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A graph H is a minor of a graph G if H can be obtained

from a subgraph of G by contracting edges. An H minor

is a minor isomorphic to H.
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SEYMOUR’S SPLITTER THM Let H 6=K4 and

G 6=wheel be simple 3-connected, H ≤m G. Then G can

be obtained from H by repeatedly adding edges

(between nonadjacent vertices) and splitting vertices.
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KURATOWSKI’S THEOREM. A graph is planar ⇔ it

has no K5 or K3,3 minor.

THEOREM (Hall) A graph has no K3,3 minor ⇔ it can

be obtained by means of 0-, 1-, and 2-sums from planar

graphs and K5.

COROLLARY. A simple 3-connected graph G has no

K3,3 minor ⇔ G is planar or G ∼= K5.

PROOF of ⇒. We may assume G is nonplanar. By

Kuratowski’s theorem G has a K5 minor. By Seymour’s

theorem G can be obtained from K5 as stated. Now

G ∼= K5, for otherwise G has a K3,3 minor.
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THEOREM (Wagner) A graph has no K5 minor ⇔ it

can be obtained by means of 0-, 1-, 2-, and 3-sums from

planar graphs and V8.
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A graph G is internally 4-connected (I4C) if it is simple,

3-connected, has at least five vertices and for every

separation (A,B) of order 3, one of A, B has at most 3
edges.
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A graph G is internally 4-connected (I4C) if it is simple,

3-connected, has at least five vertices and for every

separation (A,B) of order 3, one of A, B has at most 3
edges.

THM (Johnson, RT) Except for eight well-defined

families, an I4C graph G can be “built” from an I4C

minor of itself similarly as in Seymour’s theorem. The

intermediate graphs are allowed to have one “violation”

of I4C, but the next graph in the sequence “repairs” this

violation.
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LADDERS
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Violating vertex, edge, pair
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Violating vertex, edge, pair
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SPECIAL ADDITION
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SPECIAL ADDITION
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SPECIAL ADDITION

e

v

SPECIAL SPLIT

e e
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THM Johnson, RT If H ≤m G, H is not K3,3,K5, cube

or octahedron, G is not a ladder or biwheel, then ∃
sequence J0 = H,J1, . . . , Jk = G

• each Ji is I4C except possibly for one violating edge

• no edge is violating in Ji and Ji+1

• Ji is obtained from Ji−1 by (special) addition or

(special) split
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THM Johnson, RT If H ≤m G, H is not K3,3,K5, cube

or octahedron, G is not a ladder or biwheel, then ∃
sequence J0 = H,J1, . . . , Jk = G

• each Ji is I4C except possibly for one violating edge

• no edge is violating in Ji and Ji+1

• Ji is obtained from Ji−1 by (special) addition or

(special) split

THM Johnson, RT The minimal nonplanar I4C graphs

other than K3,3,K5 are: K=
6 , C7, K3,3+deg 4 vertex, V8,

cube+diagonal.
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Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an

onto mapping p : V (K)→ V (H) such that for every

v ∈ V (K) the neighbors of v in K are mapped

bijectively onto the neighbors of p(v) in H.
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Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an

onto mapping p : V (K)→ V (H) such that for every

v ∈ V (K) the neighbors of v in K are mapped

bijectively onto the neighbors of p(v) in H.

NEGAMI’S CONJECTURE. A connected graph has a

planar cover ⇔ it is projective planar.

THM (Hliněný, RT) Modulo obvious constructions, there

are at most 16 counterexamples to Negami’s conjecture.

REMARK. It suffices to show that K1,2,2,2 has no planar

cover.
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ROBERTSON’S THEOREM

THM An I4C graph G has no V8 minor ⇔
(1) G is planar, or

(2) G\X is edgeless for some X ⊆ V (G), |X| ≤ 4, or

(3) G\u\v is a cycle for some u, v ∈ V (G), or

(4) G ∼= L(K3,3), or

(5) |V (G)| ≤ 7
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ROBERTSON’S THEOREM

THM An I4C graph G has no V8 minor ⇔
(1) G is planar, or

(2) G\X is edgeless for some X ⊆ V (G), |X| ≤ 4, or

(3) G\u\v is a cycle for some u, v ∈ V (G), or

(4) G ∼= L(K3,3), or

(5) |V (G)| ≤ 7

PROOF Let G be nonplanar, I4C, no V8 minor. We know

G ≥m K=
6 , C7, K3,3+deg 4 vertex, V8, or cube+diag.
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THEOREM An I4C graph has no octahedron minor ⇔
(1) G is a Möbius ladder, or
(2) G is isomorphic to a minor of Petersen,

The last graph has all possible triads with feet in the

5-element independent set.
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A cubic graph is cyclically 5-connected (C5C) if it is

simple, 3-connected, 6= K4, and for every set F ⊆ E(G)
of size at most 4, at most 1 component of G\F has

cycles.

Biladders
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THEOREM (Robertson, Seymour, RT) Let G be a C5C

cubic graph that is not a biladder, and let H be a C5C

minor of G. Then G can be obtained from H by

repeatedly applying the operations of

(i) adding a handle

(ii) adding a pentagon.
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THEOREM (Robertson, Seymour, RT) A C5C cubic

graph G has no Petersen minor if and only if it is

(i) apex (G\v planar for some v), or

(ii) doublecross (2 crossings on the same region), or

(iii) has a “hamburger structure”, or

(iv) has a “hose structure”.



22

Structure of graphs with no K6 minor is not known.
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THEOREM (Mader) If G has n vertices and no

K6-minor, then G has at most 4n− 10 edges.
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Structure of graphs with no K6 minor is not known.

THEOREM (Mader) If G has n vertices and no

K6-minor, then G has at most 4n− 10 edges.

JORGENSEN’S CONJECTURE Every 6-connected graph

with no K6-minor is apex (=planar + one vertex).
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EXTREMAL PROBLEMS
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√
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For small t:

No Kt minor ⇒ at most (t− 2)n−
(
t−1

2

)
edges

THM Thomason

No Kt minor ⇒ at most (0.319 + o(1))t
√

log tn edges

CONJECTURE ∀t ∃N if G is (t− 2)-connected and

|G| > N , then |E(G)| ≤ (t− 2)n−
(
t−1

2

)
.
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THM Jorgensen No K4,4 minor ⇒ ≤ 4n− 8 edges.

THEOREM (Mader, conjectured by Dirac)

Every graph on n vertices and at least 3n− 5 edges has

a K5 subdivision.

CONJECTURE (Kelmans, Seymour)

Every 5-connected nonplanar graph has a K5 subdivision.

Implies Mader’s theorem (Kezdy, McGuiness)


