common neighbours in {v1, ..., v7, c, d} contrary to (11.4).

Thus ab are adjacent. Since the edge ab is in ≤ 3 triangles, and a, b have valency ≥ 7, it

follows that a, b have valency 7, that there are exactly three vertices adjacent to both a

and b, and that each of v1, ..., v7, c, d is adjacent to at least one of a and b. In particular

we may assume that ≥ 2 of v5, v6, v7 are adjacent to a. But then the edge ac is in ≥ 3

triangles, contrary to (5.4). This proves (3).

(4) There is no (≤ 3)-separation (C,D) of H with v1, ..., v4 ∈ C and |D − C| ≥ 2.

For if (C,D) is such a separation then (B ∪ C,D ∪ {v5, v6, v7}) is a (≤ 6)-separation

of G, and

|D ∪ {v5, v6, v7} − (B ∪ C)| = |D − C| ≥ 2,

contrary to (10.2).

From (2), (3), (4) and (2.6), we deduce
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(5) H can be drawn in a plane with v1, v2, v3, v4 all incident with the infinite region.

Moreover, we have

(6) η(A,B) ≥ 11.

For suppose not. Choose v ∈ B − A with valency ≥ 7; this is possible by (5.6) and

(11.6). Then v is joined to A∩B by seven paths, disjoint except for v, by (10.2); and so by

(6.4) there is a separation (C,D) of G|B with C∩D = {v} and |C∩A|, |D∩A| ≥ 2. From

the symmetry, we may assume that |D ∩A| ≥ 4 and hence |C ∩A| ≤ 3. Thus (C,D ∪A)

is a (≤ 4)-separation of G, and so D∪A = V (G). But (D,C ∪A) is a (≤ 6)-separation of

G, since A∩C ∩D = ∅; and so |D− (C ∪A)| ≤ 1. Hence |D−A| ≤ 2, and so |B−A| ≤ 2

contrary to (11.6). This proves (6).

(7) There are ≤ 4 vertices in A − B with a neighbour in {v1, ..., v4}, and v1, ..., v4 each

have exactly two neighbours in A−B.

For suppose not; let us apply (6.5), with k = 7 and Z = {v1, v2, v3, v4}. With δ, ε as

in (6.5), ε = 1 by (2); and either δ = 1 or η(A,B) ≥ 12, and so by (6), δ + η(A,B) ≥ 12.

Then (6.5)(i) is false, by (2); (6.5)(ii) is false, since δ+η(A,B) ≥ 12; (6.5)(iii) is false since

G has no F3-subgraph, by (11.4); and (6.5)(iv) is false, by (5). This is a contradiction,

and so (7) holds.

Let J be the subgraph of G with V (J) = (A−B)∪ {v1, v2, v3, v4} and edges the edges

of G with at least one end in A− B and with both ends in V (J).
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(8) J is 2-connected.

For suppose that (C,D) is a (≤ 1)-separation of J with C,D 6= V (J). Then

(D ∪ B,C ∪ {v5, v6, v7})

is a separation of G of order

|C ∩D| + 7 − |B ∩D|.

If D ∪ B = V (G), choose v ∈ V (H) − D; then v ∈ {v1, v2, v3, v4}. By (2), v has ≥ 2

neighbours in A − B, and both are in C since v ∈ V (H) − D; and so |C ∩ D| ≥ 2, a

contradiction. Hence D∪B 6= V (G). Consequently, (D∪B,C∪{v5, v6, v7}) has order ≥ 6,

and so |B∩D| ≤ 1+ |C∩D| ≤ 2. Similarly |B∩C| ≤ 2, and so |B∩D| = |B∩C| = 2 and

|C∩D| = 1. Consequently, (D∪B,C∪{v5, v6, v7}) has order 6, and so |V (G)−(D∪B)| = 1,

that is, |C − (D ∪B)| = 1. Similarly |D− (C ∪B)| = 1, and so |A−B| ≤ 3, contrary to

(11.6). This proves (8).

Let N be the set of vertices in A−B with a neighbour in {v1, ..., v4}. Take a drawing

of H as in (5); since J is a subgraph of H, this yields a drawing of J . By (8) there is a

circuit C bounding the infinite region of the latter. By (5), {v1, ..., v4} ∈ V (C), and by

(7), V (C) = N ∪ {v1, ..., v4} and |N | = 4, since {v1, ..., v4} is stable in J . Let the vertices

of C be v1, a1, v2, a2, v3, a3, v4, a4 in order.

(9) |A− B| ≥ 6.

By (5.6), we may assume without loss of generality that a1 is not 6-valent. If A−B =

{a1, a2, a3, a4} then by (7),

(N(a1) ∪N(a2)) − {a1, a2} ⊆ {a3, a3, v1, v2, v3, v5, v6, v7},
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contrary to (11.5). Thus |A− B| ≥ 5. If A−B = {a1, a2, a3, a4, a} then by (7)

(N(a1) ∪N(a)) − {a1, a} ⊆ {a2, a3, a4, v1, v2, v5, v6, v7},

contrary to (11.5). This proves (9).

Now (A − {v1, v2, v3, v4}, B ∪ N) is a 7-separation of G, and |(A − {v1, v2, v3, v4}) −

(B ∪N)| ≥ 2 by (9). This contradicts (1), and the result follows.

(11.8) Let G be a non-apex Hadwiger graph, and let (A,B) be a 7-separation with

|A− B|, |B − A| ≥ 2. Then G|A ∩B has no circuit of length 4 or 5.

Proof: Suppose that G|A ∩B has a circuit of length 4 or 5.

(1) η(A,B) ≥ 12 and η(B,A) ≥ 12.

For by (11.6), there exists v ∈ A − B with valency 7, and hence there exist seven

paths P1, ..., P7 of G|A from v to A ∩ B, disjoint except for v. Suppose that (C,D) is a

separation of G|A with C ∩ D = {v} and |C ∩ B|, |D ∩ B| ≥ 2. Since (C,B ∪ D) is a

separation of G of order

|C ∩D| + 7 − |D ∩ B| ≤ 6

it follows that |C − (B ∪D)| ≤ 1 and similarly |D − (B ∪ C)| ≤ 1. Hence |A − B| ≤ 3,

contrary to (11.6). Thus there is no such (C,D), and so the claim follows from (6.4).

Let A ∩B = {v1, ..., v7}. From (11.7) and (1), there is a 4-cluster {X1, X3, X6, X7} in

G|(A−{v2, v4, v5}) with vi ∈ Xi (i = 1, 3, 6, 7). Similarly there is a 4-cluster {Y2, Y4, Y6, Y7}

in G|(B − {v1, v3, v5}) with vi ∈ Yi (i = 2, 4, 6, 7).

It follows that not all of v1v2, v2v3, v3v4, v4v1 are adjacent; for if they are then

{X1, Y2, X3, Y4, X6 ∪ Y6, X7 ∪ Y7}
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is a 6-cluster in G, a contradiction. Similarly not all of v1v2, v2v3, v3v4, v4v5, v5v1 are

adjacent; for if they are then

{X1, Y2, X3, Y4 ∪ {v5}, X6 ∪ Y6, X7 ∪ Y7}

is a 6-cluster in G, a contradiction. The result follows.

We need the following lemma.

(11.9) Let e1, ..., ek be mutually non-adjacent edges of a simple graph G. Let T be the

number of triangles of G containing one of e1, ..., ek, and let S be the number of induced

circuits of length 4 containing two of e1, ..., ek. Let H be obtained from G by contracting

e1, ..., ek and deleting any multiple edges. Then

|E(H)| ≥ |E(G)| − k − S − T.

Proof: Let J be the graph obtained from G by contracting e1, ..., ek; then J is loopless.

For each v ∈ V (J) let Zv be the set of one or two vertices of G corresponding to v. Let

u, v ∈ V (J) be distinct; we claim

(1) The number of edges of J with ends u, v is at most one more than the number

of induced circuits C of G with V (C) ⊆ Zu ∪ Zv.

For let the number of edges of J with ends u, v be r, and let there be s induced circuits

of G of length 4 and t of length 3 with vertex set in Zu ∪ Zv. If r ≤ 1 then s = t = 0; if

r = 2 then s+ t = 1; if r = 3 then s = 0 and t = 2; and if r = 4 then s = 0 and t = 4. In

each case r ≤ s + t+ 1, as required.

Now, by summing the inequality of (1) over all adjacent pairs u, v of vertices of J , we

deduce that

|E(J)| ≤ |E(H)| + S + T.
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But |E(J)| = |E(G)| − k, and the result follows.

(11.10) Let G be a non-apex Hadwiger graph. Then G has no F6-, F7- or F8-subgraph.

Proof: Suppose that G has such a subgraph K say. We refer to the three cases when K

is an F6-, F7- or F8-subgraph, as cases (i), (ii) and (iii) respectively. Let K have vertex set

{x1, x2, v1, v2, v3, v4, v5, v6, v7, v8}, where in case (i) v5 = v6 and v7 = v8, in case (ii) v7 = v8,

and otherwise these vertices are all distinct, and x1 has neighbours x2, v1, v3, v5, v7, and

x2 has neighbours x1, v2, v4, v6, v8, and v1v2 are adjacent, and v3v4 are adjacent, and v5v6

are adjacent (except in case (i), when v5 = v6) and v7v8 are adjacent (except in cases (i)

and (ii), when v7 = v8).

Let H be obtained from G\{x1, x2} by contracting the edges v1v2, v3v4, v5v6 (except

in case (i)) and v7v8 (except in cases (i) and (ii)), forming vertices w1, w2, w3, w4. (In case

(i) we take w3 = v5 and w4 = v7, and in case (ii) we take w4 = v7.)

(1) There is no 4-cluster {X1, ..., X4} in H with wi ∈ Xi (1 ≤ i ≤ 4).

For suppose that {X1, ..., X4} is such a 4-cluster. For 1 ≤ i ≤ 4, let X ′
i = (Xi−{wi})∪

{v2i−1, v2i}; then {X ′
1, X

′
2, X

′
3, X

′
4, {x1}, {x2}} is a 6-cluster in G, a contradiction.

(2) There is no trisection (A1, A2, B) of H of order 2 with |(Ai−B)∩{w1, w2, w3, w4}| = 1

(i = 1, 2).

For suppose that (A1, A2, B) is such a trisection. Let A1 ∩ A2 ∩ B = {a, b}. Let

A′
1 = (A1 − {w1, w2, w3, w4}) ∪

⋃

({v2i−1, v2i} : 1 ≤ i ≤ 4, wi ∈ A1)
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and define A′
2, B

′ similarly. Then (A′
1, A

′
2, B

′) is a trisection of G\{x1, x2} of order ≤ 4.

In particular,

(A′
1 ∪ {x1, x2}, A

′
2 ∪ B

′ ∪ {x1, x2})

is a (≤ 6)-separation of G. Since A1 − {a, b} and A2 − {a, b} both contain mem-

bers of {w1, ..., w4} and hence are non-empty, it follows that A′
1 ∪ {x1, x2} 6= V (G)

and A′
2 ∪ B′ ∪ {x1, x2} 6= V (G). Hence this separation has order exactly 6, and so

a, b ∈ {w1, w2, w3, w4}, and a, b 6= w4 in cases (i) and (ii) and a, b 6= w3 in case (i). Thus

we may assume that a = w1, b = w2. Let Z = {v1, v2, v3, v4, x1, x2}. Since (A′
1 ∪ {x1, x2},

A′
2 ∪B

′ ∪ {x1, x2}) has order 6 it follows that either |A′
1 −Z| ≤ 1 or |(A′

2 ∪B
′)− Z| ≤ 1.

Similarly either |A′
2 − Z| ≤ 1 or |(A′

1 ∪ B′) − Z| ≤ 1. We may therefore assume that

|A′
1−Z| ≤ 1. Since A1−{a, b} contains one of w3, w4, it follows that we may assume that

w4 ∈ A1 −{a, b} and v7 = v8, and in case (iii), this is a contradiction. It follows therefore

that we are in case (i) or (ii), and so v7 = v8 = w4. Since A′
1 −Z = {v7}, every neighbour

of v7 in G is in Z, and so v7 is 6-valent in G, and v7 is adjacent to every vertex in Z. But

G|Z has ≥ 2 circuits of length 4, contrary to (11.3) and (5.3). This proves (2).

(3) There is no (≤ 3)-separation (A,B) of H with w1, ..., w4 ∈ A, |B − A| ≥ 2, and

|{w1, ..., w4} ∩ B| ≤ 2.

For suppose that (A,B) is such a separation. Define

A′ = (A− {w1, ..., w4}) ∪ {v1, ..., v8}

B′ = (B − {w1, ..., w4}) ∪
⋃

({v2i−1, v2i} : 1 ≤ i ≤ 4, wi ∈ B).

Then |A′∩B′| ≤ 5, since |A∩B| ≤ 3 and |{w1, ..., w4}∩B| ≤ 2. Thus (A′∪{x1, x2}, B
′∪

{x1, x2}) is a (≤ 7)-separation ofG. Now |B ′−A′| = |B−A| ≥ 2, and |A′−B′| ≥ |A−B| ≥

2 since at least two of w1, ..., w4 are in A− B. Therefore (A′ ∪ {x1, x2}, B
′ ∪ {x1, x2}) is

117



a 7-separation of G, and A∩B contains two of w1, ..., w4. This contradicts (11.8). Hence

(3) holds.

From (1), (2), (3) and (2.6), we deduce that H can be drawn in a disc with w1, ..., w4

on the boundary in some order. Let H ′ be obtained from H by deleting all parallel edges;

it follows that |E(H ′)| ≤ 3n−7 where n = |V (H)| = |V (H ′)|. For 1 ≤ i ≤ 4, define Ti = 0

if v2i−1 = v2i, and otherwise let Ti be the number of triangles of G\{x1, x2} containing

the edge v2i−1v2i. For 1 ≤ i < j ≤ 4, define Sij = 1 if G|{v2i−1, v2i, v2j−1, v2j} is a circuit

of length 4, and otherwise let Sij = 0. Let k be 2, 3, 4 in cases (i), (ii), (iii), respectively.

By (11.9)

|E(H ′)| ≥ |E(G\{x1, x2})| − k −
∑

1≤i≤4

Ti −
∑

1≤i<j≤4

Sij.

Hence

|E(G\{x1, x2})| ≤ 3n− 7 + k +
∑

1≤i≤4

Ti +
∑

1≤i<j≤4

Sij.

On the other hand, |V (G\{x1, x2})| = n+ k, and so by (11.1),

|E(G\{x1, x2})| ≥ 3(n+ k) − 8 + 8 + 1 = 3n+ 3k + 1.

Consequently,
∑

1≤i≤4

Ti +
∑

1≤i<j≤4

Sij ≥ 2k + 8.

Now T1, T2, T3, T4 ≤ 2, since by (11.4) G has no F2-subgraph, and so
∑

1≤i<j≤4 Sij ≥ 2k.

Since
∑

1≤i<j≤4 Sij ≤ 3 in cases (i) and (ii), it follows that we are in case (iii), and k = 4;

but then
∑

1≤i<j≤4 Sij ≤ 6 < 2k, a contradiction.

(11.11) Let G be a non-apex Hadwiger graph. Then G has no F9-subgraph.

Proof: Suppose that K is such a subgraph, with vertex set x, y, z, w, v1, v2, v3, v4, where

x has neighbours y, z, v1, v2, v3, v4, and y has neighbours x, v1, v2, w, and z has neighbours
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x, v3, v4, w. Let H = G\{x, y, z, w}.

(1) There is no 4-cluster {X1, ..., X4} in H with vi ∈ Xi (1 ≤ i ≤ 4).

For if {X1, ..., X4} is such a 4-cluster then

{X1, X2, X3, X4, {x}, {y, z, w}}

is a 6-cluster in G, a contradiction.

(2) There is no trisection (A1, A2, B) of H of order 2 with |(Ai − B) ∩ {v1, v2, v3, v4}| =

1 (i = 1, 2).

For suppose that (A1, A2, B) is such a trisection. Then (A1 ∪ {x, y, z, w}, A2 ∪ B ∪

{x, y, z, w}) is a 6-separation of G, and so either |A1−(A2∪B)| ≤ 1 or |(A2∪B)−A1| ≤ 1.

Similarly either |A2 − (A1 ∪ B)| ≤ 1 or |(A1 ∪ B) − A2| ≤ 1. We may therefore assume

that |A1 − (A2 ∪ B)| ≤ 1. If also |A2 − (A1 ∪ B)| ≤ 1 then |(A1 ∪ A2) − B| = 2, and

then (A1 ∪A2 ∪ {x, y, z, w}, B ∪ {x, y, z, w}) is a 6-separation of G contrary to (10.2), for

|B − (A1 ∪ A2)| ≥ 2 by (6.2). Thus |A2 − (A1 ∪ B)| ≥ 2, and so |(A1 ∪ B) − A2| ≤ 1.

Hence |B| = 2 and A1 ∪ A2 = V (H).

Now |A1 − A2 ∪ B| ≤ 1, and so we may assume that A1 − (A2 ∪ B) = {v1}. Since v1

has valency ≥ 6 in G, it follows that v1z are adjacent. But then G|{x, y, z, w, v1, v3, v4}

has an F2-subgraph, a contradiction. This proves (2).

(3) There is no (≤ 3)-separation (A,B) of H with v1, ..., v4 ∈ A and |B − A| ≥ 2

and |{v1, ..., v4} ∩B| ≤ 2.
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For if (A,B) is such a separation, then |A − B| ≥ 2 since |{v1, ..., v4} ∩ B| ≤ 2, and

(A ∪ {x, y, z, w}, B ∪ {x, y, z, w}) is a (≤ 7)-separation of G, violating (11.8).

From (1), (2), (3) and (2.6), we deduce that H can be drawn in a disc with v1, ..., v4 on

the boundary in some order. Hence |E(H)| ≤ 3n− 7 where |V (H)| = n. But by (11.1),

|E(H)| ≥ 3n− 16 + 8 + 4, a contradiction.

(11.12) Let G be a non-apex Hadwiger graph, and suppose that K is an F10-subgraph

of G. Then there exists v ∈ V (K) such that v has valency 2 in K, both its neighbours in

K have valency ≥ 3 in K, and no vertex in V (G) − V (K) is adjacent to v in G.

Proof: Let V (K) = {x1, x2, x3, x4, x5, v1, v2, v3}, where x1 is 5-valent, x2 is 4-valent,

x3 is 3-valent, x4x5 are adjacent, x1 has neighbours x3, v1, v2, v3, x5, and x2 has neigh-

bours x3, v1, v2, x4. Let H be obtained from G\{x1, x2, x3} by contracting the edge x4x5,

forming a vertex w say.

(1) There is no 4-cluster {X1, ..., X4} in H with vi ∈ Xi (1 ≤ i ≤ 3) and w ∈ X4.

For otherwise

{X1, X2, X3, (X4 − {w}) ∪ {x4, x5}, {x1}, {x2, x3}}

is a 6-cluster in G, a contradiction.

(2) H cannot be drawn in the plane with v1, v2, v3, w all incident with the infinite re-

gion.
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For suppose it can. Let H ′ be obtained from H by deleting any parallel edges; then

|E(H ′)| ≤ 3n − 7 where |V (H)| = n. Since x4x5 is in ≤ 3 triangles by (2.7), it follows

that |E(H)| ≤ 3n− 4, and so |E(G\{x1, x2, x3})| ≤ 3n− 3. But by (11.1)

|E(G\{x1, x2, x3})| ≥ 3(n+ 1) − 12 + 8 + 2 = 3n + 1

since |V (G) − {x1, x2, x3}| = n + 1, a contradiction. This proves (2).

(3) There is no (≤ 3)-separation (X, Y ) of H with v1, v2, v3, w ∈ X and |Y −X| ≥ 2 and

|Y ∩ {v1, v2, v3, w}| ≤ 2.

For suppose that (X, Y ) is such a separation. Let

X ′ = (X − {w}) ∪ {x1, x2, x3, x4, x5},

Y ′ =











Y ∪ {x1, x2, x3} if w 6∈ Y

(Y − {w}) ∪ {x1, x2, x3, x4, x5} if w ∈ Y.

Then (X ′, Y ′) is a (≤ 7)-separation of G, with |Y ′ − X ′| ≥ 2 and |X ′ − Y ′| ≥ 2 since

|Y ∩ {v1, v2, v3, w}| ≤ 2. By (10.2), (X ′, Y ′) has order 7, and so w ∈ X ∩ Y ; but then

G|X ′ ∩ Y ′ has a circuit of length 5 (with vertex set {x1, ..., x5}) contrary to (11.8). This

proves (3).

From (1), (2), (3) and (2.6), there is a trisection (X1, X2, Y ) of H of order 2 such that

X1 − Y and X2 − Y both contain exactly one member of {v1, v2, v3, w}. We may assume

that |X1| ≤ |X2|. Define

X ′
1 =











X1 ∪ {x1, x2, x3} if w 6∈ X1

(X1 − {w}) ∪ {x1, x2, x3, x4, x5} if w ∈ X1

and define X ′
2, Y

′ similarly. Then (X ′
1 ∪ X ′

2, Y
′) is a (≤ 6)-separation of G. But |(X ′

1 ∪

X ′
2) − Y ′| ≥ 2 since X1 − Y and X2 − Y both contain one of v1, v2, v3, w; and so by

(10.2), |Y ′ − (X ′
1 ∪ X ′

2)| ≤ 1. Consequently, |Y | ≤ 3. From (6.2) |V (H)| ≥ 14, and so

|X1| + |X2| + |Y | ≥ 18. Hence |X2| ≥ 8, since |X1| ≤ |X2|.
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Now (X ′
2, X

′
1 ∪ Y ′) is a (≤ 6)-separation of G, and it has order 6 only if w ∈ X2 ∩

(X1 ∪Y ). But |X ′
2 − (X ′

1 ∪Y
′)| ≥ 2 since |X2| ≥ 8, and |(X ′

1 ∪Y
′)−X ′

2| ≥ 1 since X1 −Y

contains one of v1, v2, v3, w. By (10.2), |(X ′
1 ∪ Y ′) − X ′

2| = 1, and w ∈ X2 ∩ (X1 ∪ Y ).

It follows that |Y | = 2, |X1| = 3, and X1 − Y = {vi} for some i with 1 ≤ i ≤ 3.

Since |(X2 − Y ) ∩ {v1, v2, v3, w}| = 1, it follows that |Y ∩ {v1, v2, v3, w}| = 2, and so

Y ⊆ {v1, v2, v3, w}. Since (X ′
1, X

′
2) is a 6-separation of G (because Y ′ ⊆ X ′

2) it follows

that every neighbour of vi in G belongs to

X ′
1 ∩X

′
2 = Y ′ ∪ {x1, x2, x3} ⊆ V (K),

and the result holds.

12. FINDING A PERFECT MATCHING

In this section we prove that every non-apex Hadwiger graph G has a matching of

cardinality b1
2
|V (G)|c. For that, we need the following.

(12.1) Let G be a non-apex Hadwiger graph, and let (A,B) be a 7-separation of G

with |A − B|, |B − A| ≥ 2, such that every vertex in A − B has valency ≥ 7. Let

A ∩ B = {v1, ..., v7}, and let Y1, ..., Y7 ⊆ B be disjoint fragments with vi ∈ Yi (1 ≤ i ≤ 7).

Then there are disjoint fragments X1, ..., X7 ⊆ A with vi ∈ Xi (1 ≤ i ≤ 7), such that for

at least four pairs i, j with 1 ≤ i < j ≤ 7, XiXj are adjacent and YiYj are not adjacent.

Proof: Let H be the graph with V (H) = {v1, ..., v7} in which vivj are adjacent if

YiYj are adjacent. We may assume that

(1) H has minimum valency ≥ 3.

For suppose that v1 is not adjacent in H to v4, v5, v6, v7 say. Choose v ∈ A−B; then
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by hypothesis, v has valency ≥ 7. Take seven paths P1, ..., P7 in G|A disjoint except for

v, where Pi has ends vvi. Let X1 = V (P1) and Xi = V (Pi)− {v} (2 ≤ i ≤ 7); since X1Xi

are adjacent for i = 4, 5, 6, 7, the result holds.

(2) For all Z ⊆ A ∩ B with |Z| = 4 there is a cluster in G|(A − B) ∪ Z traversing

Z.

This follows from (11.7), since every vertex in A− B has valency ≥ 7.

Let J be the complement of H; that is, V (J) = A ∩ B, and vivj are adjacent in J if

YiYj are not adjacent in G. We may assume that

(3) If Z ⊆ A ∩ B with |Z| = 4 then J |Z has ≤ 3 edges.

Let Z = {v1, ..., v4} say. By (2) there is a cluster {X1, ..., X4} in G|(A − {v5, v6, v7})

with vi ∈ Xi (1 ≤ i ≤ 4). Let Xi = {vi} (i = 5, 6, 7); then X1, ..., X7 satisfy the theorem,

unless J |Z has ≤ 3 edges. This proves (3).

In particular from (3) we deduce

(4) J has no circuit of length 4.

Next, we claim

(5) If (C,D) is a (≤ 3)-separation of H with C − D,D − C 6= ∅ then (C,D) has or-

der 3 and one of |C −D|, |D− C| = 1.
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For suppose that |C − D|, |D − C| ≥ 2, and choose distinct a, b ∈ C − D and

c, d ∈ D − C. Then a, b are adjacent in J to c, d, contrary to (4). Hence we may as-

sume that |C − D| = 1, C − D = {a}, say. But by (1), a has valency ≥ 3 in H, and so

|C ∩D| ≥ 3, as required.

(6) H is planar.

For if not, then by (5) and [16], H has a 5-cluster {Z1, ..., Z5} say. Let Wi =
⋃

(Yj : 1 ≤

j ≤ 7, vj ∈ Zi) for 1 ≤ i ≤ 5; then {W1, ...,W5} is a 5-cluster in G|B, and Wi ∩A∩B 6= ∅

for 1 ≤ i ≤ 5. Choose v ∈ A − B; then since v has valency ≥ 7, there are by (10.2)

seven paths of G|A between v and A∩B, disjoint except for v. Hence there is a fragment

W6 ⊆ A − B such that v1, ..., v7 all have neighbours in W6; but then {W1, ...,W6} is a

6-cluster in G, a contradiction. This proves (6).

(7) J has no circuit of length 3.

For suppose that v1, v2, v3 ∈ V (J) are pairwise adjacent in J . By (6) not all of v1, v2, v3

are adjacent in H to all of v4, v5, v6 and so we may assume that v1v4 are adjacent in J .

But then Z = {v1, v2, v3, v4} contradicts (3).

(8) J has no circuit of length 7.

For if it has such a circuit, then by (3), J is a circuit of length 7; but then its

complement H is non-planar contrary to (6).

Our next objective is to show that J has no circuit of length 5. The proof requires

two steps. Suppose therefore that v1v2, v2v3, v3v4, v4v5, v5v1 are non-adjacent in H. Let
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K = G|(A− {v6, v7}). We may assume, by permuting v1, ..., v5, that

(9) There is a path P of K with ends v1v2, and a vertex v ∈ V (K) − {v1, v2, v3, v5},

and three paths P3, P4, P5 of K from v to v3, v4, v5 respectively, such that P3, P4, P5 are

mutually disjoint except for v, and each of them is disjoint from P.

For by (2) there are disjoint paths P,Q ofK\{v5} with ends v1v2 and v3v4, respectively.

Suppose that there is a separation (X, Y ) of K with v5 ∈ X, V (P ∪ Q) ⊆ Y , and

X ∩ Y = {v1, v2, v3, v4}. Then (X ∪ B, Y ∪ {v6, v7}) is a 6-separation of G, and so

|Y − X| ≤ 1 by (10.2), and hence one of P,Q has no internal vertices, a contradiction

since v1v2 and v3v4 are non-adjacent in H and hence in G. This proves that there is no

such (X, Y ), and hence there is a path R of K from v5 to V (P ∪ Q) − {v1, v2, v3, v4}

with no vertex in {v1, v2, v3, v4}. Choose a minimal such path R, with ends v5, v say. By

exchanging v1, v2 with v4, v3, we may assume that v ∈ V (Q)−{v3, v4}; but then (9) holds.

Choose v, P, P3, P4, P5 as in (9) with |E(P4)| minimum. (Note that possibly v = v4 in

(9), and so possibly E(P4) = ∅.)

(10) There is a path of K from V (P3∪P5) to V (P )−{v1, v2} with no vertex in {v, v1, v2}.

For if not, there is a separation (C,D) of K with C ∩D = {v, v1, v2}, V (P ) ⊆ C and

V (P3 ∪ P5) ⊆ D. Then (C ∪ {v6, v7}, D ∪ {v6, v7}) is a separation of G|A, and so

(C ∪ {v6, v7}, D ∪ {v6, v7} ∪B)

is a separation of G. Its order is

2 + |C ∩D| + |(C −D) ∩ {v4}| ≤ 6;
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and so |C − (D ∪ B)| ≤ 1. But C − (D ∪ B) 6= ∅ since V (P ) − {v1, v2} 6= ∅, and so

|C − (D ∪ B)| = 1, and there exists u ∈ C − (D ∪ B) ⊆ A − B with valency 6 in G,

contrary to the hypothesis. This proves (10).

Let Q be a minimal path of K from V (P3 ∪ P5) to V (P ) − {v1, v2} with no vertex in

{v, v1, v2}. Let Q have ends x ∈ V (P3∪P5) and y ∈ V (P )−{v1, v2}. From the symmetry,

we may assume that x ∈ V (P3), and hence x ∈ V (P3) − {v}. Suppose that Q ∩ P4 is

non-null, and let the minimal subpath of Q from x to V (P4) be Q′; let Q′ have ends x, v′.

Let P ′
3 be the union of Q′ and the subpath of P3 between v3 and x; let P ′

4 be the subpath

of P4 between v4 and v′; and let P ′
5 be the union of P5 and the subpath of P4 between

v and v′. Then P, v′, P ′
3, P

′
4, P

′
5 satisfy (9), contrary to the minimality of |E(P4)|. This

proves that Q ∩ P4 is null. Let

X1 = {v1}

X2 = V (P ) − {v1}

X3 = V (P3 ∪Q) − {y, v}

X4 = V (P4)

X5 = V (P5) − {v}

X6 = {v6}

X7 = {v7}

Then X1X2, X2X3, X3X4, X4X5 are adjacent in G, and the theorem holds. This proves

that we may assume (for a contradiction) that

(11) J has no circuit of length 5.

It follows that
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(12) J has no circuit of length 6.

For suppose that v1v2, v2v3, v3v4, v4v5, v5v6, v6v1 are adjacent in J . By (4), (7) and

(11), v7 has valency ≤ 1 in J , and J |{v1, ..., v6} is a circuit. But then H is non-planar,

contrary to (6). This proves (12).

(13) |E(J)| = 6 and J is a tree.

For from (4), (7), (8), (11), (12), J has no circuits and hence has ≤ 6 edges. But by

(6), |E(H)| ≤ 15, and yet |E(J)| + |E(H)| = 21. Hence |E(J)| = 6 and so J is a tree.

Since J is a tree with maximum valency ≤ 3 by (1) and (13), it has a 4-edge path

starting from some 1-valent vertex. Thus we may assume that v1v2, v2v3, v3v4, v4v5 are all

adjacent in J , and v1 is 1-valent in J . Consequently, v1vi are adjacent in H for 3 ≤ i ≤ 7;

and since J has no circuits, v2v5 are adjacent in H, and for i = 3, 4, 6, 7 vi is adjacent in H

to at least one of v2, v5. By (2) there is a 4-cluster {X3, X4, X6, X7} in G|(A−{v1, v2, v5})

with vi ∈ Xi (i = 3, 4, 6, 7). But then

{Y1, Y2 ∪ Y5, X3 ∪ Y3, X4 ∪ Y4, X6 ∪ Y6, X7 ∪ Y7}

is a 6-cluster in G, a contradiction.

We use (12.1) to prove the following.

(12.2) Let G be a non-apex Hadwiger graph. Then G has a matching of cardinality

≥ 1
2
(|V (G)| − 1).

Proof: Suppose that G has no such matching. By Tutte’s theorem [15], there exists

Z ⊆ V (G) such that G\Z has ≥ n + 2 components (actually, “odd” components, but
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that will not matter here), where n = |Z|. Since G\Z has ≥ 2 components it follows that

n ≥ 6 since G is 6-connected, and so G\Z has ≥ n+2 ≥ 8 components. Choose n distinct

components of G\Z, with vertex sets C1, ..., Cn, such that for 1 ≤ i ≤ n every vertex in

Ci has valency ≥ 7 in G. (This is possible by (5.6).)

For 1 ≤ i ≤ n let Ni be the set of vertices in Z with a neighbour in Ci. Let us number

C1, ..., Cn so that

|Ni| ≤ 7 and |Ci| = 1 for 1 ≤ i ≤ h

|Ni| ≤ 7 and |Ci| > 1 for h+ 1 ≤ i ≤ m

|Ni| ≥ 8 for m+ 1 ≤ i ≤ n.

Let Z ∪ C1 ∪ ... ∪ Ch = {v1, ..., vh+n}. We shall prove the following for h ≤ k ≤ m by

induction on k:

(∗) There exist disjoint fragments Y1, ..., Yh+n ⊆ Z ∪ C1 ∪ ... ∪ Ck with vi ∈ Yi for

1 ≤ i ≤ h + n, such that there are at least 4(h + k) pairs i, j with 1 ≤ i < j ≤ h + n for

which YiYj are adjacent.

(1) (∗) is true when k = h.

For each v ∈ C1 ∪ ... ∪ Ch, let Tv be the number of triangles containing v. Now v is

7-valent, by the choice of C1, ..., Ch and C1, .., Cn; let N be the set of neighbours of v. By

(5.2), G|N has no stable set of cardinality 4, and so G|N has ≥ 3 edges (in fact more).

Hence Tv ≥ 3. By summing over all such v, we deduce that |T | ≥ 3h, where T is the set of

triangles containing a vertex in C1 ∪ ...∪Ch. Since each member of T contains an edge of

G|Z, and each such edge is in ≤ 3 triangles by (2.7), it follows that |E(G|Z)| ≥ 1
3
|T | ≥ h.

Since each vertex in C1 ∪ ... ∪ Ch is 7-valent, there are ≥ 8h edges with both ends in
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Z ∪ C1 ∪ ... ∪ Ch, and so (*) holds with Yi = {vi} (1 ≤ i ≤ h+ n). This proves (1).

Now let us prove (*) for h ≤ k ≤ m. We assume inductively that h+ 1 ≤ k ≤ m, and

Y1, ..., Yh+n exist as in (*) with k replaced by k−1; and we shall show that they also exist

for k. Let B = V (G) − Ck, and A = Ck ∪ Nk. Then (A,B) is a 7-separation of G, and

|A − B| = |Ck| ≥ 2, and |B − A| ≥ 2 since n ≥ 3. Since Nk ⊆ Z, we may assume that

Nk = {v1, ..., v7}. By (12.1) there exist disjoint fragments X1, ..., X7 ⊆ A such that vi ∈ Xi

for 1 ≤ i ≤ 7, and there are ≥ 4 pairs i, j with 1 ≤ i < j ≤ 7 for which XiXj are adjacent

and YiYj are not adjacent. Let Y ′
i = Xi ∪ Yi (1 ≤ i ≤ 7) and Y ′

i = Yi (8 ≤ i ≤ h + n);

then vi ∈ Y ′
i (1 ≤ i ≤ h+ n), and Y ′

1 , ..., Y
′
h+n are disjoint fragments in Z ∪ C1 ∪ ... ∪ Ck,

since Y1, ..., Yh+n are disjoint fragments in Z ∪C1 ∪ ...∪Ck−1. Since YiYj are adjacent for

≥ 4(h+k− 1) pairs i, j with 1 ≤ i < j ≤ h+n, and since Y ′
i Y

′
j are adjacent for ≥ 4 more

pairs, it follows that Y ′
i Y

′
j are adjacent for ≥ 4(h+ k) pairs i, j and so (*) holds.

This completes the inductive proof of (*), and so in particular (*) holds when k = m.

For h + n + 1 ≤ i ≤ h + 2n − m let Yi = Ci+m−h−n. It follows that Y1, ..., Yh+2n−m are

disjoint fragments. Since for all j with m + 1 ≤ j ≤ n there are ≥ 8 values of i with

1 ≤ i ≤ h+ n such that vi ∈ Nj, it follows that for all j with h+ n+ 1 ≤ j ≤ h+ 2n−m

there are ≥ 8 values of i with 1 ≤ i ≤ h+n such that YiYj are adjacent. In total therefore

there are at least

4(h+m) + 8(n−m) = 4h+ 8n− 4m

pairs i, j with 1 ≤ i < j ≤ h + 2n −m such that YiYj are adjacent. By (6.1) applied to

the graph obtained from G by contracting all edges with both ends in Yi for some i and

deleting parallel edges, since h+ 2n−m ≥ h + n ≥ n ≥ 4, it follows that

4h+ 8n− 4m ≤ 4(h+ 2n−m) − 10,

a contradiction. Thus there is no such Z, as required.
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13. REDUCIBLE CONFIGURATIONS

We use (12.2) for the following.

(13.1) Let G be a non-apex Hadwiger graph. Then either

(i) there are adjacent vertices a, b of valency 7 and 8 respectively, so that the edge

ab is in 3 triangles, and neither a nor b is in a 4-clique, or

(ii) there are adjacent vertices a,b, both of valency 7, such that the edge ab is in 3

triangles, and at most one of a,b is in a 4-clique, or

(iii) there are distinct vertices a, b, c, d of G, such that ab, bd, ac, cd are adjacent

and ad, bc are not, the edges ab and ac are both in 2 triangles, and a, b, c all

have valency 7 and are in no 4-clique, and either d has valency 7, or d has

valency 8 and is in no 4-clique.

Proof: We denote the valency of a vertex v by δ(v). Let M be the set of all edges uv of

G that are in exactly two triangles and such that δ(u) = δ(v) = 7 and u, v belong to no

4-clique. Let t = b 1
2
|V (G)|c, and let |V (G)| = 2t+ε; thus, ε = 0 or 1. By (12.2) there exist

edges e1, ..., et of G, pairwise with no common end; choose e1, ..., et with |{e1, ..., et} ∩M |

minimum. For 1 ≤ i ≤ t, let Ti be the number of triangles containing ei. For 1 ≤ i, j ≤ t,

let Sij = 1 if i 6= j and the subgraph of G induced on the four ends of ei, ej is a circuit,

and Sij = 0 otherwise. Let di be the sum of the valencies of the ends of ei for 1 ≤ i ≤ t,

and let d0 be the number of edges with an end not incident with any of e1, ..., et. (Thus

if ε = 0, then d0 = 0.) Now

2|E(G)| = d0 +
∑

1≤i≤t

di.

Let H be obtained from G by contracting e1, ..., et and deleting any resulting parallel
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edges. By (11.9)

|E(H)| ≥ |E(G)| − t−
∑

1≤i,j≤t

1

2
Sij −

∑

1≤i≤t

Ti.

Consequently,

2|E(H)| ≥ d0 − 2t+
∑

1≤i≤t

(di − 2Ti) −
∑

1≤i,j≤t

Sij.

But t ≥ 4 by (6.2), and |V (H)| = 2t+ ε− t = t+ ε, and so from (6.1),

|E(H)| ≤ 4(t+ ε) − 10.

Consequently,

8(t+ ε) − 20 ≥ d0 − 2t+
∑

1≤i≤t

(di − 2Ti) −
∑

1≤i,j≤t

Sij,

that is,
∑

1≤i≤t

(di − 2Ti − 10) −
∑

1≤i,j≤t

Sij ≤ 8ε− 20 − d0 ≤ −18

since either ε = 0 or d0 ≥ 6. For v ∈ V (G), define α(v) = 2 if v has valency 6, and

otherwise α(v) = 0; and β(v) = 1 if v belongs to a 4-clique, and otherwise β(v) = 0. It

follows that
∑

v∈V (G)

(α(v) + β(v)) ≤ 14

since there are ≤ 10 vertices in 4-cliques by (4.5), and ≤ 2 6-valent vertices by (5.6). For

1 ≤ i ≤ t, let

fi = α(u) + β(u) + α(v) + β(v)

where ei has ends uv. Hence
∑

1≤i≤t fi ≤ 14, and so

∑

1≤i≤t

(di + fi − 2Ti − 10) −
∑

1≤i,j≤t

Sij ≤ −4.

For 1 ≤ i ≤ t, let Si =
∑

1≤j≤t Sij, and let Ri = di + fi − 2Ti − 10. Then

−4 ≥
∑

1≤i≤t

Ri −
∑

1≤i,j≤t

Sij =
∑

1≤i≤t:Si=0

Ri +
∑

1≤i≤t:Si>0

Ri −
∑

1≤i,j≤t

Sij.
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Suppose first that Σ(Ri : 1 ≤ i ≤ t, Si = 0) < 0. Choose i with Si = 0 and Ri < 0; i = 1

say. Let e1 have ends ab. Since R1 < 0,

d1 + f1 ≤ 2T1 + 9.

But d1 + f1 ≥ 14, because δ(v) + α(v) ≥ 7 for every vertex v, and so 2T1 ≥ 5. Hence

T1 ≥ 3, and so T1 = 3 by (2.7). Consequently, d1 + f1 ≤ 15. If a is 6-valent, then

α(a) + β(a) ≥ 3, and so d1 + f1 ≥ 16, a contradiction. Thus δ(a) ≥ 7, and similarly

δ(b) ≥ 7. But δ(a) + δ(b) + β(a) + β(b) ≤ 15, and so (i) or (ii) holds.

We may therefore assume that Σ(Ri : 1 ≤ i ≤ t, Si = 0) ≥ 0. Consequently,

−4 ≥
∑

1≤i≤t:Si>0

Ri −
∑

1≤i,j≤t

Sij

=
∑

((

Ri

Si

− 1
)

Sij : 1 ≤ i, j ≤ t, Sij = 1
)

=
1

2

∑

((

Ri

Si

+
Rj

Sj

− 2

)

Sij : 1 ≤ i, j ≤ t, Sij = 1

)

.

We may therefore choose i, j with Sij = 1 such that Ri

Si
+ Rj

Sj
− 2 < 0; and by exchanging

i, j we may assume that Ri

Si
− 1 < 0. Let i = 1, j = 2 say, and let e1 have ends ab and e2

have ends cd. Since Sij = 1, we may assume that a is adjacent to c and b to d, and ad, bc

are not adjacent.

Now R1

S1

− 1 < 0, and so d1 + f1 − 2T1 − S1 ≤ 9. By (11.4), T1 ≤ 2, since S1 ≥ 1.

Suppose that T1 ≤ 1. Since d1 + f1 ≥ 14, we deduce that S1 ≥ 3 if T1 = 1, and S1 ≥ 5 if

T1 = 0, and hence G has an F7- or F8-subgraph, contrary to (11.10). Thus T1 = 2. By

(11.10), G has no F6-subgraph, and so S1 = 1.

Thus d1 + f1 ≤ 14. But δ(a) + α(a) + β(a) ≥ 7, with equality only if δ(a) = 7, and

similarly for b. Hence a and b are both 7-valent, and consequently β(a) = β(b) = 0, and

e1 ∈M .
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If we replace e1 and e2 in the matching e1, ..., et by the edges ac and bd, we ob-

tain another matching of the same cardinality; and therefore from the minimality of

|{e1, ..., et} ∩M |, we may assume that the edge ac belongs to M . Consequently, ac is in

two triangles, and c is 7-valent, and β(c) = 0.

Now R1

S1
+ R2

S2
− 2 < 0. We have shown that S1 = 1 and R1 = d1 + f1 − 2T1 − 10 = 0.

Consequently, R2

S2

< 2, and so

7 + δ(d) + α(d) + β(d) − 2T2 − 10 < 2S2,

that is, S2 + T2 ≥ 1
2
(δ(d)+ α(d) + β(d) − 2). Suppose that δ(d) + α(d) + β(d) ≥ 9; then

S2 + T2 ≥ 4, contrary to (11.4) and (11.10). Thus δ(d) + α(d) + β(d) ≤ 8. Hence d has

valency 7 or 8, and if it is 8-valent then β(d) = 0. Thus (iii) holds.

(13.2) Let G be a non-apex Hadwiger graph; then (13.1)(i) does not hold.

Proof: Suppose that a, b ∈ V (G) are adjacent, and a has valency 7, and b has valency 8,

and ab is in three triangles, and neither a nor b is in a 4-clique. Let a have neighbours

b, x1, x2, x3, a1, a2, a3 and let b have neighbours a, x1, x2, x3, b1, b2, b3, b4. Since a is not in a

4-clique, {x1, x2, x3} is a stable set, and some two of a1, a2, a3 are not adjacent, say a1a2.

For 1 ≤ i ≤ 3, at most one of b1, ..., b4 is adjacent to xi; for if b1, b2 say are both adjacent to

xi then G|{a, b, x1, x2, x3, b1, b2} has an F5-subgraph, contrary to (11.4). We may therefore

assume that b1 is not adjacent to any of x1, x2, x3, and so {b1, x1, x2, x3} is stable. By (5.1)

taking X1 = {a1, a, a2} and X2 = {b, b1, x1, x2, x3}, there is a 5-colouring φ of G\{a, b}

such that φ(a1) = φ(a2) and φ(b1) = φ(x1) = φ(x2) = φ(x3). Choose β ∈ {1, ..., 5} with

β 6= φ(b1), φ(b2), φ(b3), φ(b4); and choose α ∈ {1, ..., 5} with α 6= β, φ(a1), φ(a3), φ(x1).

Then setting φ(b) = β, φ(a) = α defines a 5-colouring of G, a contradiction.

(13.3) Let G be a non-apex Hadwiger graph; then (13.1)(ii) does not hold.
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Proof: Suppose that a, b ∈ V (G) are adjacent, both of valency 7, and ab is in three

triangles, and a is not in a 4-clique. Let a have neighbours b, x1, x2, x3, a1, a2, a3, and let

b have neighbours a, x1, x2, x3, b1, b2, b3. Since a is not in a 4-clique, {x1, x2, x3} is stable,

and some two of a1, a2, a3 are not adjacent, say a1, a2. By (5.1) taking X1 = {a1, a, a2}

and X2 = {b, x1, x2, x3}, there is a 5-colouring φ of G\{a, b} such that φ(a1) = φ(a2)

and φ(x1) = φ(x2) = φ(x3). Choose β ∈ {1, ..., 5} with β 6= φ(b1), φ(b2), φ(b3), φ(x1);

and choose α ∈ {1, ..., 5} with α 6= β, φ(a1), φ(a3), φ(x1). Setting φ(a) = α and φ(b) = β

defines a 5-colouring of G, a contradiction.

(13.4) Let G be a non-apex Hadwiger graph, and let a, b ∈ V (G) be distinct and both

7-valent, such that a is in no 4-clique. Then there are ≤ 3 vertices adjacent to both a and

b.

Proof: Suppose that x1, x2, x3, x4 ∈ V (G) − {a, b} are distinct and all adjacent to

both a and b. By (11.4) no other vertex is adjacent to both a and b, and by (2.7) ab

are not adjacent. Let a have neighbours x1, x2, x3, x4, a1, a2, a3, and let b have neighbours

x1, x2, x3, x4, b1, b2, b3.

(1) None of a1, a2, a3, b1, b2, b3 is adjacent to any of x1, x2, x3, x4.

For if a1x1 are adjacent, say, then G|{a, b, a1, x1, x2, x3, x4} has an F4-subgraph, con-

trary to (11.4).

Since a is in no 4-clique, no three of x1, x2, x3, x4 are mutually adjacent, and so we may

express {x1, x2, x3, x4} = Y1∪Y2 where Y1∩Y2 = ∅ and Y1, Y2 are stable. By (1) and (5.1),

taking X1 = Y1 ∪ {a, a1}, X2 = Y2 ∪ {b, b1}, there is a 5-colouring φ of G\{a, b} such that

134



φ(y) = φ(a1) for all y ∈ Y1, and φ(y) = φ(b1) for all y ∈ Y2. Choose α ∈ {1, ..., 5} with

α 6= φ(a1), φ(a2), φ(a3), φ(b1), and choose β ∈ {1, ..., 5} with β 6= φ(b1), φ(b2), φ(b3), φ(a1).

Setting φ(a) = α, φ(b) = β defines a 5-colouring of G, a contradiction.

We need the following

(13.5) Let I1, I2, I3, I4 be four sets, each of cardinality ≥ 2. Then there exists αi ∈

Ii (1 ≤ i ≤ 4) such that α1 6= α2 6= α3 6= α4 6= α1.

Proof: If I1 = I2 = I3 = I4, let a, b ∈ I1 be distinct and let α1 = α3 = a and α2 = α4 = b.

Thus we may assume that I1 6⊆ I4. Choose α1 ∈ I1 − I4. Choose α2 ∈ I2 − {α1},

α3 ∈ I3 − {α2}, α4 ∈ I4 − {α3}; then α4 6= α1, since α1 6∈ I4.

Finally, we complete the proof, by showing

(13.6) Every Hadwiger graph is apex.

Proof: Suppose G is a non-apex Hadwiger graph. By (13.1), (13.2) and (13.3), (13.1)(ii)

holds; let a, b, c, d ∈ V (G) be distinct, such that ab, bd, ac, cd are adjacent, ad, bc are not

adjacent, ab, ac are both in two triangles, a, b, c are 7-valent and are in no 4-clique, and

either d has valency 7, or d has valency 8 and is in no 4-clique.

(1) There is a vertex p adjacent to a, b and c, and no vertex except a, d and p is

adjacent to both b and c.

For if there is no such vertex p, then since ab is in 2 triangles and so is ac, there are

u, v, w, x ∈ V (G) such that u, v, w, x, a, b, c, d are distinct and ua, ub, va, vb, wa, wc, xa, xc

are edges, forming an F9-subgraph contrary to (11.11). Thus, there is such a vertex p.
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The second claim follows from (13.4).

(2) There are vertices q, r so that a, b, c, d, p, q, r are distinct, and q is adjacent to a

and b, and r is adjacent to a and c.

For ab is in two triangles, and so there exists a vertex q 6= p adjacent to both a and b.

Then q 6= c, d since ad, bc are not adjacent. Similarly there exists r 6= a, b, c, d, p adjacent

to a and c. By (1), q 6= r.

(3) q and r are not adjacent to p or d.

For if dq are adjacent, then G has an F5-subgraph with vertex set {a, b, c, d, p, q, r}

(delete the edges bp and bq). So dq and similarly dr are non-adjacent. Clearly pq are not

adjacent, since a is in no 4-clique, and similarly pr are not adjacent.

From (1), (2) and (3), the only pairs among a, b, c, d, p, q, r whose adjacency is so far

undecided are qr and dp.

(4) qr are not adjacent.

For suppose that they are. Since b has valency 7 and is not in a 4-clique, there are

neighbours x, y of b with x, y 6= a, d, p, q such that xy are not adjacent. Then x, y 6= c, r

since c, r are not adjacent to b. By (5.2), {x, y, a, d} is not stable. But ax are not

adjacent since the edge ab is in ≤ 2 triangles by (13.3), and similarly ay are not adja-

cent, and so we may assume that dx are adjacent. But then G|{a, b, c, d, p, q, r, x} has

an F10-subgraph (delete ap, aq, ar). By (11.12), some v ∈ {a, p, x} has no neighbour in

V (G)− {a, b, c, d, p, q, r, x}. Now v 6= a since a is 7-valent and ad are not adjacent; v 6= p
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since pq and pr are not adjacent, by (3); and v 6= x since xa are not adjacent as we already

saw, and xc are not adjacent by (1). This is a contradiction, and (4) follows.

(5) dp are adjacent.

For suppose they are not. Then {d, p, q, r} is stable. Let a have neighbours b, c, p, q,

r, a1, a2; then a1, a2 6= d. Let b have neighbours a, d, p, q, b1, b2, b3; then b1, b2, b3 6= r, c. Let

c have neighbours a, d, p, r, c1, c2, c3; then c1, c2, c3 6= b, q. Since b is in no 4-clique we may

assume that b1b2 are non-adjacent. By (5.1) withX1 = {b, b1, b2} andX2 = {a, c, p, q, r, d},

there is a 5-colouring φ of G\{a, b, c} such that φ(b1) = φ(b2) and φ(p) = φ(q) = φ(r) =

φ(d). Choose α1 ∈ {1, ..., 5} with α1 6= φ(c1), φ(c2), φ(c3), φ(p); choose α2 ∈ {1, ..., 5}

with α2 6= α1, φ(a1), φ(a2), φ(p); and choose α3 ∈ {1, ..., 5} with α3 6= α2, φ(b1), φ(b3),

φ(p). Setting φ(c) = α1, φ(a) = α2, φ(b) = α3 defines a 5-colouring of G, a contradiction.

This proves (5).

(6) There is a vertex s 6∈ {a, b, c, d, p, q, r} adjacent to b and d; and a vertex t 6∈

{a, b, c, d, p, q, r} adjacent to c and d. Moreover, s 6= t.

For let b1, b2 be two non-adjacent neighbours of b with b1, b2 6= a, b, c, d, p, q, r. By

(5.2), {a, b1, b2, d} is not stable, and yet ab1 and ab2 are not adjacent, because the edge

ab is in ≤ 2 triangles, by (13.3). Thus one of b1, b2 is adjacent to d, and so there is such

a vertex s, and similarly t; and s 6= t by (1). This proves (6).

(7) s is not adjacent to any of a, c, p, q, r, t; and t is not adjacent to any of a, b,

p, q, r, s.
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For sa are not adjacent since by (13.3) the edge ab is in ≤ 2 triangles; sc are not

adjacent by (1); sp are not adjacent since b is in no 4-clique; and sr are not adjacent

for otherwise G would have an F6-subgraph with vertex set {a, b, c, d, p, q, r, s} (delete

cp, dp, rc, sd). It remains to check sq and st. Suppose that sq are adjacent; then G has an

F10-subgraph with vertex set {a, b, c, d, p, q, r, s} (delete bp, bq, bs, cp) and so by (11.12),

some v ∈ {b, p, r} has no neighbour in V (G) − {a, b, c, d, p, q, r, s}. But v 6= b since b

is 7-valent and bc are not adjacent; v 6= p since pq and pr are not adjacent; and v 6= r

since pr and qr are not adjacent. This shows that sq are not adjacent. Similarly, t is not

adjacent to any of a, b, p, q, r.

Now suppose that st are adjacent. Then G has an F10-subgraph with vertex set

{a, b, c, d, p, q, s, t} (delete ap, dp, ds, dt). By (11.12) some v ∈ {p, q, d} has no neighbour

in V (G) − {a, b, c, d, p, q, s, t}. Now v 6= p since pq, ps are not adjacent; v 6= q since qc, qd

are not adjacent; and v 6= d since da, dq are not adjacent, a contradiction. Thus st are

not adjacent. This proves (7).

Let a1, a2 be the two neighbours of a not in {a, b, c, d, p, q, r, s, t} and define b1, b2 for

b and c1, c2 for c similarly. Now d may have valency 7 or 8. Let N be the set of two or

three neighbours of d not in {a, b, c, d, p, q, r, s, t}. If |N | = 3 then d is 8-valent and so not

in a 4-clique; and therefore, whether |N | = 2 or 3, there is a stable subset Y ⊆ N with

|N − Y | = 1. Let N − Y = {d1} and let d2 ∈ Y . By (5.1) with X1 = {a, b, c, p, q, r, s, t}

and X2 = Y ∪ {d}, there is a 5-colouring φ of G\{a, b, c, d} such that

φ(p) = φ(q) = φ(r) = φ(s) = φ(t)

and φ(y) = φ(d2) for all y ∈ Y . Let

I(a) = {1, ..., 5} − {φ(a1), φ(a2), φ(p)}

I(b) = {1, ..., 5} − {φ(b1), φ(b2), φ(p)}

I(c) = {1, ..., 5} − {φ(c1), φ(c2), φ(p)}
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I(d) = {1, ..., 5} − {φ(d1), φ(d2), φ(p)}.

By (13.5) there exists α1 ∈ I(a), α2 ∈ I(b), α3 ∈ I(d), α4 ∈ I(c) such that α1 6= α2 6= α3 6=

α4 6= α1. Then setting φ(a) = α1, φ(b) = α2, φ(d) = α3, φ(c) = α4 defines a 5-colouring of

G, a contradiction. This completes the proof.
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