DIRECTED TREE-WIDTH

Robin Thomas

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas

joint work with

T. Johnson, N. Robertson, P. D. Seymour

OUTLINE

- Tree-width and havens for undirected graphs
- Even directed circuits
- Packing directed circuits
- Path-width of directed graphs
- Tree-width of directed graphs
- •Havens in directed graphs
- Algorithms

A tree-decomposition of a graph G is (T, W), where T is a tree and $W = (W_t : t \in V(T))$ satisfies $(T1) \bigcup_{t \in V(T)} W_t = V(G),$ (T2) if $t' \in T[t, t'']$, then $W_t \cap W_{t''} \subseteq W_{t'},$ $(T3) \forall uv \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_t$.

The width is $\max(|W_t| - 1 : t \in V(T))$.

The tree-width of G is the minimum width of a tree-decomposition of G.

- $tw(G) \le 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $tw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:

 K_5 , 5-prism, octahedron, V_8

- $tw(K_n) = n 1$
- tree-width is minor-monotone
- The $k \times k$ grid has tree-width k

Consider all functions ϕ mapping graphs into integers such that

(1)
$$\phi(K_n) = n - 1$$
,

- (2) G minor of $H \Rightarrow \phi(G) \leq \phi(H)$,
- (3) If $G \cap H$ is a clique, then $\phi(G \cup H) = \max\{\phi(G), \phi(H)\}.$

Order such functions by $\phi \leq \psi$ if $\phi(G) \leq \psi(G)$ for all G.

THEOREM (Halin) Tree-width is the maximum element in the above poset.

A haven β of order k in G assigns to every $X \in [V(G)]^{< k}$ the vertex-set of a component of $G \setminus X$ such that (H) $X \subseteq Y \in [V(G)]^{< k} \Rightarrow \beta(Y) \subseteq \beta(X)$. A haven β of order k in G assigns to every $X \in [V(G)]^{< k}$ the vertex-set of a component of $G \setminus X$ such that (H) $X \subseteq Y \in [V(G)]^{< k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in [V(G)]^{< k}$ the vertex-set of a component of $G \setminus X$ such that

(H) $X \subseteq Y \in [V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

A haven β of order k in G assigns to every $X \in [V(G)]^{< k}$ the vertex-set of a component of $G \setminus X$ such that

(H) $X \subseteq Y \in [V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

A haven β of order k in G assigns to every $X \in [V(G)]^{< k}$ the vertex-set of a component of $G \setminus X$ such that

(H) $X \subseteq Y \in [V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least k - 1

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least k - 1

COR Search strategy \Rightarrow monotone search strategy.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $tw(G) \le k$.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $tw(G) \le k$.

THEOREM (Arnborg, Proskurowski, ...) Many problems can be solved in linear time when restricted to graphs of bounded tree-width.

Tree-width is useful in

- theory
- design of theoretically fast algorithms
- practical computations

FEEDBACK VERTEX-SET FOR FIXED kINSTANCE A graph GQUESTION Is there a set $X \subseteq V(G)$ such that $|X| \leq k$ and $G \setminus X$ is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width methods. Otherwise answer "no". That's correct, because big tree-width \Rightarrow big grid $\Rightarrow k + 1$ disjoint circuits $\Rightarrow X$ does not exist.

k DISJOINT PATHS IN PLANAR GRAPHS INSTANCE A planar graph *G*, vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of *G*

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?

k DISJOINT PATHS IN PLANAR GRAPHS INSTANCE A planar graph G, vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of G

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?
${\it k}$ DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of G

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?

ALGORITHM tw(G) small \Rightarrow bounded tree-width methods. Otherwise big grid minor \Rightarrow big grid minor with the terminals outside. The middle vertex of this grid minor can be deleted, without affecting the feasibility of the problem.

MINORS IN DIGRAPHS

An edge in a digraph is contractible if either it is the only edge leaving its tail, or it is the only edge entering its head.

A digraph D is a butterfly minor of a digraph D' if D can be obtained from a subdigraph of D' by contracting contractible edges.

An edge in a digraph is contractible if either it is the only edge leaving its tail, or it is the only edge entering its head.

A digraph D is a minor of a digraph D' if D can be obtained from a subdigraph of D' by contracting contractible edges.

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, O_{2k+1} :

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, O_{2k+1} :

THEOREM (Seymour, Thomassen) A digraph is not even \Leftrightarrow it has no odd double cycle minor.

A digraph is even if every subdivision has an even directed circuit. An odd double cycle, O_{2k+1} :

THEOREM (Seymour, Thomassen) A digraph is not even \Leftrightarrow it has no odd double cycle minor. THEOREM (McCuaig; Robertson, Seymour, RT) \Leftrightarrow it can be obtained from strongly planar digraphs and F_7 by means of 0-, 1-, 2-, 3-, and 4-sums.

$\tau(D) = \min\{|X| \subseteq V(D) : D \setminus X \text{ is acyclic}\}$

 $\nu(D) = \max$ number of disjoint cycles

 $au(D) = \min\{|X| \subseteq V(D) : D \setminus X \text{ is acyclic}\}$ $u(D) = \max \text{ number of disjoint cycles}$

THEOREM (Guenin, RT) $\tau(D') = \nu(D')$ for every subdigraph D' of $D \Leftrightarrow D$ has no O_{2k+1} or F_7 minor. $au(D) = \min\{|X| \subseteq V(D) : D \setminus X \text{ is acyclic}\}$ $u(D) = \max \text{ number of disjoint cycles}$

THEOREM (Guenin, RT) $\tau(D') = \nu(D')$ for every subdigraph D' of $D \Leftrightarrow D$ has no O_{2k+1} or F_7 minor.

THEOREM (McCuaig) $\nu(D) \leq 1 \Rightarrow \tau(D) \leq 3$

 $au(D) = \min\{|X| \subseteq V(D) : D \setminus X \text{ is acyclic}\}$ $u(D) = \max \text{ number of disjoint cycles}$

THEOREM (Guenin, RT) $\tau(D') = \nu(D')$ for every subdigraph D' of $D \Leftrightarrow D$ has no O_{2k+1} or F_7 minor.

THEOREM (McCuaig) $\nu(D) \leq 1 \Rightarrow \tau(D) \leq 3$

THEOREM (Reed, Robertson, Seymour, RT) There is a function f such that $\tau(D) \leq f(\nu(D))$ for every D.

DIRECTED TREE-WIDTH

An arboreal decomposition of D is (R, X, W), where Ris an arborescence, and $X = (X_e : e \in E(R))$ and $W = (W_r : r \in V(R))$ satisfy

The width is the min, over all $r \in V(R)$, of $|W_r \cup \bigcup_{e \sim r} X_e| - 1$.

The width is the min, over all $r \in V(R)$, of $|W_r \cup \bigcup_{e \sim r} X_e| - 1$.

The tree-width of D is the minimum width of an arboreal decomposition of D.

The width is the min, over all $r \in V(R)$, of $|W_r \cup \bigcup_{e \sim r} X_e| - 1$.

The tree-width of D is the minimum width of an arboreal decomposition of D.

FACT Tree-width is minor-monotone.

FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \ge k - 1$.

FACT Haven of order $k \Rightarrow \mathsf{tw}(D) \ge k - 1$.

QUESTION Converse?

FACT Haven of order $k \Rightarrow \mathsf{tw}(D) \ge k - 1$.

QUESTION Converse? Open.

FACT Haven of order $k \Rightarrow \operatorname{tw}(D) \ge k - 1$.

QUESTION Converse? Open.

THEOREM (Johnson, Robertson, Seymour, RT) Haven of order $k \leftarrow tw(D) \ge 3k - 1$. **COPS-AND-ROBBER GAME** Same as for undirected graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.

COPS-AND-ROBBER GAME Same as for undirected graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the robber against k - 1 cops, and an arboreal decomposition of width k - 1 gives a search strategy for k cops.

COPS-AND-ROBBER GAME Same as for undirected graphs, except that robber must stay within strongly connected components of the cop-free subdigraph.

A haven of order k gives an escape strategy for the robber against k - 1 cops, and an arboreal decomposition of width k - 1 gives a search strategy for k cops.

REMARK The search strategy need not be monotone.

ALGORITHMS

Let $Z \subseteq V(D)$, and let S_1, \ldots, S_t be the strong components of $D \setminus Z$ such that no edge goes from S_j to S_i for j > i. Then $S = S_i \cup S_{i+1} \cup \ldots \cup S_j$ is Z-normal. If $|Z| \leq k$, then S is k-protected. Let $Z \subseteq V(D)$, and let S_1, \ldots, S_t be the strong components of $D \setminus Z$ such that no edge goes from S_j to S_i for j > i. Then $S = S_i \cup S_{i+1} \cup \ldots \cup S_j$ is Z-normal. If $|Z| \leq k$, then S is k-protected.

For some k-protected sets A we will compute an itinerary for A.

For some k-protected sets A we will compute an itinerary for A.

AXIOM 1 $A, B \subseteq V(D)$ disjoint, no edge of D has head in A and tail in B. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O((|A| + |B|)^{\alpha}).$ For some k-protected sets A we will compute an itinerary for A.

AXIOM 1 $A, B \subseteq V(D)$ disjoint, no edge of D has head in A and tail in B. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O((|A| + |B|)^{\alpha}).$

AXIOM 2 $A, B \subseteq V(D)$ disjoint sets, A is k-protected and $|B| \leq k$. Then an itinerary for $A \cup B$ can be computed from itineraries of A and B in time $O((|A|+1)^{\alpha})$.

AXIOM 1

AXIOM 2

THEOREM (Johnson, Robertson, Seymour, RT) There is a polynomial-time algorithm for:

INPUT A digraph D with an arboreal decomposition of bounded width.

OUTPUT An itinerary for V(D)

THEOREM (Johnson, Robertson, Seymour, RT) There is a polynomial-time algorithm for:

INPUT A digraph D with an arboreal decomposition of bounded width.

OUTPUT An itinerary for V(D)

Thus HAMILTON PATH, HAMILTON CIRCUIT, *k*-DISJOINT PATHS (*k* fixed) and other problems can be solved in polynomial time for digraphs of bounded tree-width. CONJECTURE There is a function f such that every digraph of tree-width at least f(k) has a cylindrical $k \times k$ grid minor.

HOW TO USE A HAVEN?

REMINDER A haven β of order k in D assigns to every $X \in [V(D)]^{<k}$ the vertex-set of a strong component of $D \setminus X$ such that

(H) $X \subseteq Y \in [V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

A directed path decomposition of D is a sequence W_1, W_2, \ldots, W_n such that (i) $\bigcup W_i = V(D)$, (ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$, (iii) for every edge $uv \in E(D)$ there exist $i \le j$ such that $u \in W_i$ and $v \in W_j$.

A directed path decomposition of D is a sequence W_1, W_2, \ldots, W_n such that (i) $\bigcup W_i = V(D)$, (ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$, (iii) for every edge $uv \in E(D)$ there exist $i \le j$ such that $u \in W_i$ and $v \in W_i$.

A directed path decomposition of D is a sequence W_1, W_2, \ldots, W_n such that (i) $\bigcup W_i = V(D)$, (ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$, (iii) for every edge $uv \in E(D)$ there exist $i \le j$ such that $u \in W_i$ and $v \in W_j$.

A directed path decomposition of D is a sequence W_1, W_2, \ldots, W_n such that (i) $\bigcup W_i = V(D)$, (ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$, (iii) for every edge $uv \in E(D)$ there exist $i \le j$ such that $u \in W_i$ and $v \in W_j$.

The width of $W_1, ..., W_n$ is $\max\{|W_i| - 1 : 1 \le i \le n\}$

The directed path-width of D is the minimum width of a directed path-decomposition.

A directed path decomposition of D is a sequence W_1, W_2, \ldots, W_n such that (i) $\bigcup W_i = V(D)$, (ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$, (iii) for every edge $uv \in E(D)$ there exist $i \le j$ such that $u \in W_i$ and $v \in W_j$.

The width of $W_1, ..., W_n$ is $\max\{|W_i| - 1 : 1 \le i \le n\}$

The directed path-width of D is the minimum width of a directed path-decomposition.

CONJECTURE Big directed path-width \Rightarrow big cylindrical grid minor or a big binary tree minor with each edge replaced by two antiparallel edges.