COMBINATORICA 28 (1) (2008) 99-111

DOI: 10.1007/s00493-008-2231-2
COMBINATORICA /s

Bolyai Society — Springer-Verlag

PFAFFIAN LABELINGS AND SIGNS OF EDGE COLORINGS

SERGUEI NORINE, ROBIN THOMAS*

Received June 28, 2005

We relate signs of edge-colorings (as in classical Penrose’s result) with “Pfaffian labelings”,
a generalization of Pfaffian orientations, whereby edges are labeled by elements of an
Abelian group with an element of order two. In particular, we prove a conjecture of
Goddyn that all k-edge-colorings of a k-regular Pfaffian graph G have the same sign. We
characterize graphs that admit a Pfaffian labeling in terms of bricks and braces in their
matching decomposition and in terms of their drawings in the projective plane.

1. Introduction

Graphs considered in this paper are finite and loopless, but not necessarily
simple (parallel edges are allowed). A graph G is called k-list-colorable if for
every set system {S, :v € V(G)} such that |S,| =k there exists a proper
vertex coloring ¢ with ¢(v) € S, for every v € V(G). Not every k-colorable
graph is k-list colorable. A classic example is K33 with bipartition (A,B)
and {S,:ve A}={S,:ve B}={{1,2},{1,3},{2,3}}.

A graph is called k-list-edge-colorable if for every set system {S. :e €
E(G)} such that |S.|=Fk there exists a proper edge coloring ¢ with c(e) € S,
for every e € E(G). The following famous list-edge-coloring conjecture was
suggested independently by various researchers and first appeared in print
in [3].

Conjecture 1.1. Every k-edge-colorable graph is k-list-edge-colorable.
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In a k-regular graph G one can define an equivalence relation on k-edge
colorings as follows. Let c¢1,co : E(G) — {1,...,k} be two k-edge colorings
of G. For v e V(G) let m,: {1,...,k} — {1,...,k} be the permutation such
that m,(ci(e)) =ca(e) for every e € E(G) incident with v, and let ¢; ~ ¢g if
[Toev(c)ysen(m) = 1. Obviously ~ is an equivalence relation on the set of
k-edge colorings of G and ~ has at most two equivalence classes. We say
that ¢; and co have the same sign if ¢1 ~cy and we say that ¢; and ¢y have
opposite signs otherwise.

A powerful algebraic technique developed by Alon and Tarsi [2] implies [1]
that if in a k-edge-colorable k-regular graph G all k-edge colorings have the
same sign then G is k-list-edge-colorable. In [6] Ellingham and Goddyn prove
the following theorem.

Theorem 1.2. In a k-regular planar graph all k-edge colorings have the
same sign. Therefore every k-edge-colorable k-regular planar graph is k-list-
edge-colorable.

By The Four-Color Theorem Theorem 1.2 implies that every 2-connected
3-regular planar graph is 3-list-edge-colorable. This was proven indepen-
dently by Jaeger and Tarsi. Penrose [16] was the first to prove that in a
3-regular planar graph all 3-edge colorings have the same sign.

In a directed graph we denote by wv an edge directed from u to wv.
Let D be a directed graph with vertex-set {1,2,...,2n} and let M =
{urv1,ugvs, ..., uyv, } be a perfect matching of D. Define sgnp (M), the sign
of M, to be the sign of the permutation

1 23 4...2n—12n
UL V1 ULV ... Uy Up )

Note that the sign of a perfect matching is well-defined as it does not depend
on the order in which the edges of M are listed. We say that an orientation
D of a graph G with vertex-set {1,2,...,n} is Pfaffian if the signs of all
perfect matchings in D are positive. It is well-known and easy to verify that
the existence of a Pfaffian orientation does not depend on the numbering
of V(G). Thus we say that a graph with an arbitrary vertex-set is Pfaffian if
it is isomorphic to a graph with vertex-set {1,2,...,n} that admits a Pfaffian
orientation.

Pfaffian orientations have been introduced by Kasteleyn [8-10], who
demonstrated that one can enumerate perfect matchings in a Pfaffian graph
in polynomial time. A recent survey may be found in [19]. In [10] Kasteleyn
proved the following theorem.

Theorem 1.3. Every planar graph is Pfaffian.
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Goddyn [7] conjectured that Theorem 1.2 generalizes to Pfaffian graphs.
The main goal of this paper is to prove this conjecture. In fact, in Section 2
we prove that Theorem 1.2 extends to the larger class of graphs that admit a
“Pfaffian labeling”. Conversely, we prove that if a graph G does not admit a
Pfaffian labeling, then some k-regular graph H obtained from G by replacing
each edge by some non-negative number of parallel edges does not satisfy
Theorem 1.2.

We also give two characterizations of graphs that admit a Pfaffian label-
ing. The first one in Section 3 characterizes graphs with a Pfaffian labeling
in terms of bricks and braces in their tight cut decomposition. The relevant
definitions are given in Section 3. The second characterization in Section 4
describes graphs with a Pfaffian labeling in terms of their drawings in the
projective plane.

We propose the following conjecture. If true, it would generalize the Four-
Color Theorem by Theorem 1.3.

Conjecture 1.4. Every 2-connected 3-regular Pfaffian graph is 3-edge-
colorable.

2. Pfaffian Labelings and Signs of Edge Colorings

We generalize Pfaffian orientations to Pfaffian labelings and prove that
Goddyn’s conjecture holds for those graphs that admit a Pfaffian label-
ing. Let I' be an Abelian multiplicative group, denote by 1 the identity
of I' and denote by —1 some element of order two in I'. Let G be a
graph with V(G) = {1,2,...,n}. For a perfect matching M of G we de-
fine sgn(M) as sgnp (M), where D is the orientation of G that orients each
edge from its lower numbered end to its higher numbered end. We say that
l: E(G) — I is a Pfaffian labeling of G if for every perfect matching M
of G, sgn(M) =[].carl(e). Clearly the existence of [ does not depend on
the numbering of vertices of G. We say that a graph H admits a Pfaffian
I'-labeling if it is isomorphic to a graph G with vertex-set {1,2,...,n} that
has a Pfaffian labeling [: E(G) — I'. We say that G admits a Pfaffian labeling
if G admits a Pfaffian I'-labeling for some I'. It is easy to see that a graph
G admits a Pfaffian Zs-labeling if and only if G is Pfaffian.
We need the following technical lemma.

Lemma 2.1. Let X be a set and let Ay,As,...,A,,B1,Bs,...,B,, C X,
such that |A;NBj| =1 for every 1 <i<n,1 <j<m, and every x € X
belongs to exactly two of the sets A1, As,..., A, and exactly two of the sets
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B1,Bs,...,B,,. For every 1<:¢<n let

S; = {{x,y} CX|zye Aj,x € By NB,,,y € Bj, N B;, for some
11 <19 < ig < i4}.
Symmetrically for every 1<j<m let

T; = {{x,y} CX|zyeBj,xecAjNAj,ye Aj,NA; forsome
J1 < ja < js < ja}-
Then

SISl => |7yl
i=1 j=1

modulo 2.

Proof. For 1 <i<n,1<j<m denote by z;; the unique vertex of A;NB;.
Let Z = {(al,bl,ag, bg)’ 1<a1<as < n, 1<by<b; < m,Tqiby 7& xa2b2}. Clearly
|Z]|=n(n—1)m(m—1)/4—|X| and | X|=nm/4. Moreover n and m are even,
as n=> ., |B1NA;|=2|B;| and, similarly, m =2|A;|. Consequently |Z| is
even. For {u,v} C X let Zy,={(a1,b1,a2,b2) € Z|{u,v} ={Za,b,, Tagby } }-

We claim that Z,, is odd if and only if {u,v} belongs to exactly one of
AP S; and A"leTj. While a simple case analysis can be used to verify this
claim, we would like to demonstrate another proof. Draw a blue straight line
between the points (0,7) and (1,;) in R? if {u}=A4;NB; and a red straight
line if {v} = A;NB;. Then the resulting lines form blue and red closed curves,
and as such they cross an even number of times. Note that |Z,,| is equal to
the number of such crossings in R? strictly between the lines =0 and z =1;
the number of times {u,v} occurs in the sets Si,...,5, is equal the number
of such crossings on the line z=0 and the number of times {u,v} occurs in
the sets T1,...,T,, is equal the number of crossings on the line x =1. The
claim follows.

From the claim, 77" [Si|+ 3270 15 = 3 pyc x [Zuo| = |Z] = 0 mod-
ulo 2.

Corollary 2.2. Let ¢; and ¢y be two k-edge-colorings of a k-regular graph
G and let V(G)={1,...,2n}. Then c¢; and co have the same sign if and only

if TTE  sen(er () =TT5_ sgn(cy ' (4)).

Proof. Define for 1 <i <2k, A; =c; (i) for 1 <i<k and A; =c; (i —k)
for k+1<i<2k. Let B; be the set of all edges incident with the vertex j
for 1 <j <2n. Note that the sets Ay, As,..., Aok, B1,Bs,..., By, satisfy the



PFAFFIAN LABELINGS AND SIGNS OF EDGE COLORINGS 103

conditions of Lemma 2.1. Let S; and T} be defined as in Lemma 2.1. Note
that sgn(A;) is equal to

(_1)|{{u,v},{u/,v/}eAi|u<u’<v<v’}\ _ (_1)\Si|‘
On the other hand sgn(m;) = (—1)/%l, where 7; is as in the definition of sign

of edge-colorings. The colorings ¢; and ¢y have the same sign if and only if
H?L sgn(mj)=1, but by Lemma 2.1

2n 2k k k
H sgn(m;) = H sgn(A;) = H sgn(cy () H sgn(cy ' (4)).
j=1 i=1 i=1 i=1

Theorem 2.3. If a k-regular graph G admits a Pfaffian labeling then all
k-edge-colorings of G have the same sign.

Proof. We may assume that V(G)={1,2,...,n}. Let ¢; and ¢y be two k-
edge-colorings of G. By Corollary 2.2 ¢; and ¢y have the same sign if and
only if

k k
H sgn(cy (i) H sgn(cy (1)) = 1.
i=1 i=1

Let [: E(G)— I be a Pfaffian labeling of G for some Abelian group I". Then

k k
sgn(ep (1) [ sen(er ') = [ te)x [ e
=1

=1 ecE(Q) ecE(GQ)
k 2
= (Hsgn(cll(i))> = 1.
i=1

By Theorem 2.1 in [6], as well as Corollary 3.9 in [1], a k-regular graph
is k-list-edge-colorable if the sum of signs of all of its k-edge colorings is
non-zero. Therefore the following corollary of Theorem 2.3 holds.

(2

Corollary 2.4. Every k-edge-colorable k-regular graph that admits a Pfaf-
fian labeling is k-list-edge-colorable.

Next we will prove a partial converse of Theorem 2.3. We need to precede
it by another technical lemma.

Lemma 2.5. Let m and n be positive integers. Let A be an integer ma-
trix with m rows and n columns and let b be a rational column vector of
length m. Then either there exists a rational vector x of length n such that
Ax — b is an integer vector, or there exists an integer vector ¢ such that
cA=0 and c-b is not an integer.
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Proof. There exists a unimodular integer m xm matrix U = (u;;) such that
H=UA is in the Hermitian normal form (see for example [17]): if H = (h;;)
then there exist 1 <k <ko<---<k;<n, such that

1. I1<m,

2. hix, #0 for every 1<i<l,

3. hij:() for every 1§i§l,1§j<k‘i,
4. h;j=0 for every [ <i<m,1<j<n.

There exists x € Q" such that first [ coordinates of Hx — Ub are zeros.
Let Ub= (dj)lgjgm- If dj gZ for some i >1[ then C:{Ujl,’LLjQ, - ,Ujm} is as
required. If, on the other hand, dj41,...,dy, €Z then Hx—Ub is an integer
vector and therefore so is U~} (Hx—Ub)=Ax—b.

Theorem 2.6. If a graph G does not admit a Pfaffian labeling then there
exist an integer k, a k-regular graph G' whose underlying simple graph is a
spanning subgraph of G and two k-edge colorings of G’ of different signs.

Proof. We may assume that V(G) = {1,2,...,n}. Let M denote the set
of all perfect matchings of G and let I' be the additive group Q/Z. The
identity of I" is 0 and the only other element of order two is 1/2. We will
use the additive notation in this proof, instead of the multiplicative one we
used before; in particular sgn(M) € {0,1/2} for M € M. The graph G does
not admit a Pfaffian I'-labeling; i.e., there exists no function [ : E(G) —
Q/Z such that ) ., I(e) =sgn(M) for every M € M. By Lemma 2.5 there
exists a function f: M — Z such that ), f(M)=0 for every e € E(G)
and Y ye g f(M)sgn(M) =1/2. For every edge e € E(G) let m(e) =1/2-
Y omse [ f(M)]; then m(e) is an integer. Let G’ be the graph constructed
from G by duplicating every edge m(e) —1 times (if m(e) =0 we delete e).
Then G’ is k-regular, where k=1/2-%", (| f(M)|. Moreover, there exist a
k-edge coloring ¢; of G’ such that a perfect matching M appears as a color
class of ¢; if and only if f(M) is positive, in which case it appears f(M)
times. Similarly, there exist a k-edge coloring cs of G’ such that a perfect
matching M appears as a color class of ¢ if and only if f(M) is negative, in
which case it appears |f(M)| times. Note that Zle et () +Zf:1 ey (i) =
Yotem [F(M)|sgn(M) =3 e pq f(M)sgn(M) = 1/2. Therefore ¢; and ¢y
have different signs by Corollary 2.2.

3. Pfaffian Labelings and Tight Cut Decomposition

The previous section established a relation between graphs that admit a
Pfaffian labeling and k-regular graphs in which all k-edge colorings have the
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same sign. This motivates the study of graphs that admit a Pfaffian labeling.
In this section we use the matching decomposition procedure developed by
Kotzig, and Lovész and Plummer [12], which we briefly review.

We say that a graph is matching-covered if it is connected and every
edge belongs to a perfect matching. Let G be a graph, and let X C V(G).
We use 6(X) to denote the set of edges with one end in X and the other
in V(G)—X. A cut in G is any set of the form §(X) for some X CV(G).
A cut C'is tight if |CNM|=1 for every perfect matching M in G. If G has a
perfect matching, then every cut of the form §({v}) is tight; those are called
trivial, and all other tight cuts are called nontrivial. Let §(X) be a nontrivial
tight cut in a graph G, let G| be obtained from G by identifying all vertices
in X into a single vertex and deleting all resulting parallel edges, and let G4
be defined analogously by identifying all vertices in V(G)— X. We say that
G decomposes along C' into G and G9. By repeating this procedure any
matching-covered graph can be decomposed into graphs with no non-trivial
tight cuts. This motivates the study of the graphs that have no non-trivial
tight cuts.

The graphs with no non-trivial tight cuts were characterized in [5,11].
A brick is a 3-connected bicritical graph, where a graph G is bicritical if
G\u\v has a perfect matching for every two distinct vertices u,v € V(G).
A brace is a connected bipartite graph such that every matching of size at
most two is contained in a perfect matching.

Theorem 3.1 ([5,11]). A matching covered graph has no non-trivial tight
cuts if and only if it is either a brick or a brace.

Thus every matching covered graph G can be decomposed into a multiset
J' of bricks and braces. Let J consist of the underlying simple graphs of
graphs in J'. Lovész [11] proved that, up to isomorphism, the multiset
J does not depend on the choice of tight cuts made in the course of the
decomposition. We say that the members of J are the bricks and braces
of G.

The following lemma reduces the study of graphs with Pfaffian labelings
to bricks and braces. Its analogue for Pfaffian orientations is due to Vazirani
and Yannakakis [20].

Lemma 3.2. Let I' be an Abelian group. A matching-covered graph G
admits a Pfaffian ['-labeling if and only if each of its bricks and braces
admits a Pfaffian I'-labeling.

Proof. Let C'=4§(X) be a tight cut in G and let G; and Gy be obtained
from G by identifying vertices in X and V(G)— X respectively. It suffices
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to prove that G admits a Pfaffian I'-labeling if and only if both G; and
G5 admit a Pfaffian I'-labeling. Without loss of generality, we assume that
V(G)={1,2,....2n},X ={1,2,...,2k + 1} and that G; and G inherit the
order on vertices from G; in particular, the vertex produced by identifying
vertices of V(G) — X has number 2k +2 in G, the vertex produced by
identifying vertices of X has number 1 in Go. For every perfect matching M
of G the sets of edges MNE(G1) and MNE(G2) are perfect matchings of G
and Gy respectively. Moreover, sgn(M)=sgn(M NE(G1))sgn(MNE(G2)).

Suppose first that [ : E(G) — I' is a Pfaffian labeling of G. For ev-
ery e € C fix a perfect matching Ms(e) of Gy containing e. Define [;(e) =
sgn(Ma(e)) [T rensy(e)1(f) for every e € C' and define l1(e) = l(e) for every
e€ E(G1)\C. For a perfect matching M of G let ee CN M. We have

[Tun =TI wn I U sen(ds(e)
fem feM\{e} feMs(e)
= sgn(M U Ms(e)) sgn(Ma(e)) = sgn(M).

Therefore [;: E(G1)— I is a Pfaffian labeling of Gj.

Suppose now that [;: E(G;)— I is a Pfaffian labeling of G; for i€ {1,2}.
Define I(e)=1;(e) for every e€ E(G;)\C and define l(e)=1;(e)l2(e) for every
ecC. It is easy to see that [: F(G)— I is a Pfaffian labeling of G.

For our analysis of Pfaffian labelings of bricks and braces we will need
two theorems. The first of them is proved in [4] for bricks and in [12] for
braces. It also follows from the results of [13].

Theorem 3.3. Let GG be a brick or brace different from Ko, Cy, K4, the
prism and the Petersen graph. Then there exists e € E(G) such that G\e is a
matching covered graph with at most one brick in its tight cut decomposition
and this brick is not the Petersen graph.

For a graph G let the matching lattice, lat(G), be the set of all linear
combinations with integer coefficients of the incidence vectors of perfect
matchings of G. The next theorem of Lovéasz [11] gives a description of the
matching lattice. It can be deduced from Theorem 3.3.

Theorem 3.4. If a matching covered graph G has no brick isomorphic to
the Petersen graph, then

lat(G) = {z € ZF(@) | £(C) = (D) for any two tight cuts C and D}.

Lemma 3.5. A brace or a brick not isomorphic to the Petersen graph ad-
mits a Pfaffian labeling if and only if it is Pfaffian.
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Proof. By induction on |E(G)|. The base holds for Ko, Cy, K4 and the prism
as all those graphs are Pfaffian. We may assume that V(G)={1,2,...,n}.

For the induction step let e € F(G) be as in Theorem 3.3 and denote
G\e by G'. The bricks and braces of G’ satisfy the induction hypothesis and
therefore by Lemma 3.2 either G’ admits a Pfaffian orientation or G’ does
not admit a Pfaffian labeling. If G’ does not admit a Pfaffian labeling then
neither does G.

Therefore we can assume that G’ admits a Pfaffian labeling : E(G") — Zo.
It will be convenient to use additive notation for the group operation.
Suppose [ does not extend to a Pfaffian labeling of G. Then there ex-
ist perfect matchings M; and My in G such that e € M; N My and
2 reminfer L) = 2 penn gey L) #sgn (M) — sgn(My).

We claim that |[M;NC| = |MaNC| for any tight cut C' = 46(X) in G'.
Indeed, G’ has at most one brick in its decomposition. Therefore we can
assume that the graph G” obtained from G’ by identifying vertices in X
is bipartite. It follows that |M;NE(G")|=|M2NE(G")| and, consequently,
that |[M;NC|=|MaNCY.

By Theorem 3.4 we have Xar, — XMy = Y are pm CMX M- Where M denotes
the set of perfect matchings of G’ and c)y; is an integer for every M e M.
Therefore for every Pfaffian labeling I": E(G')—1I" of G’

3" carsgn(M) = Z(cMZl’(f)>: S-S Y.

MeM MeM feMm feMi\{e} feMz\{e}

But for I’ = [ this expression is not congruent to sgn(Mj) — sgn(My)
modulo 2. It follows that 3 s\ (o3 () = 2 perm g U'(f) # sen(My) —
sgn(Ms) for every Pfaffian labeling I’ : E(G') — I'. Therefore no Pfaffian
labeling of G’ extends to a Pfaffian labeling of G, i.e., G does not admit a
Pfaffian labeling.

Note that the Petersen graph admits a Pfaffian py-labeling, where p,, is
the multiplicative group of nth roots of unity. Figure 1 shows an example
of such labeling. Note that while the letter ¢ was used for indexing above,
from this point on it is used to denote a square root of —1.

The next theorem constitutes the main result of this section. It follows
immediately from the observation above and Lemmas 3.2 and 3.5.

Theorem 3.6. A graph G admits a Pfaffian labeling if and only if every
brick and brace in its tight cut decomposition is either Pfaffian or isomorphic
to the Petersen graph. If G admits a Pfaffian I'-labeling for some Abelian
group I' then G admits a Pfaffian p4-labeling.
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Figure 1. A pu4-labeling of the Petersen graph

4. Drawing Graphs with Pfaffian Labelings

By a drawing @ of a graph G on a surface S we mean an immersion of G
in S such that edges are represented by homeomorphic images of [0, 1], not
containing vertices in their interiors. Edges are permitted to intersect, but
there are only finitely many intersections and each intersection is a crossing.
For edges e, f of a graph G drawn on a surface S let cr(e, f) denote the
number of times the edges e and f cross. For a set M C E(G) let crg(M), or
cr(M) if the drawing is understood from context, denote > cr(e, f), where
the sum is taken over all unordered pairs of distinct edges e, f € M. The next
lemma follows from the results of each of the papers [14,15,18].

Lemma 4.1. Let D be an orientation of a graph G and let V(G) =
{1,2,...,2n}. Then there exists a drawing ¢ of G in the plane such that
sgnp (M) = (=1)*M) for every perfect matching M of G. Moreover, for
any S C E(G) the drawing ¢ can be chosen in such a way that there exists
a point in the plane that belongs to the image of each edge in S and does
not belong to the image of any other edge or vertex of G.

Conversely, for any drawing @ of G in the plane there exists an orientation
D of G such that sgnp(M)=(—1)*(M) for every perfect matching M of G.

For a point p and a drawing @ of a graph G in the plane, such that @
maps no vertex of G to p, let cr, a(e, f) denote the number of times the
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edges e and f cross at points other than p. For a perfect matching M of G
let crp, (M) denote ) crp a(e, f), where the sum is taken over all unordered
pairs of distinct edges e, f € M.

Lemma 4.2. For a graph G the following are equivalent.

1. G admits a Pfaffian labeling,

2. There exist a point p and a drawing ¢ of a graph G in the plane, such
that ¢ maps no vertex of G to p and |M NS| and cr, (M) are even for
every perfect matching M of G, where S C E(G) denotes the set of edges
whose images contain p.

Proof. We may assume that V(G)={1,2,...,n}.

(1)=(2). By Theorem 3.6 there exists a Pfaffian u4-labeling [: E(G) —
{£1,+£i} of G. Let D be the orientation of G such that uwv € E(D) if and
only if u < v and l(uv) € {1,i}, or u > v and [(uwv) € {—1,—i}. Let S =
{e€ E(G) |l(e) = +i} and let S"={e € E(G) |l(e) € {—1,—i}}. Note that
sgnp (M) = (—1)MN sgn (M) and [,y 0(e) = (=1)MOFIIMOST for every
perfect matching M of G.

By Lemma 4.1 there exist a point p and a drawing @ of the graph G in
the plane such that sgnp (M) = (=1)*(M) for every perfect matching M
of G, ® maps no vertex of G to p, the images of the edges in S contain p
and images of other edges do not contain p. Note that [[.c,,l(e) € R for
every perfect matching M and therefore |M N S| is even. Denote |M NS|/2
by z(M). We have cry, ¢(M)=cre(M)—2z(M)(2z(M)—1). It follows that

(—1)e2 ) = sgnp (M) (—1)"M) = (=1)MOLIMAS sgn (A1)
= [ Ue)sgn(M) = 1.

ecM

Therefore cry (M) is even.

(2) = (1). By Lemma 4.1 there exists an orientation D of G such that
sgnp (M) = (=1)*(M) for every perfect matching M of G. For uv € E(G)
with u<wv let l;(e)=1if wwve E(D) and let 1 (e)=—1 otherwise; let lo(e)=1
if wv € S and let ly(e) =1 otherwise. Finally, let I(e) =1(e)l2(e). One can
verify that [: E(G) — {£1,£i} is a Pfaffian labeling of G by reversing the
argument used above.

We say that a region C of the projective plane is a crosscap if its boundary
is a simple closed curve and its complement is a disc. We say that a drawing
@ of a graph G in the projective plane is proper with respect to the crosscap C
if no vertex of G is mapped to C and for every e € E(G) such that the image
of e intersects C' and every crosscap C’' CC the image of e intersects C".



110

SERGUEI NORINE, ROBIN THOMAS

Now we can reformulate Lemma 4.2 in terms of drawings in the projective

plane.

Theorem 4.3. For a graph G the following are equivalent.

1.
2.

(1]

G admits a Pfaffian labeling.

There exist a crosscap C' in the projective plane and a proper drawing @
of G with respect to C, such that |MNS| and crg(M) are even for every
perfect matching M of G, where S C E(G) denotes the set of edges whose
images intersect C'.
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