DIRECTED TREE-WIDTH

Robin Thomas

School of Mathematics
Georgia Institute of Technology www.math.gatech.edu/~thomas

joint work with
T. Johnson, N. Robertson, P. D. Seymour

OUTLINE

-Tree-width and havens for undirected graphs

- Even directed circuits
- Packing directed circuits
-Path-width of directed graphs
-Tree-width of directed graphs
- Havens in directed graphs
-Algorithms

A tree-decomposition of a graph G is (T, W), where T is a tree and $W=\left(W_{t}: t \in V(T)\right)$ satisfies (T1) $\bigcup_{t \in V(T)} W_{t}=V(G)$,
(T2) if $t^{\prime} \in T\left[t, t^{\prime \prime}\right]$, then $W_{t} \cap W_{t^{\prime \prime}} \subseteq W_{t^{\prime}}$,
(T3) $\forall u v \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_{t}$.
The width is $\max \left(\left|W_{t}\right|-1: t \in V(T)\right)$.
The tree-width of G is the minimum width of a tree-decomposition of G.

- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $t w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
K_{5}, 5-prism, octahedron, V_{8}
- $\operatorname{tw}\left(K_{n}\right)=n-1$
- tree-width is minor-monotone
- The $k \times k$ grid has tree-width k

Consider all functions ϕ mapping graphs into integers such that
(1) $\phi\left(K_{n}\right)=n-1$,
(2) G minor of $H \Rightarrow \phi(G) \leq \phi(H)$,
(3) If $G \cap H$ is a clique, then $\phi(G \cup H)=\max \{\phi(G), \phi(H)\}$.

Order such functions by $\phi \leq \psi$ if $\phi(G) \leq \psi(G)$ for all G.
THEOREM (Halin) Tree-width is the maximum element in the above poset.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.
Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Cops and robbers. Fix a graph G and an integer k.

 There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.
THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least $k-1$

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.
THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least $k-1$

COR Search strategy \Rightarrow monotone search strategy.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $\operatorname{tw}(G) \leq k$.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $\operatorname{tw}(G) \leq k$.

THEOREM (Arnborg, Proskurowski, ...)
Many problems can be solved in linear time when restricted to graphs of bounded tree-width.

Tree-width is useful in

- theory
- design of theoretically fast algorithms
- practical computations

FEEDBACK VERTEX-SET FOR FIXED k

INSTANCE A graph G
QUESTION Is there a set $X \subseteq V(G)$ such that $|X| \leq k$ and $G \backslash X$ is acyclic?

ALGORITHM If $\operatorname{tw}(G)$ is small use bounded tree-width methods. Otherwise answer "no". That's correct, because big tree-width \Rightarrow big grid $\Rightarrow k+1$ disjoint circuits $\Rightarrow X$ does not exist.

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
$s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G
QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
$s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G
QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices $s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G

QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

ALGORITHM $\operatorname{tw}(G)$ small \Rightarrow bounded tree-width methods. Otherwise big grid minor \Rightarrow big grid minor with the terminals outside. The middle vertex of this grid minor can be deleted, without affecting the feasibility of the problem.

MINORS IN DIGRAPHS

An edge in a digraph is contractible if either it is the only edge leaving its tail, or it is the only edge entering its head.

A digraph D is a butterfly minor of a digraph D^{\prime} if D can be obtained from a subdigraph of D^{\prime} by contracting contractible edges.

An edge in a digraph is contractible if either it is the only edge leaving its tail, or it is the only edge entering its head.

A digraph D is a
minor of a digraph D^{\prime} if D
can be obtained from a subdigraph of D^{\prime} by contracting contractible edges.

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, $O_{2 k+1}$:

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, $O_{2 k+1}$:

THEOREM (Seymour, Thomassen) A digraph is not even \Leftrightarrow it has no odd double cycle minor.

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, $O_{2 k+1}$:

THEOREM (Seymour, Thomassen) A digraph is not even \Leftrightarrow it has no odd double cycle minor.
THEOREM (McCuaig; Robertson, Seymour, RT)
\Leftrightarrow it can be obtained from strongly planar digraphs and F_{7} by means of $0-, 1-, 2-, 3$-, and 4 -sums.
$\tau(D)=\min \{|X| \subseteq V(D): D \backslash X$ is acyclic $\}$
$\nu(D)=$ max number of disjoint cycles
$\tau(D)=\min \{|X| \subseteq V(D): D \backslash X$ is acyclic $\}$
$\nu(D)=$ max number of disjoint cycles

THEOREM (Guenin, RT) $\tau\left(D^{\prime}\right)=\nu\left(D^{\prime}\right)$ for every subdigraph D^{\prime} of $D \Leftrightarrow D$ has no $O_{2 k+1}$ or F_{7} minor.
$\tau(D)=\min \{|X| \subseteq V(D): D \backslash X$ is acyclic $\}$
$\nu(D)=$ max number of disjoint cycles

THEOREM (Guenin, RT) $\tau\left(D^{\prime}\right)=\nu\left(D^{\prime}\right)$ for every subdigraph D^{\prime} of $D \Leftrightarrow D$ has no $O_{2 k+1}$ or F_{7} minor.

THEOREM (McCuaig) $\nu(D) \leq 1 \Rightarrow \tau(D) \leq 3$
$\tau(D)=\min \{|X| \subseteq V(D): D \backslash X$ is acyclic $\}$
$\nu(D)=$ max number of disjoint cycles

THEOREM (Guenin, RT) $\tau\left(D^{\prime}\right)=\nu\left(D^{\prime}\right)$ for every subdigraph D^{\prime} of $D \Leftrightarrow D$ has no $O_{2 k+1}$ or F_{7} minor.

THEOREM (McCuaig) $\nu(D) \leq 1 \Rightarrow \tau(D) \leq 3$

THEOREM (Reed, Robertson, Seymour, RT) There is a function f such that $\tau(D) \leq f(\nu(D))$ for every D.

DIRECTED TREE-WIDTH

An arboreal decomposition of D is (R, X, W), where R is an arborescence, and $X=\left(X_{e}: e \in E(R)\right)$ and $W=\left(W_{r}: r \in V(R)\right)$ satisfy

An arboreal decomposition of D is (R, X, W), where R is an arborescence, and $X=\left(X_{e}: e \in E(R)\right)$ and $W=\left(W_{r}: r \in V(R)\right)$ satisfy
(D1) $\left(W_{r}: r \in V(R)\right)$ partitions $V(D)$
(D2) $\bigcup_{r>e} W_{r}$ induces a strong component of $D \backslash X_{e}$ for every $e \in E(R)$

An arboreal decomposition of D is (R, X, W), where R is an arborescence, and $X=\left(X_{e}: e \in E(R)\right)$ and $W=\left(W_{r}: r \in V(R)\right)$ satisfy
(D1) $\left(W_{r}: r \in V(R)\right)$ partitions $V(D)$
(D2) $\bigcup_{r>e} W_{r}$ induces a strong component of $D \backslash X_{e}$ for every $e \in E(R)$

The width is the min, over all $r \in V(R)$, of $\left|W_{r} \cup \bigcup_{e \sim r} X_{e}\right|-1$.

An arboreal decomposition of D is (R, X, W), where R is an arborescence, and $X=\left(X_{e}: e \in E(R)\right)$ and $W=\left(W_{r}: r \in V(R)\right)$ satisfy
(D1) $\left(W_{r}: r \in V(R)\right)$ partitions $V(D)$
(D2) $\bigcup_{r>e} W_{r}$ induces a strong component of $D \backslash X_{e}$ for every $e \in E(R)$

The width is the min , over all $r \in V(R)$, of $\left|W_{r} \cup \bigcup_{e \sim r} X_{e}\right|-1$.

The tree-width of D is the minimum width of an arboreal decomposition of D.

An arboreal decomposition of D is (R, X, W), where R is an arborescence, and $X=\left(X_{e}: e \in E(R)\right)$ and $W=\left(W_{r}: r \in V(R)\right)$ satisfy
(D1) $\left(W_{r}: r \in V(R)\right)$ partitions $V(D)$
(D2) $\bigcup_{r>e} W_{r}$ induces a strong component of $D \backslash X_{e}$ for every $e \in E(R)$

The width is the min , over all $r \in V(R)$, of $\left|W_{r} \cup \bigcup_{e \sim r} X_{e}\right|-1$.

The tree-width of D is the minimum width of an arboreal decomposition of D.

FACT Tree-width is minor-monotone.

A haven β of order k in D assigns to every
$X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in D assigns to every
$X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.
FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \geq k-1$.

A haven β of order k in D assigns to every
$X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.
FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \geq k-1$.
QUESTION Converse?

A haven β of order k in D assigns to every
$X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.
FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \geq k-1$.
QUESTION Converse? Open.

A haven β of order k in D assigns to every
$X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.
FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \geq k-1$.
QUESTION Converse? Open.
THEOREM (Johnson, Robertson, Seymour, RT)
Haven of order $k \Leftarrow \operatorname{tw}(D) \geq 3 k-1$.

COPS-AND-ROBBER GAME Same as for undirected

 graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.COPS-AND-ROBBER GAME Same as for undirected graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the robber against $k-1$ cops, and an arboreal decomposition of width $k-1$ gives a search strategy for k cops.

COPS-AND-ROBBER GAME Same as for undirected graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the robber against $k-1$ cops, and an arboreal decomposition of width $k-1$ gives a search strategy for k cops.

REMARK The search strategy need not be monotone.

ALGORITHMS

Let $Z \subseteq V(D)$, and let S_{1}, \ldots, S_{t} be the strong components of $D \backslash Z$ such that no edge goes from S_{j} to S_{i} for $j>i$. Then $S=S_{i} \cup S_{i+1} \cup \ldots \cup S_{j}$ is Z-normal. If $|Z| \leq k$, then S is k-protected.

Let $Z \subseteq V(D)$, and let S_{1}, \ldots, S_{t} be the strong components of $D \backslash Z$ such that no edge goes from S_{j} to S_{i} for $j>i$. Then $S=S_{i} \cup S_{i+1} \cup \ldots \cup S_{j}$ is Z-normal. If $|Z| \leq k$, then S is k-protected.

For some k-protected sets A we will compute an itinerary for A.

For some k-protected sets A we will compute an itinerary for A.

AXIOM $1 A, B \subseteq V(D)$ disjoint, no edge of D has head in A and tail in B. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O\left((|A|+|B|)^{\alpha}\right)$.

For some k-protected sets A we will compute an itinerary for A.

AXIOM $1 A, B \subseteq V(D)$ disjoint, no edge of D has head in A and tail in B. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O\left((|A|+|B|)^{\alpha}\right)$.

AXIOM $2 A, B \subseteq V(D)$ disjoint sets, A is k-protected and $|B| \leq k$. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O\left((|A|+1)^{\alpha}\right)$.

AXIOM 1

AXIOM 1

AXIOM 2

THEOREM (Johnson, Robertson, Seymour, RT) There is a polynomial-time algorithm for:
INPUT A digraph D with an arboreal decomposition of bounded width.
OUTPUT An itinerary for $V(D)$

THEOREM (Johnson, Robertson, Seymour, RT) There is a polynomial-time algorithm for:
INPUT A digraph D with an arboreal decomposition of bounded width.
OUTPUT An itinerary for $V(D)$
Thus HAMILTON PATH, HAMILTON CIRCUIT, k-DISJOINT PATHS (k fixed) and other problems can be solved in polynomial time for digraphs of bounded tree-width.

CONJECTURE There is a function f such that every digraph of tree-width at least $f(k)$ has a cylindrical $k \times k$ grid minor.

HOW TO USE A HAVEN?

REMINDER A haven β of order k in D assigns to every $X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

A directed path decomposition of D is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that (i) $\bigcup W_{i}=V(D)$,
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$,
(iii) for every edge $u v \in E(D)$ there exist $i \leq j$ such that $u \in W_{i}$ and $v \in W_{j}$.

A directed path decomposition of D is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that
(i) $\cup W_{i}=V(D)$,
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$,
(iii) for every edge $u v \in E(D)$ there exist $i \leq j$ such that $u \in W_{i}$ and $v \in W_{j}$.

A directed path decomposition of D is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that (i) $\bigcup W_{i}=V(D)$,
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$,
(iii) for every edge $u v \in E(D)$ there exist $i \leq j$ such that $u \in W_{i}$ and $v \in W_{j}$.

A directed path decomposition of D is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that
(i) $\bigcup W_{i}=V(D)$,
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$,
(iii) for every edge $u v \in E(D)$ there exist $i \leq j$ such that $u \in W_{i}$ and $v \in W_{j}$.

The width of W_{1}, \ldots, W_{n} is $\max \left\{\left|W_{i}\right|-1: 1 \leq i \leq n\right\}$
The directed path-width of D is the minimum width of a directed path-decomposition.

A directed path decomposition of D is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that
(i) $\bigcup W_{i}=V(D)$,
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$,
(iii) for every edge $u v \in E(D)$ there exist $i \leq j$ such that $u \in W_{i}$ and $v \in W_{j}$.

The width of W_{1}, \ldots, W_{n} is $\max \left\{\left|W_{i}\right|-1: 1 \leq i \leq n\right\}$
The directed path-width of D is the minimum width of a directed path-decomposition.

CONJECTURE Big directed path-width \Rightarrow big cylindrical grid minor or a big binary tree minor with each edge replaced by two antiparallel edges.

