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OUTLINE

•Tree-width and havens for undirected graphs

•Even directed circuits

•Packing directed circuits

•Path-width of directed graphs

•Tree-width of directed graphs

•Havens in directed graphs

•Algorithms
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A tree-decomposition of a graph G is (T,W ), where T is

a tree and W = (Wt : t ∈ V (T )) satisfies

(T1)
⋃
t∈V (T )Wt = V (G),

(T2) if t′ ∈ T [t, t′′], then Wt ∩Wt′′ ⊆Wt′,

(T3) ∀uv ∈ E(G)∃t ∈ V (T ) s.t. u, v ∈Wt.

The width is max(|Wt| − 1 : t ∈ V (T )).

The tree-width of G is the minimum width of a

tree-decomposition of G.
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• tw(G) ≤ 1 ⇔ G is a forest

• tw(G) ≤ 2 ⇔ G is series-parallel

• tw(G) ≤ 3 ⇔ no minor isomorphic to:

K5, 5-prism, octahedron, V8

• tw(Kn) = n− 1

• tree-width is minor-monotone

• The k × k grid has tree-width k
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Consider all functions φ mapping graphs into integers

such that

(1) φ(Kn) = n− 1,

(2) G minor of H ⇒ φ(G) ≤ φ(H),

(3) If G ∩H is a clique, then

φ(G ∪H) = max{φ(G), φ(H)}.

Order such functions by φ ≤ ψ if φ(G) ≤ ψ(G) for all G.

THEOREM (Halin) Tree-width is the maximum element

in the above poset.
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A haven β of order k in G assigns to every X ∈ [V (G)]<k

the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).
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A haven β of order k in G assigns to every X ∈ [V (G)]<k

the vertex-set of a component of G\X such that

(H) X ⊆ Y ∈ [V (G)]<k ⇒ β(Y ) ⊆ β(X).

X

Υ
β(Υ)

β(Χ)
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Cops and robbers. Fix a graph G and an integer k.

There are k cops, they move slowly in helicopters. There

is a robber, who moves infinitely fast along cop-free

paths. He can see a helicopter landing, and can run to a

safe place before the chopper lands.
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Cops and robbers. Fix a graph G and an integer k.

There are k cops, they move slowly in helicopters. There

is a robber, who moves infinitely fast along cop-free

paths. He can see a helicopter landing, and can run to a

safe place before the chopper lands.

Fact. A tree-decomposition of width k − 1 gives a search

strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order k ⇔
G has tree-with at least k − 1

COR Search strategy ⇒ monotone search strategy.
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THEOREM (Robertson, Seymour, RT) Every graph of

tree-width ≥ 202g5
has a g × g grid minor.
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THEOREM (Robertson, Seymour, RT) Every graph of

tree-width ≥ 202g5
has a g × g grid minor.

THEOREM (Bodlaender) For every k there is a

linear-time algorithm to decide whether tw(G) ≤ k.

THEOREM (Arnborg, Proskurowski, . . .)

Many problems can be solved in linear time when

restricted to graphs of bounded tree-width.
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Tree-width is useful in

• theory

• design of theoretically fast algorithms

• practical computations
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FEEDBACK VERTEX-SET FOR FIXED k

INSTANCE A graph G

QUESTION Is there a set X ⊆ V (G) such that |X| ≤ k
and G\X is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width

methods. Otherwise answer “no”. That’s correct,

because big tree-width ⇒ big grid ⇒ k + 1 disjoint

circuits ⇒ X does not exist.
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices

s1, s2, . . . , sk, t1, t2, . . . , tk of G

QUESTION Are there disjoint paths P1, .., Pk such that

Pi has ends si and ti?
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k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices

s1, s2, . . . , sk, t1, t2, . . . , tk of G

QUESTION Are there disjoint paths P1, .., Pk such that

Pi has ends si and ti?

ALGORITHM tw(G) small ⇒ bounded tree-width

methods. Otherwise big grid minor ⇒ big grid minor

with the terminals outside. The middle vertex of this grid

minor can be deleted, without affecting the feasibility of

the problem.
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MINORS IN DIGRAPHS
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An edge in a digraph is contractible if either it is the only

edge leaving its tail, or it is the only edge entering its

head.

A digraph D is a butterfly minor of a digraph D′ if D

can be obtained from a subdigraph of D′ by contracting

contractible edges.
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An edge in a digraph is contractible if either it is the only
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A digraph D is a minor of a digraph D′ if D

can be obtained from a subdigraph of D′ by contracting

contractible edges.
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A digraph is even if every subdivision has an even

directed circuit. An odd double cycle, O2k+1:

. . .

THEOREM (Seymour, Thomassen) A digraph is not

even ⇔ it has no odd double cycle minor.

THEOREM (McCuaig; Robertson, Seymour, RT)

⇔ it can be obtained from strongly planar digraphs and

F7 by means of 0-, 1-, 2-, 3-, and 4-sums.
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τ(D) = min{|X| ⊆ V (D) : D\X is acyclic}

ν(D) = max number of disjoint cycles

THEOREM (Guenin, RT) τ(D′) = ν(D′) for every

subdigraph D′ of D ⇔ D has no O2k+1 or F7 minor.

THEOREM (McCuaig) ν(D) ≤ 1 ⇒ τ(D) ≤ 3

THEOREM (Reed, Robertson, Seymour, RT) There is a

function f such that τ(D) ≤ f(ν(D)) for every D.
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DIRECTED TREE-WIDTH
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An arboreal decomposition of D is (R,X,W ), where R

is an arborescence, and X = (Xe : e ∈ E(R)) and

W = (Wr : r ∈ V (R)) satisfy

(D1) (Wr : r ∈ V (R)) partitions V (D)
(D2)

⋃
r>eWr induces a strong component of D\Xe for

every e ∈ E(R)

The width is the min, over all r ∈ V (R), of

|Wr ∪
⋃
e∼rXe| − 1.

The tree-width of D is the minimum width of an

arboreal decomposition of D.

FACT Tree-width is minor-monotone.
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A haven β of order k in D assigns to every

X ∈ [V (D)]<k the vertex-set of a strong component of

D\X such that

(H) X ⊆ Y ∈ [V (D)]<k ⇒ β(Y ) ⊆ β(X).

FACT Haven of order k ⇒ tw(D) ≥ k − 1.

QUESTION Converse? Open.

THEOREM (Johnson, Robertson, Seymour, RT)

Haven of order k ⇐ tw(D) ≥ 3k − 1.
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COPS-AND-ROBBER GAME Same as for undirected

graphs, except that robber must stay within strongly

connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the

robber against k− 1 cops, and an arboreal decomposition

of width k − 1 gives a search strategy for k cops.

REMARK The search strategy need not be monotone.
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ALGORITHMS
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Let Z ⊆ V (D), and let S1, . . . , St be the strong

components of D\Z such that no edge goes from Sj to

Si for j > i. Then S = Si ∪ Si+1 ∪ . . . ∪ Sj is Z-normal.

If |Z| ≤ k, then S is k-protected.
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Let Z ⊆ V (D), and let S1, . . . , St be the strong

components of D\Z such that no edge goes from Sj to
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If |Z| ≤ k, then S is k-protected.

<k
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For some k-protected sets A we will compute an itinerary

for A.

AXIOM 1 A,B ⊆ V (D) disjoint, no edge of D has head

in A and tail in B. Then an itinerary for A ∪B can be

computed from itineraries of A and B in time

O((|A|+ |B|)α).

AXIOM 2 A,B ⊆ V (D) disjoint sets, A is k-protected

and |B| ≤ k. Then an itinerary for A ∪B can be

computed from itineraries of A and B in time

O((|A|+ 1)α).
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AXIOM 1

A B
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AXIOM 1

A B

AXIOM 2

k−protected <k



42

THEOREM (Johnson, Robertson, Seymour, RT) There

is a polynomial-time algorithm for:

INPUT A digraph D with an arboreal decomposition of

bounded width.

OUTPUT An itinerary for V (D)
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THEOREM (Johnson, Robertson, Seymour, RT) There

is a polynomial-time algorithm for:

INPUT A digraph D with an arboreal decomposition of

bounded width.

OUTPUT An itinerary for V (D)

Thus HAMILTON PATH, HAMILTON CIRCUIT,

k-DISJOINT PATHS (k fixed) and other problems can

be solved in polynomial time for digraphs of bounded

tree-width.
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CONJECTURE There is a function f such that every

digraph of tree-width at least f(k) has a cylindrical k× k
grid minor.
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HOW TO USE A HAVEN?

REMINDER A haven β of order k in D assigns to every

X ∈ [V (D)]<k the vertex-set of a strong component of

D\X such that

(H) X ⊆ Y ∈ [V (D)]<k ⇒ β(Y ) ⊆ β(X).
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally
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X β(Χ)
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X Z

β(Χ+Ζ)
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Let β be a haven of order k in G. Let X ⊆ V (G) with

|X| ≤ k/2 and β(X) minimum. Then X is “externally

linked”:

X Z

β(Χ+Ζ)=β(Υ)
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A directed path decomposition of D is a sequence

W1,W2, . . . ,Wn such that

(i)
⋃
Wi = V (D),

(ii) if i < i′ < i′′ then Wi ∩Wi′′ ⊆Wi′,

(iii) for every edge uv ∈ E(D) there exist i ≤ j such

that u ∈Wi and v ∈Wj.
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A directed path decomposition of D is a sequence

W1,W2, . . . ,Wn such that

(i)
⋃
Wi = V (D),

(ii) if i < i′ < i′′ then Wi ∩Wi′′ ⊆Wi′,

(iii) for every edge uv ∈ E(D) there exist i ≤ j such

that u ∈Wi and v ∈Wj.

The width of W1, . . . ,Wn is max{|Wi| − 1 : 1 ≤ i ≤ n}

The directed path-width of D is the minimum width of a

directed path-decomposition.

CONJECTURE Big directed path-width ⇒ big cylindrical

grid minor or a big binary tree minor with each edge

replaced by two antiparallel edges.


