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A tree-decomposition of a graph G is (T, W), where T is
atree and W = (W, :t € V(T)) satisfies

(T1) Uiey (i Wr = VI(G),

(__2) if t € T[t, t//], then Wt a Wt” C Wt/,

(T3) Vuv € E(G)3t € V(T) s.t. u,v € W,

The width is max(|W;| —1:t € V(T)).

The tree-width of G is the minimum width of a
tree-decomposition of G.






o tw(G) <1<« G is a forest
o tw(G) <2 < G is series-parallel

e tw(G) < 3 < no minor isomorphic to:

K5, 5-prism, octahedron, Vg
o tw(K, =n—1
e tree-width is minor-monotone

e The £ X k grid has tree-width £






Consider all functions ¢ mapping graphs into integers
such that

(1) ¢(Kn) =n — 1
(2) G minor of H = ¢(G) < ¢(H),

(3) If G N H is a clique, then
O(GUH) = max{¢(G), p(H)}.

Order such functions by ¢ < ¢ if ¢(G) < ¥ (G) for all G.

THEOREM (Halin) Tree-width is the maximum element
In the above poset.
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Cops and robbers. Fix a graph G and an integer k.
There are k cops, they move slowly in helicopters. There
Is a robber, who moves infinitely fast along cop-free
paths. He can see a helicopter landing, and can run to a
safe place before the chopper lands.

Fact. A tree-decomposition of width £ — 1 gives a search
strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order k <
(G has tree-with at least £ — 1

COR Search strategy = monotone search strategy.
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HEOREM (Robertson, Seymour, RT) Every graph of
tree-width > 2029” has a g X g grid minor.

THEOREM (Bodlaender) For every k there is a
linear-time algorithm to decide whether tw(G) < k.

THEOREM (Arnborg, Proskurowski, .. .)

Many problems can be solved in linear time when
restricted to graphs of bounded tree-width.



Tree-width is useful in
e theory
e design of theoretically fast algorithms

e practical computations



FEEDBACK VERTEX-SET FOR FIXED
INSTANCE A graph G

QUESTION Is there a set X C V(G) such that | X| < &
and G\ X is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width
methods. Otherwise answer “no”. That's correct,
because big tree-width = big grid = £ 4+ 1 disjoint
circuits = X does not exist.




k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
81,82,...,Sk,tl,tg,...,tk of GG

QUESTION Are there disjoint paths P, .., P, such that
P; has ends s; and ¢;7
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
81,82,...,Sk,tl,tg,...,tk of G

QUESTION Are there disjoint paths P, .., P, such that
P; has ends s; and ¢;7

ALGORITHM tw(G) small = bounded tree-width
methods. Otherwise big grid minor = big grid minor
with the terminals outside. The middle vertex of this grid
minor can be deleted, without affecting the feasibility of
the problem.






An edge in a digraph is contractible if either it is the only

edge leaving its tail, or it Is the only edge entering its
head.

L

A digraph D is a butterfly minor of a digraph D’ if D
can be obtained from a subdigraph of D’ by contracting
contractible edges.
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edge leaving its tail, or it Is the only edge entering its
head.

e

A digraph D is a minor of a digraph D’ if D
can be obtained from a subdigraph of D’ by contracting
contractible edges.
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A digraph is even if every subdivision has an even
directed circuit. An odd double cycle, O91:

THEOREM (Seymour, Thomassen) A digraph is not
even <> It has no odd double cycle minor.

THEOREM (McCuaig; Robertson, Seymour, RT)

< it can be obtained from strongly planar digraphs and
F7 by means of 0-, 1-, 2-, 3-, and 4-sums.
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7(D) = min{|X| C V(D) : D\ Xis acyclic}

V(D) = max number of disjoint cycles

THEOREM (Guenin, RT) 7(D’) = v(D') for every
subdigraph D" of D < D has no Oy, or I minor.

THEOREM (McCuaig) v(D) < 1 = (D) < 3

THEOREM (Reed, Robertson, Seymour, RT) There is a
function f such that 7(D) < f(v(D)) for every D.
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W= (W,:r e V(R)) satisfy
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The tree-width of D is the minimum width of an
arboreal decomposition of D.

FAC ree-width is minor-monotone.
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A haven 3 of order k in D assigns to every

X € [V(D)]=" the vertex-set of a strong component of
D\ X such that

(H) X CY € [V(D)] = B(Y) C B(X).
FACT Haven of order k = tw(D) > k — 1.
QUESTION Converse? Open.

THEOREM (Johnson, Robertson, Seymour, RT)
Haven of order k < tw(D) > 3k — 1.
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COPS-AND-ROBBER GAME Same as for undirected
graphs, except that robber must stay within strongly
connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the
robber against k — 1 cops, and an arboreal decomposition
of width k& — 1 gives a search strategy for k£ cops.

REMARK The search strategy need not be monotone.
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For some k-protected sets A we will compute an itinerary

for A.

AXIOM 1 A, B C V(D) disjoint, no edge of D has head
in A and tail in B. Then an itinerary for AU B can be
computed from itineraries of A and B in time

O((JA] +1B])%).

AXIOM 2 A, B C V(D) disjoint sets, A is k-protected
and |B| < k. Then an itinerary for AU B can be
computed from itineraries of A and B in time

O((JA] 4 1)%),



AXIOM 1

A




AXIOM 1

AXIOM 2

k—protected
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HEOREM (Johnson, Robertson, Seymour, RT) There

is a polynomial-time algorithm for:
INPUT A digraph D with an arboreal decomposition of

bounded width.
OUTPUT An itinerary for V(D)

Thus HAMILTON PATH, HAMILTON CIRCUIT,
k-DISJOINT PATHS (k fixed) and other problems can
be solved in polynomial time for digraphs of bounded
tree-width.




CONJECTURE There is a function f such that every
digraph of tree-width at least f(k) has a cylindrical k x k
grid minor.




HOW TO USE A HAVEN?

REMINDER A haven 3 of order k£ in D assigns to every
X € [V(D)]=" the vertex-set of a strong component of

D\ X such that
(H) X CY € [V(D)]<F = B(Y) C B(X).
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_et 3 be a haven of order k in G. Let X C V(G) with
X| < k/2 and B(X) minimum. Then X is “externally
inked":

BX+2)=p(Y)
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A directed path decomposition of D is a sequence
Wi, Wy, ..., W, such that

() UWi =V (D),

(i) if 2 <4 <" then W; N W;n C Wi,

(iii) for every edge uv € E(D) there exist ¢ < j such
that w € W,; and v € W.

The width of W1y, ..., W, is max{|W;| —1:1 <17 <n}

The directed path-width of D is the minimum width of a
directed path-decomposition.

CONJECTURE Big directed path-width = big cylindrical
grid minor or a big binary tree minor with each edge
replaced by two antiparallel edges.



