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Abstract. An orientation of a graph G is Pfaffian if every even cycle C such that G\V (C)

has a perfect matching has an odd number of edges directed in either direction of the cycle.
The significance of Pfaffian orientations is that if a graph has one, then the number of perfect
matchings (a.k.a. the dimer problem) can be computed in polynomial time.

The question of which bipartite graphs have Pfaffian orientations is equivalent to many other
problems of interest, such as a permanent problem of Pólya, the even directed cycle problem, or
the sign-nonsingular matrix problem for square matrices. These problems are now reasonably
well-understood. On the other hand, it is not known how to efficiently test if a general graph is
Pfaffian, but there are some interesting connections with crossing numbers and signs of edge-
colorings of regular graphs.
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1. Introduction

All graphs in this paper are finite, do not have loops or multiple edges and are undi-
rected. Directed graphs, or digraphs, do not have loops or multiple edges, but may
have two edges between the same pair of vertices, one in each direction. Most of our
terminology is standard and can be found in many textbooks, such as [4], [10], [65].
In particular, cycles and paths have no repeated vertices. A subgraph H of a graph G

is called central if G\V (H) has a perfect matching (we use \ for deletion). An even
cycle C in a directed graph D is called oddly oriented if for either choice of direction
of traversal around C, the number of edges of C directed in the direction of traversal
is odd. Since C is even, this is clearly independent of the initial choice of direction
of traversal. Finally, an orientation D of (the edges of) a graph G is Pfaffian if every
even central cycle of G is oddly oriented in D. We say that a graph G is Pfaffian if it
has a Pfaffian orientation.

The significance of Pfaffian orientations stems from the fact that if a graph G has
one, then the number of perfect matchings of G (as well as other related problems)
can be computed in polynomial time. We survey this in Section 2. The following
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is a classical theorem of Kasteleyn [23]. A special case is implicit in the work of
Fisher [16] and Temperley and Fisher [55]. Different proofs may be found in [25],
[26], [32], [38].

Theorem 1.1. Every planar graph is Pfaffian.

The smallest non-Pfaffian graph is the complete bipartite graph K3,3. This paper
is centered around the question of which graphs are Pfaffian. For bipartite graphs
this is equivalent to many other problems of interest, and is by now reasonably well-
understood. We list several such problems in Section 3, including a question of Pólya
from 1913 whether the permanent of a square matrix can be calculated by a reduction
to a determinant of a related matrix, the even directed cycle problem for digraphs, and
the sign-nonsingular matrix problem. In Section 4 we discuss two characterizations
of bipartite Pfaffian graphs. The first is in terms of excluded obstructions; it turns out
that for bipartite graphs K3,3 is the only obstruction with respect to the “matching
minor” partial order, defined later. This is an analogue of the graph minor relation and
is well-suited for problems involving perfect matchings. Unfortunately, it no longer
has many of the nice properties of the usual minor order. The second characterization
is structural and describes the structure of all bipartite Pfaffian graphs. It turns out
those graphs and only those graphs can be built from planar graphs and one sporadic
nonplanar graph by certain composition operations. This characterization implies a
polynomial-time algorithm to decide whether a bipartite graph is Pfaffian, and hence
solves all the problems listed in Section 3. Applications of the structure theorem are
discussed in Section 5.

We then turn to general graphs. In Section 6 we review a matching decomposition
procedure of Lovász and Plummer that decomposes every graph into “bricks” and
“braces”. The decomposition has the property that a graph is Pfaffian if and only if all
its constituent bricks and braces are Pfaffian. Furthermore, braces are bipartite, and
hence whether they are Pfaffian can be decided using the algorithm of Section 4. Thus
in order to test whether an input graph is Pfaffian it suffices to design an algorithm for
bricks. Motivated by this we present a recent theorem that describes how to construct
an arbitrary brick, and later we discuss various examples and results that were obtained
using this theorem.

In the next section we talk about results of Norine that relate Pfaffian graphs
and crossing numbers. The starting point here is Theorem 7.1 that characterizes
Pfaffian graphs in terms of drawings in the plane. Norine then generalized it to T -
joins, whereby the generalization implies several well-known results about crossing
numbers, and in a different direction proved an analogue for 4-Pfaffian graphs and
drawings in the torus. The latter suggests a general conjecture that is still open.

In Section 8 we discuss the relationship between signs of edge-colorings (in the
sense of Penrose [46]) and Pfaffian orientations. We mention a proof of a conjecture
of Goddyn that in a k-regular Pfaffian graph all k-edge-colorings have the same sign,
which holds more generally for graphs that admit a “Pfaffian labeling.” We present a
partial converse of this, and then describe two characterizations of graphs that admit a
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Pfaffian labeling. The above research led Norine and the author to make the following
conjecture [44].

Conjecture 1.2. Every 2-connected 3-regular Pfaffian graph is 3-edge-colorable.

Let us recall that by Tait’s result [54] (see also [65]) the Four-Color Theorem is
equivalent to the statement that every 2-connected 3-regular planar graph is 3-edge-
colorable. Thus, if true, Conjecture 1.2 would imply the Four-Color Theorem by
Theorem 1.1.

In the last section we discuss the prospects for characterizing general Pfaffian
graphs, either structurally or by means of excluded matching minors.

2. Pfaffian orientations and counting perfect matchings

Pfaffian orientations were invented by the physicists M. E. Fisher, P. W. Kasteleyn,
and H. N. V. Temperley as a tool for enumerating the number of perfect matchings
in a graph (or, in physics terminology, to solve the dimer problem). Let us start
by explaining their approach. Let A = (aij ) be a skew symmetric n × n matrix;
that is aij = −aji . For each partition π = {{i1, j1}, {i2, j2}, . . . , {ik, jk}} of the set
{1, 2, . . . , n} into unordered pairs (“partition into pairs”) we define the quantity

σπ = sgn

(
1 2 3 4 . . . 2k − 1 2k

i1 j1 i2 j2 . . . ik jk

)
ai1j1ai2j2 . . . aikjk

, (1)

where sgn denotes the sign of the indicated permutation. Clearly, there is no partition
into pairs if n is odd. The Pfaffian of A is defined by Pf(A) = ∑

σπ , where the
summation is over all partitions of {1, 2, . . . , n} into pairs. Since A is skew symmetric
the value of σπ does not depend on the order of blocks of π or on the order in which
the members of a block are listed, and hence Pf(A) is well-defined. We will need the
following lemma from linear algebra [23], [37].

Lemma 2.1. If A is a skew symmetric matrix, then det A = (Pf(A))2.

Now let G be a graph with vertex-set {1, 2, . . . , n}, and let D be an orientation
of (the edges of) G. To the orientation D there corresponds a skew adjacency matrix
A = (aij ) of G defined by saying that aij = 0 if i is not adjacent to j , and otherwise
aij = 1 if the edge ij is directed in D from i to j and aij = −1 if the edge ij is
directed in D from j to i. If π is a partition of {1, 2, . . . , n} into pairs, then σπ �= 0 if
and only if each pair in π is an edge of G, or, in other words, π is a perfect matching
of G. Thus the summation in the definition of Pf(A) might as well be restricted to
perfect matchings of G. We define sgnD(M), the sign of a perfect matching M of D,
as σM , or, equivalently, by

sgnD(M) = sgn

(
1 2 3 4 . . . 2k − 1 2k

i1 j1 i2 j2 . . . ik jk

)
, (2)
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where the edges of M are listed as i1j1, i2j2, . . . , ikjk in such a way that it jt is directed
from it to jt in D. It is not hard to see that D is a Pfaffian orientation of G if and
only if sgnD(M) does not depend on M . If that is the case, then |Pf(A)| is equal
to the number of perfect matchings of G, and by Lemma 2.1 the number of perfect
matchings of G can be computed efficiently.

This is significant, because Valiant [63] proved that counting the number of perfect
matchings in general graphs (even in bipartite graphs) is #P-complete, and therefore
is unlikely to be polynomial-time solvable. Furthermore, Theorem 1.1 guarantees
that there is an interesting and useful class of graphs for which this technique can be
applied.

The dimer problem of statistical mechanics is concerned with the properties of a
system of diatomic molecules, or dimers, adsorbed on the surface of a crystal. Usually
it is assumed that the adsorption points form the vertices of a lattice graph, such as
the 2-dimensional grid. A crucial problem in the calculation of the thermodynamic
properties of such a system of dimers is that of enumerating all ways in which a
given number of dimers can be arranged on the lattice without overlapping each
other. In the related monomer-dimer model some sites may be left unoccupied, but
in the dimer model it is assumed that the dimers cover all the vertices of the graph;
in other words, they form a perfect matching. Kasteleyn [21], [22], [23], Fisher [16]
and Temperley and Fisher [55] used the method described in this section to solve the
2-dimensional dimer problem. The method is more general in the sense that it allows
the computation of the dimer partition function, and that, in turn, can be used to solve
the 2-dimensional Ising problem [23]. Let us remark that the 3-dimensional dimer
problem remains open.

3. Some equivalent problems

Vazirani andYannakakis [64] used a deep theorem of Lovász [31] to show the follow-
ing.

Theorem 3.1. The decision problems “Is a given orientation of a graph Pfaffian”
and “Is an input graph Pfaffian” are polynomial-time equivalent.

This is reasonably easy for bipartite graphs. There does not seem to be an elemen-
tary proof for general graphs, but the theorem can be easily deduced from the results
discussed in Section 6.

Computing the permanent of a matrix seems to be of a different computational
complexity from computing the determinant. While the determinant can be calculated
using Gaussian elimination, no efficient algorithm for computing the permanent is
known, and, in fact, none is believed to exist. More precisely, Valiant [63] has shown
that computing the permanent is #P-complete even when restricted to 0-1 matrices.

It is therefore reasonable to ask if perhaps computing the permanent can be some-
how reduced to computing the determinant of a related matrix. In particular, the
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following question was asked by Pólya [47] in 1913. If A is a 0-1 square matrix, does
there exist a matrix B obtained from A by changing some of the 1’s to −1’s in such
a way that the permanent of A equals the determinant of B? For the purpose of this
paper let us say that B (when it exists) is a Pólya matrix for A.

Let G be a bipartite graph with bipartition (X, Y ). The bipartite adjacency matrix
of G has rows indexed by X, columns indexed by Y , and the entry in row x and
column y is 1 or 0 depending on whether x is adjacent to y or not. Vazirani and
Yannakakis [64] proved the following.

Theorem 3.2. Let G be a bipartite graph, and let A be its bipartite adjacency matrix.
Then A has a Pólya matrix if and only if G has a Pfaffian orientation.

Let us turn to directed graphs now. A digraph D is even if for every weight function
w : E(D) → {0, 1} there exists a cycle in D of even total weight. It was shown in [53]
and is not difficult to see that testing evenness is polynomial-time equivalent to testing
whether a digraph has an even directed cycle. (This is equivalent to Theorem 3.1 for
bipartite graphs.) Let G be a bipartite graph with bipartition (A, B), and let M be a
perfect matching in G. Let D = D(G, M) be obtained from G by directing every edge
from A to B, and contracting every edge of M . Little [27] has shown the following.

Lemma 3.3. Let G be a bipartite graph, and let M be a perfect matching in G. Then
G has a Pfaffian orientation if and only if D(G, M) is not even.

We say that two n × m matrices A = (aij ) and B = (bij ) have the same sign-
pattern if for all pairs of indices i, j the entries aij and bij have the same sign; that
is, they are both strictly positive, or they are both strictly negative, or they are both
zero. A square matrix A is sign-nonsingular if every real matrix with the same sign
pattern is nonsingular.

In economic analysis one may not know the exact quantitative relationships be-
tween different variables, but there may be some qualitative information such as that
one quantity rises if and only if another does. For instance, it is generally agreed that
the supply of a particular commodity increases as the price increases, even though
the exact dependence may vary. Thus we may want to deduce qualitative information
about the solution to a linear system Ax = b from the knowledge of the sign-patterns
of the matrix A and vector b. That motivates the following definition. We say that the
linear system Ax = b is sign-solvable if for every real matrix B with the same sign-
pattern as A and every vector c with the same sign-pattern as b the system By = c

has a unique solution y, and its sign-pattern does not depend on the choice of B and c.
The study of sign-solvability was first proposed by Samuelson [51].

It follows from standard linear algebra that sign-solvability can be decided effi-
ciently if and only if sign-nonsingularity can. But for square matrices the latter is
equivalent to testing whether a given orientation of a bipartite graph is Pfaffian. To
state the result, let D be a bipartite digraph with bipartition (X, Y ). The directed
bipartite adjacency matrix of D has rows indexed by X, columns indexed by Y , and
the entry in row x and column y is 1, −1 or 0 depending on whether D has an edge
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directed from x to y, or D has an edge directed from y to x, or x and y are not adja-
cent in D. By Theorem 3.1 the following result implies that testing sign-solvability
is polynomial-time equivalent to testing whether a bipartite graph is Pfaffian.

Theorem 3.4. Let D be a directed bipartite graph with a perfect matching, and let A

be its directed bipartite adjacency matrix. Then A is sign-nonsingular if and only
if D is a Pfaffian orientation of its underlying undirected graph.

The next problem is about hypergraph coloring. A hypergraph H is a pair
(V (H), E(H)), where V (H) is a finite set and E(H) is a collection of distinct
nonempty subsets of V (H). We say that H is 2-colorable if V (H) can be col-
ored using two colors in such a way that every edge includes vertices of both colors.
We say that H is minimally non-2-colorable if H is not 2-colorable, has no isolated
vertices, and the deletion of any member of E(H) results in a 2-colorable hypergraph.
Seymour [52] proved the following.

Theorem 3.5. Let H be a hypergraph with no isolated vertices and |E(H)| = |V (H)|,
let D be the digraph with bipartition (V (H), E(H)) defined by saying that D has an
edge directed from v ∈ V (H) to E ∈ E(H) if and only if v ∈ E, and let G be the
underlying undirected graph of D. Then H is minimally non-2-colorable if and only
if G is connected, every edge of G belongs to a perfect matching of G and D is a
Pfaffian orientation of G.

Our last problem is about the polytope of even permutation matrices. The convex
hull of permutation matrices has been characterized by Birkhoff [3] as precisely the
set of doubly stochastic matrices. It is an open problem to characterize the convex
hull of even permutation matrices. More precisely, it is not known if there exists a
polynomial-time algorithm to test whether a given n × n matrix belongs to this poly-
tope. By a fundamental result of Grötschel, Lovász and Schrijver [19] this problem
is solvable in polynomial time if there exists a polynomial-time algorithm for the
optimization problem: Given a fixed n × n matrix M , find the maximum of M · X

over all even permutation matrices X, where “·” denotes the dot product in R
n2

and
both matrices are regarded as vectors of length n2.

A special case of the above optimization problem when A is a 0-1 matrix and we
want to determine if the maximum is n can be reformulated as follows. Let G be
a bipartite graph with bipartition (A, B), and let D be the orientation of G defined
by orienting every edge from A to B. The problem is: “Decide if G has a perfect
matching M such that sgnD(M) = 1.” By Theorem 3.1 this is polynomial-time
equivalent to deciding whether a bipartite graph has a Pfaffian orientation.

4. Characterizing bipartite Pfaffian graphs

We have seen in the previous section that characterizing bipartite Pfaffian graphs is
of interest. In this section we discuss two such characterizations and a recognition
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algorithm. We begin with an elegant theorem of Little [27]. Let H be a graph, and
let v be a vertex of H of degree two. By bicontracting v we mean contracting both
edges incident with v and deleting the resulting loops and parallel edges. A graph G is
a matching minor of a graph H if G can be obtained from a central subgraph of H by
repeatedly bicontracting vertices of degree two. It is fairly easy to see that a matching
minor of a Pfaffian graph is Pfaffian.

Theorem 4.1. A bipartite graph admits a Pfaffian orientation if and only if it has no
matching minor isomorphic to K3,3.

By Lemma 3.3 the above implies a characterization of even digraphs. Seymour and
Thomassen obtained such characterization from first principles in [53]. Interestingly,
the latter involves infinitely many excluded minors, rather than one.

Unfortunately, Theorem 4.1 does not seem to imply a polynomial-time algorithm
to test whether a bipartite graph is Pfaffian, the difficulty being that it is not clear how
to efficiently test for the presence of a matching minor isomorphic to K3,3. The next
result gives a structural description of bipartite Pfaffian graphs, and can be used to
derive a polynomial-time recognition algorithm. We need some definitions first.

Let G0 be a graph, let C be a central cycle of G0 of length four, and let G1, G2, G3
be three subgraphs of G0 such that G1 ∪ G2 ∪ G3 = G0, and for distinct integers
i, j ∈ {1, 2, 3}, Gi ∩ Gj = C and V (Gi) − V (C) �= ∅. Let G be obtained from G0
by deleting some (possibly none) of the edges of C. In these circumstances we say
that G is a trisum of G1, G2 and G3. The Heawood graph is the bipartite graph
associated with the incidence matrix of the Fano plane (see Figure 1).

Figure 1. The Heawood graph.

A graph G is k-extendable, where k ≥ 0 is an integer, if every matching of size
at most k can be extended to a perfect matching. A connected 2-extendable bipartite
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graph is called a brace. It is easy to see (and will be outlined in Section 6) that the
problem of finding Pfaffian orientations of bipartite graphs can be reduced to braces.
The following was shown in [35] and, independently, in [50].

Theorem 4.2. A brace has a Pfaffian orientation if and only if either it is isomorphic to
the Heawood graph, or it can be obtained from planar braces by repeated application
of the trisum operation.

Let us turn to testing whether a bipartite graph is Pfaffian. We wish to apply
Theorem 4.2, and for that the following result [50, Theorem 8.3] is very helpful.

Theorem 4.3. Let G be a brace that has a Pfaffian orientation, and let G be a trisum
of G1, G2 and G3. Then G1, G2 and G3 have a Pfaffian orientation.

A polynomial-time algorithm now follows easily. Given a bipartite graph G we
first decompose it into braces (more on that in Section 6), and apply the algorithm
recursively to each brace in the decomposition. Thus we may assume that G is a
brace. Now we test if G has a set X ⊆ V (G) of size four such that G\X has at
least three components. If it does, then G can be expressed as a trisum of three
smaller graphs, and by Theorem 4.3 we may apply the algorithm recursively to each
of the three smaller graphs. On the other hand, if G has no set X as above, then by
Theorem 4.2 G is Pfaffian if and only if it is planar or isomorphic to the Heawood
graph. It is clear that this is a polynomial-time algorithm. In [50] it is shown how to
implement it to run in time O(|V (G)|3). By using more modern algorithmic results
the running time can be reduced to O(|V (G)|2).

5. Applications of the characterization of bipartite Pfaffian graphs

As a corollary of Theorem 4.2 we get the following extremal result.

Corollary 5.1. No brace with n ≥ 3 vertices and more than 2n − 4 edges has a
Pfaffian orientation.

Proof. Every planar bipartite graph on n ≥ 3 vertices has at most 2n − 4 edges. The
result follows from Theorem 4.2 by induction. �

Since every digraph is isomorphic to D(G, M) for some G and M , Theorem 4.2
gives a characterization of even directed graphs, using Lemma 3.3. Let us state the
characterization explicitly, but first let us point out a relation between extendability
and strong connectivity. A digraph D is strongly connected if for every two vertices u

and v it has a directed path from u to v. It is strongly k-connected, where k ≥ 1 is an
integer, if for every set X ⊆ V (D) of size less than k, the digraph D\X is strongly
connected. The following is straightforward.
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Lemma 5.2. Let G be a connected bipartite graph, let M be a perfect matching in G,
and let k ≥ 1 be an integer. Then G is k-extendable if and only if D(G, M) is strongly
k-connected.

Let D be a digraph, and let (X, Y ) be a partition of V (G) into two nonempty
sets in such a way that no edge of G has tail in X and head in Y . Let D1 = D\Y
and D2 = D\X. We say that D is a 0-sum of D1 and D2. Now let v ∈ V (D),
and let (X, Y ) be a partition of V (D) − {v} into two nonempty sets such that no
edge of D has tail in X and head in Y . Let D1 be obtained from D by deleting
all edges with both ends in Y ∪ {v} and identifying all vertices of Y ∪ {v}, and
let D2 be obtained by deleting all edges with both ends in X ∪ {v} and identifying all
vertices of X ∪ {v}. We say that D is a 1-sum of D1 and D2. Let D0 be a directed
graph, let u, v ∈ V (D0), and let uv, vu ∈ E(D0). Let D1 and D2 be such that
D1 ∪D2 = D0, V (D1)∩V (D2) = {u, v}, V (D1)−V (D2) �= ∅ �= V (D2)−V (D1)

and E(D1) ∩ E(D2) = {uv, vu}. Let D be obtained from D0 by deleting some
(possibly neither) of the edges uv, vu. We say that D is a 2-sum of D1 and D2. Now
let D0 be a directed graph, let u, v, w ∈ V (D0), let uv, wv, wu ∈ E(D0), and assume
that D0 has a directed cycle containing the edge wv, but not the vertex u. Let D1 and
D′

2 be such that D1∪D′
2 = D0, V (D1)∩V (D′

2) = {u, v, w}, V (D1)−V (D′
2) �= ∅ �=

V (D′
2)−V (D1) and E(D1)∩E(D′

2) = {uv, wv, wu}, let D′
2 have no edge with tail v,

and no edge with head w. Let D be obtained from D0 by deleting some (possibly
none) of the edges uv, wv, wu, and let D2 be obtained from D′

2 by contracting the
edge wv. We say that D is a 3-sum of D1 and D2. Finally let D0 be a directed
graph, let x, y, u, v ∈ V (D0), let xy, xv, uy, uv ∈ E(D0), and assume that D0 has a
directed cycle containing precisely two of the edges xy, xv, uy, uv. Let D1 and D′

2
be such that D1 ∪D′

2 = D0, V (D1)∩V (D′
2) = {x, y, u, v}, V (D1)−V (D′

2) �= ∅ �=
V (D′

2) − V (D1) and E(D1) ∩ E(D′
2) = {xy, xv, uy, uv}, let D′

2 have no edge with
tail y or v, and no edge with head x or u. Let D be obtained from D0 by deleting
some (possibly none) of the edges xy, xv, uy, uv, and let D2 be obtained from D′

2
by contracting the edges xy and uv. We say that D is a 4-sum of D1 and D2. We say
that a digraph is strongly planar if it has a planar drawing such that for every vertex
v ∈ V (D), the edges of D with head v form an interval in the cyclic ordering of
edges incident with v determined by the planar drawing. Let F7 be the directed graph
D(H, M), where H is the Heawood graph, and M is a perfect matching of H . This
defines F7 uniquely up to isomorphism, irrespective of the choice of the bipartition
of H or the choice of M . Lemma 3.3 and Theorem 4.2 imply the following.

Theorem 5.3. A digraph D is not even if and only if it can be obtained from strongly
planar digraphs and F7 by means of 0-, 1-, 2-, 3- and 4-sums.

From Corollary 5.1 and Lemmas 3.3 and 5.2 we deduce the following extremal
result.

Corollary 5.4. Let D be a strongly 2-connected directed graph on n ≥ 2 vertices.
If D has more than 3n − 4 edges, then D is even.
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Corollary 5.4 does not hold for strongly connected digraphs. However, Thomas-
sen [59] has shown that every strongly connected directed graph with minimum in-
and out-degree at least three is even. This is equivalent to the following by Lemma 3.3.

Corollary 5.5. Let G be a 1-extendable bipartite graph such that every vertex has
degree at least four. Then G does not have Pfaffian orientation.

If G is a brace, then the corollary follows from Corollary 5.1; otherwise the
corollary follows by induction using the matching decomposition explained in the
next section. The details may be found in [50, Corollary 7.8].

In [33] McCuaig used Theorem 4.2 to answer a question of Thomassen [58] by
proving the following.

Theorem 5.6. The digraph F7 is the unique strongly 2-connected digraph with no
even cycle.

6. Matching decomposition

We have seen in the preceding sections that the problem of understanding which bi-
partite graphs are Pfaffian is reasonably well-understood and has applications outside
of this subfield. We now turn our attention to the same question for general graphs.
This problem seems much harder, but there are some interesting and unexpected
connections.

The brick decomposition procedure of Lovász and Plummer [32] can be used to
reduce the question of characterizing Pfaffian graphs to “bricks”. The purpose of this
section is to give an overview of this decomposition technique and to discuss recent
additions to it.

A graph is matching covered if it is connected and every edge belongs to a perfect
matching. Clearly, when deciding whether a graph G is Pfaffian we may assume
that G is matching covered, for edges that belong to no perfect matching may be
deleted without affecting the outcome.

Let G be a graph, and let X ⊆ V (G). We use δ(X) to denote the set of edges
with one end in X and the other in V (G) − X. A cut in G is any set of the form δ(X)

for some X ⊆ V (G). A cut C is tight if |C ∩ M| = 1 for every perfect matching M

in G. Every cut of the form δ({v}) in a graph with a perfect matching is tight; those
are called trivial, and all other tight cuts are called nontrivial.

Here are three important examples of tight cuts. Let G be a matching covered
graph. Assume first that G is bipartite with bipartition (A, B), and that G is not a
brace. Then by Hall’s theorem there is a set X ⊆ A such that |N(X)| = |X| + 1 and
N(X) �= B, where N(X) denotes the set of all vertices v ∈ V (G)−X with a neighbor
in X. Then δ(X ∪N(X)) is a nontrivial tight cut. Now assume that G is not bipartite.
If there exist distinct vertices u, v ∈ V (G) such that G\u\v has no perfect matching,
then by Tutte’s 1-factor theorem [61] there exists a nonempty set X ⊆ V (G) such
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that G\X has exactly |X| odd components. Furthermore, by repeatedly adding to X

one vertex from each even component of G\X we may assume that G\X has no even
components. Since G is matching covered no edge of G has both ends in X, and
since G is not bipartite some component of G\X, say C, has more than one vertex.
But then δ(V (C)) is a nontrivial tight cut. Finally, if G is not 3-connected, then let
u, v be distinct vertices of G such that G\u\v is disconnected. Let A be the vertex-set
of a component of G\u\v and let B be the union of all the remaining components.
Notice that if |A| is odd, then G\u\v has no perfect matching. If |A| is even, then
δ(A ∪ {u}) is a nontrivial tight cut.

It is not true that every nontrivial tight cut arises as described above, but Theo-
rem 6.1 below implies that if a graph has a nontrivial tight cut, then it has a nontrivial
tight cut that arises in one of the ways described in the previous paragraph. A brick is
a 3-connected graph G such that G\u\v has a perfect matching for every two distinct
vertices u, v of G.

Let δ(X) be a nontrivial tight cut in a graph G, let G1 be obtained from G by
identifying all vertices in X into a single vertex and deleting all resulting parallel
edges, and let G2 be defined analogously by identifying all vertices in V (G)−X. Then
many matching-related problems can be solved for G if we are given the corresponding
solutions for G1 and G2.

The above decomposition process can be iterated, until we arrive at graphs with
no nontrivial tight cuts. Lovász [31] proved that the list of indecomposable graphs
obtained at the end of the procedure does not depend on the choice of tight cuts made
during the process. These indecomposable graphs were characterized by Edmonds,
Lovász and Pulleyblank [12], [13]:

Theorem 6.1. Let G be a matching covered graph. Then G has no nontrivial tight
cut if and only if G is a brick or a brace.

In light of this theorem and the previous discussion we say that a brick or a brace H

is a brick or a brace of a graph G if H is obtained when the tight cut decomposition
procedure is applied to G.

Vazirani andYannakakis [64] used the tight cut decomposition procedure to reduce
the study of Pfaffian graphs to bricks and braces:

Theorem 6.2. A graph G is Pfaffian if and only if every brick and brace of G is
Pfaffian.

In particular, this justifies our earlier claim that in order to understand Pfaffian
bipartite graphs it suffices to understand Pfaffian braces. Since Pfaffian braces are
characterized by Theorem 4.2, in order to understand Pfaffian graphs it suffices to
understand Pfaffian bricks. We return to this problem later, but in the remainder of
this section we describe a characterization of bricks, developed for the purpose of
studying Pfaffian bricks. We need a few definitions first.

Let G be a graph, and let v0 be a vertex of G of degree two incident with the
edges e1 = v0v1 and e2 = v0v2. Let H be obtained from G by contracting both e1
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and e2 and deleting all resulting parallel edges. We say that H was obtained from G

by bicontracting or bicontracting the vertex v0, and write H = G/v0. Let us say that
a graph H is a reduction of a graph G if H can be obtained from G by deleting an
edge and bicontracting all resulting vertices of degree two. By a prism we mean the
unique 3-regular planar graph on six vertices. The following is a generation theorem
of de Carvalho, Lucchesi and Murty [9].

Theorem 6.3. If G is a brick other than K4, the prism, and the Petersen graph, then
some reduction of G is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be
repeated until we reach K4 or the prism. By reversing the process Theorem 6.3 can
be viewed as a generation theorem.

Theorem 6.3 has interesting applications. First of all, it implies several results
about various spaces generated by perfect matchings, including a deep theorem of
Lovász [31] that characterizes the matching lattice of a graph. Second, it implies
Theorem 3.1 (more precisely the most difficult part of that theorem, namely that it
holds for bricks). Third, it can be used to prove a uniqueness theorem for Pfaffian
orientations [8]:

Theorem 6.4. A Pfaffian orientation of a graph G can be transformed to any other
Pfaffian orientation of G by repeatedly applying the following operations:

(1) reversing the direction of all edges of a cut of G,
(2) reversing all edges with both ends in S for some tight cut δ(S),
(3) reversing the direction of all edges of G.

There is a strengthening of Theorem 6.3, which we now describe. First, the starting
graph can be any matching minor of G except K4 and the prism, and second, reduction
can be replaced by a more restricted operation, the following. We say that a graph H is
a proper reduction of a graph G if it is a reduction in such a way that the bicontractions
involved do not produce parallel edges. Unfortunately, Theorem 6.3 does not hold
for proper reductions, but all the exceptions can be conveniently described. Let us do
that now.

Let C1 and C2 be two vertex-disjoint cycles of length n ≥ 3 with vertex-sets
{u1, u2, . . . , un} and {v1, v2, . . . , vn} (in order), respectively, and let G1 be the graph
obtained from the union of C1 and C2 by adding an edge joining ui and vi for each
i = 1, 2, . . . , n. We say that G1 is a planar ladder. Let G2 be the graph consisting
of a cycle C with vertex-set {u1, u2, . . . , u2n} (in order), where n ≥ 2 is an integer,
and n edges with ends ui and un+i for i = 1, 2, . . . , n. We say that G2 is a Möbius
ladder. A ladder is a planar ladder or a Möbius ladder. Let G1 be a planar ladder as
above on at least six vertices, and let G3 be obtained from G1 by deleting the edge
u1u2 and contracting the edges u1v1 and u2v2. We say that G3 is a staircase. Let
t ≥ 2 be an integer, and let P be a path with vertices v1, v2, . . . , vt in order. Let G4
be obtained from P by adding two distinct vertices x, y and edges xvi and yvj for
i = 1, t and all even i ∈ {1, 2, . . . , t} and j = 1, t and all odd j ∈ {1, 2, . . . , t}.
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Let G5 be obtained from G4 by adding the edge xy. We say that G5 is an upper
prismoid, and if t ≥ 4, then we say that G4 is a lower prismoid. A prismoid is a
lower prismoid or an upper prismoid. We are now ready to state a strengthening of
Theorem 6.3, proved in [43].

Theorem 6.5. Let H, G be bricks, where H is isomorphic to a matching minor of G.
Assume that H is not isomorphic to K4 or the prism, and G is not a ladder, wheel,
staircase or prismoid. Then a graph isomorphic to H can be obtained from G by
repeatedly taking proper reductions in such a way that all the intermediate graphs
are bricks not isomorphic to the Petersen graph.

As a counterpart to Theorem 6.5, [43] describes the starting graphs for the gener-
ation process. Notice that K4 is a wheel, a Möbius ladder, a staircase and an upper
prismoid, and that the prism is a planar ladder, a staircase and a lower prismoid.

Theorem 6.6. Let G be a brick not isomorphic to K4, the prism or the Petersen graph.
Then G has a matching minor isomorphic to one of the following seven graphs: the
graph obtained from the prism by adding an edge, the lower prismoid on eight vertices,
the staircase on eight vertices, the staircase on ten vertices, the planar ladder on ten
vertices, the wheel on six vertices, and the Möbius ladder on eight vertices.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder,
wheel, staircase or prismoid, then H itself is a ladder, wheel, staircase or prismoid,
and can be obtained from a graph isomorphic to G by taking (improper) reductions in
such a way that all intermediate graphs are bricks. Thus Theorems 6.5 and 6.6 imply
Theorem 6.3. Theorems 6.5 and 6.6 were used to prove two results about minimal
bricks [42], and to generate interesting examples of Pfaffian bricks. We will discuss
some of those later.

McCuaig [34] proved an analogue of Theorem 6.5 for braces and used it in his
proof of Theorem 4.2 in [35]. To state his result we need another exceptional class of
graphs. Let C be an even cycle with vertex-set v1, v2, . . . , v2t in order, where t ≥ 2
is an integer and let G6 be obtained from C by adding vertices v2t+1 and v2t+2 and
edges joining v2t+1 to the vertices of C with odd indices and v2t+2 to the vertices
of C with even indices. Let G7 be obtained from G6 by adding an edge v2t+1v2t+2.
We say that G7 is an upper biwheel, and if t ≥ 3 we say that G6 is a lower biwheel.
A biwheel is a lower biwheel or an upper biwheel. McCuaig’s result is as follows.

Theorem 6.7. Let H, G be braces, where H is isomorphic to a matching minor of G.
Assume that if H is a planar ladder, then it is the largest planar ladder matching
minor of G, and similarly for Möbius ladders, lower biwheels and upper biwheels.
Then a graph isomorphic to H can be obtained from G by repeatedly taking proper
reductions in such a way that all the intermediate graphs are braces.

Actually, Theorem 6.7 follows from a stronger version of Theorem 6.5 proved
in [43].
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7. Crossing numbers and k-Pfaffian graphs

By a drawing � of a graph in a surface � we mean an immersion of G in � such
that edges are represented by homeomorphic images of [0, 1], not containing vertices
in their interiors. Edges are permitted to intersect, but there are only finitely many
intersections and each intersection is a crossing. For edges e, f of a drawing �

let cr(e, f ) denote the number of times the edges e and f cross. For a perfect
matching M let cr�(M), or cr(M) when � is understood from the context, denote∑

cr(e, f ), where the sum is taken over all unordered pairs of distinct edges e, f ∈ M .
The following theorem was proved by Norine [38]. The “if” part was known to
Kasteleyn [23] and was proved by Tesler [56]. Norine’s proof of that implication is
different.

Theorem 7.1. A graph G is Pfaffian if and only if there exists a drawing of G in the
plane such that cr(M) is even for every perfect matching M of G.

The theory of crossing numbers is fairly well-developed, but only few results
involve parity of crossing numbers, and I am not aware of any about crossings of
perfect matchings. The closest relative of Theorem 7.1 seems to be the following
classical result of Hanani [20] and Tutte [62].

Theorem 7.2. Let � be a drawing of a graph in the plane such that cr(e, f ) is even
for every two distinct non-adjacent edges e, f of G. Then G is planar.

In fact, there is a deeper connection between the last two theorems. Norine [40]
generalized Theorem 7.1 to a statement about the parity of self-intersections of differ-
ent T -joins of a graph, and this generalization implies Theorem 7.2 as well as other
results about crossing numbers. We omit the precise statement and instead refer the
readers to [40].

A graph G is k-Pfaffian if there exist orientations D1, D2, . . . , Dk of G and real
numbers α1, α2, . . . , αk such that

∑k
i=1 αisgnDi

(M) = 1 for every perfect match-
ing M of G. Thus if k is fixed and the orientations and coefficients as above are
given, then the number of perfect matchings of G can be calculated efficiently, using
Lemma 2.1. The following was noted by Kasteleyn [23] and proved by Galluccio and
Loebl [17] and Tesler [56].

Theorem 7.3. Every graph that has an embedding in the orientable surface of genus g

is 4g-Pfaffian.

In light of Theorem 7.1 one might speculate that 4-Pfaffian graphs are related to
graphs drawn on the torus subject to the parity condition of Theorem 7.1. That is
indeed true, as shown by Norine [41].

Theorem 7.4. Every 3-Pfaffian graph is Pfaffian. A graph G is 4-Pfaffian if and only
if it can be drawn on the torus such that cr(M) is even for every perfect matching M

of G.
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It is therefore sensible to conjecture a generalization to surfaces of arbitrary genus,
as does Norine in [41]:

Conjecture 7.5. For a graph G and integer g ≥ 0 the following conditions are
equivalent:

(1) There exists a drawing of G on the orientable surface of genus g such that
cr(M) is even for every perfect matching M of G.

(2) The graph G is 4g-Pfaffian.
(3) The graph G is (4g+1 − 1)-Pfaffian.

Norine [41] has shown that every 5-Pfaffian graph is 4-Pfaffian, but his method
breaks down after that.

8. Signs of edge-colorings

In this section we relate signs of edge-colorings (as in Penrose [46]) with “Pfaffian
labelings”, a generalization of Pfaffian orientations, whereby edges are labeled by
elements of an Abelian group with an element of order two.

A graph G is called k-list-edge-colorable if for every set system {Se : e ∈ E(G)}
such that |Se| = k there exists a proper edge coloring c with c(e) ∈ Se for ev-
ery e ∈ E(G). The following famous list-edge-coloring conjecture was suggested
independently by various researchers and first appeared in print in [5].

Conjecture 8.1. Every k-edge-colorable graph is k-list-edge-colorable.

In a k-regular graphGone can define an equivalence relation on k-edge colorings as
follows. Let c1, c2 : E(G) → {1, . . . , k} be two (proper) k-edge colorings of G. For
v ∈ V (G) let πv : {1, . . . , k} → {1, . . . , k} be the permutation such that πv(c1(e)) =
c2(e) for every e ∈ E(G) incident with v, and let c1 ∼ c2 if

∏
v∈V (G) sgn(πv) = 1.

Obviously ∼ is an equivalence relation on the set of k-edge colorings of G and ∼ has
at most two equivalence classes. We say that c1 and c2 have the same sign if c1 ∼ c2
and we say that c1 and c2 have opposite signs otherwise.

A powerful algebraic technique developed by Alon and Tarsi [2] implies [1] that
if in a k-edge-colorable k-regular graph G all k-edge colorings have the same sign
then G is k-list-edge-colorable. In [14] Ellingham and Goddyn prove the following
theorem.

Theorem 8.2. In a k-regular planar graph all k-edge colorings have the same sign.
Therefore every k-edge-colorable k-regular planar graph is k-list-edge-colorable.

Goddyn [18] conjectured that Theorem 8.2 generalizes to Pfaffian graphs. This
turned out to be true, even for the somewhat larger class of graphs that admit Pfaffian
labelings. Let us introduce those graphs now.

Let � be an Abelian multiplicative group, let 1 be the identity of � and let −1
be some element of order two in �. Let G be a graph with V (G) = {1, 2, . . . , n},
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and let D be the orientation of G in which every edge ij is oriented from i to j ,
where i < j . Let us recall that sgnD(M) was defined in Section 2. We say that
l : E(G) → � is a Pfaffian labeling of G if for every perfect matching M of G,
sgnD(M) = ∏

e∈M l(e). We say that G admits a Pfaffian �-labeling if there exists a
Pfaffian labeling l : E(G) → � of G. We say that G admits a Pfaffian labeling if G

admits a Pfaffian �-labeling for some Abelian group � as above. It is easy to see that
a graph G admits a Pfaffian Z2-labeling if and only if G admits a Pfaffian orientation.
Note also that the existence of a Pfaffian labeling of a graph does not depend on the
ordering of its vertices. The results of the remainder of this section are from [44].

Theorem 8.3. Let G be a k-regular graph with V (G) = {1, . . . , 2n}. If G admits a
Pfaffian labeling then all k-edge-colorings of G have the same sign.

Using the theory of Alon and Tarsi mentioned above this implies a proof of God-
dyn’s conjecture:

Corollary 8.4. Every k-edge-colorable k-regular graph that admits a Pfaffian label-
ing is k-list-edge-colorable.

Theorem 8.3 has the following partial converse.

Theorem 8.5. If a graph G does not admit a Pfaffian labeling then there exist an
integer k, a k-regular multigraph G′ whose underlying simple graph is a spanning
subgraph of G and two k-edge colorings of G′ of different signs.

The above two theorems suggest the study of graphs that admit a Pfaffian labeling.
First, there is an analogue of Theorem 6.2.

Lemma 8.6. Let � be an Abelian group. A matching covered graph G admits a
Pfaffian �-labeling if and only if each of its bricks and braces admits a Pfaffian
�-labeling.

Thus it suffices to characterize bricks and braces that have a Pfaffian labeling. The
Petersen graph is not Pfaffian, but it admits a Pfaffian μ4-labeling, where μn is the
multiplicative group of the nth roots of unity. Figure 2 shows an example of such a
labeling. Using Theorems 6.3 and 6.7 it is not hard to show that the Petersen graph is
the only brick or brace with that property. Using Lemma 8.6 we obtain:

Theorem 8.7. A graph G admits a Pfaffian labeling if and only if every brick and
brace in its decomposition is either Pfaffian or isomorphic to the Petersen graph. If
G admits a Pfaffian �-labeling for some Abelian group � then G admits a Pfaffian
μ4-labeling.

The last result of this section characterizes graphs that admit a Pfaffian labeling in
terms of their drawing in the projective plane. We say that a region C of the projective
plane is a crosscap if its boundary is a simple closed curve and its complement is a
disc. We say that a drawing � of a graph G in the projective plane is proper with
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Figure 2. A μ4-labeling of the Petersen graph.

respect to the crosscap C if no vertex of G is mapped to C and for every edge e ∈ E(G)

intersecting C and every crosscap C′ ⊆ C the image of e intersects C′.

Theorem 8.8. A graph G admits a Pfaffian labeling if and only if there exists a cross-
cap C in the projective plane and a proper drawing � of G in the projective plane with
respect to C such that |M ∩ S| and cr�(M) are even for every perfect matching M

of G, where S ⊆ E(G) denotes the set of edges whose images intersect C.

9. On characterizing Pfaffian graphs

Norine’s theorem, Theorem 7.1, is a beautiful result, but, unfortunately, does not
seem to help testing whether a graph is Pfaffian. Theorems 4.1 and 4.2 suggest two
possible ways of characterizing Pfaffian graphs, but neither has been carried out, and
there appear to be serious difficulties.

Fischer and Little [15] extended Theorem 4.1 as follows. A matching covered
graph is near bipartite if it has two edges whose deletion makes the graph bipartite
and matching covered. Let Cubeplex be the graph obtained from the (skeleton of the
3-dimensional) cube by subdividing three edges of a perfect matching and adding
a vertex of degree three adjacent to the three resulting vertices, and let Twinplex be
obtained from the Petersen graph by subdividing two edges that form an induced
matching and joining the resulting vertices by an edge. This defines both graphs
uniquely up to isomorphism. We say that a graph is a weak matching minor of another
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if the first can be obtained from a matching minor of the second by contracting odd
cycles and deleting all resulting loops and parallel edges.

Theorem 9.1. A near bipartite graph is Pfaffian if an only if it has no weak matching
minor isomorphic to K3,3, Cubeplex or Twinplex.

Let us say that a graph G is minimally non-Pfaffian if G is not Pfaffian but every
proper weak matching minor of G is. Thus K3,3, Cubeplex and Twinplex are mini-
mally non-Pfaffian, and so is the Petersen graph, as is easily seen. Fischer and Little
(private communication) conjectured that those are the only minimally non-Pfaffian
graphs; in other words they conjectured that upon adding the Petersen graph to the list
of excluded weak matching minors, Theorem 9.1 holds for all graphs. Unfortunately,
that is not the case. Here is an infinite family of minimally non-Pfaffian graphs [45].

Let k ≥ 2, let C2k+1 be the cycle of length 2k + 1 with vertices 1, 2, . . . , 2k + 1
in order, and let M be a matching in C, possibly empty. Let the graph G(k, M) be
defined by saying that its vertex-set is {u1, u2, . . . , u2k+1, v1, v2, . . . , v2k+1, w1, w2}
and that G(k, M) has the following edges, where index arithmetic is taken modulo
2k + 1:

• uivi for all i = 1, 2, . . . , 2k + 1,
• uiui+1 and viw2 if {i, i + 1} �∈ M ,
• viw1 if {i − 1, i} �∈ M ,
• uivi+1 and viui+1 if {i, i + 1} ∈ M .

Notice that the graph G(2, {{1, 2}, {3, 4}}) is isomorphic to Cubeplex.

Theorem 9.2. For every integer k ≥ 2 and every matching M of C2k+1 the graph
G(k, M) is minimally non-Pfaffian.

Thus an extension of Theorem 9.1 to all graphs would have to involve infinitely
many excluded weak matching minors. On the other hand, as noted in [45], the family
G(k, M) suggests a possible weakening of the weak matching minor ordering, and it
is possible that if weak matching minor is replaced by this weakening, then the list of
excluded might be finite (and of a reasonable size).

There is also the possibility of extending Theorem 4.2 to all graphs. That could
be potentially very profitable, because it might lead to a polynomial-time recognition
algorithm, but the prospects for that are not very bright. The class of planar graphs
can be enlarged to a bigger class of Pfaffian graphs defined by means of surface
embeddings. Let us say that an embedding of a graph G in the Klein bottle is cross-
cap-odd if every cycle C in G that does not separate the surface is odd if and only if it
is 1-sided. If G is embedded in the Klein bottle with all faces even (that is, bounded by
a walk of even length), then the embedding is cross-cap-odd if and only if the 1-sided
cycles are precisely the odd cycles in G. Please note that every planar graph can be
embedded in the Klein bottle so that the embedding will be cross-cap-odd, and every
embedding of a non-bipartite graph in the projective plane with all faces even may
be regarded as a cross-cap-odd embedding in the Klein bottle. The following result,
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proved in [39], resulted from earlier conversations of the author with Neil Robertson
and Paul Seymour. By the remark above it implies Theorem 1.1.

Theorem 9.3. Every graph that admits a cross-cap-odd embedding in the Klein bottle
is Pfaffian.

It may seem reasonable to expect an analogue of Theorem 4.2, something along
the lines that every Pfaffian brick can be obtained from graphs that admit a cross-cap-
odd embedding in the Klein bottle and a few sporadic exceptional graphs by means of
certain composition operations. Unfortunately, the following construction of Norine
seems to give a counterexample.

Theorem 9.4. For every integer n ≥ 1 there exists a Pfaffian brick that has a subgraph
isomorphic to Kn.

There is a chance that a notion analogous to tree-width can help us get around
Norine’s construction. A tree is ternary if all its vertices have degree one or three; the
vertices of degree one are called leaves. A matching decomposition of a graph G is a
pair (T , τ ), where T is a ternary tree and τ is a bijection from the set of leaves of T to
V (G). For an edge e ∈ E(T ) fix one of the two components of T \e, and let Ve be the
set of all leaves of T that belong to that component. We define the width of e as the
maximum, over all perfect matchings M of G, of |δ(τ (Ve))∩M|. We define the width
of (T , τ ) as the maximum width of an edge of T , and we define the matching-width
of a graph G as the minimum width of a matching decomposition of G. The graphs
Norine constructed in the proof of Theorem 9.4 all have low matching-width, and
so that leaves open the possibility that Pfaffian graphs of high matching-width might
exhibit more structure. Further, Norine [39] describes a polynomial-time algorithm
to test whether an input graph G is Pfaffian, assuming a matching decomposition of G

of bounded width is given as part of the input instance. Thus there is some hope, but
at the moment it is not clear if these ideas can be turned into a meaningful theorem or
a polynomial-time algorithm to test whether an input graph is Pfaffian. The following
conjecture of Norine and the author [39], modeled after the excluded grid theorem of
Robertson and Seymour [48] (see also [11], [49]), seems relevant.

Conjecture 9.5. There exists a function f such that every graph of matching-width
at least f (k) has a matching minor isomorphic to the 2k × 2k grid.
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