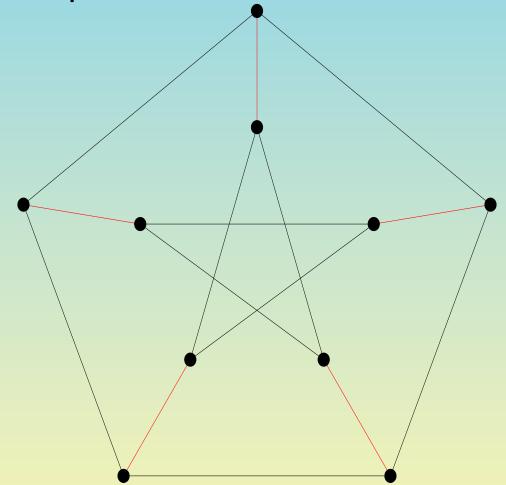
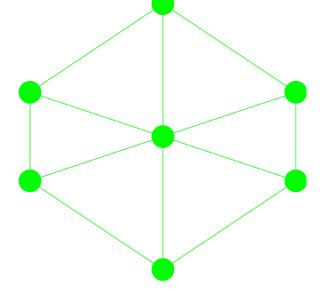
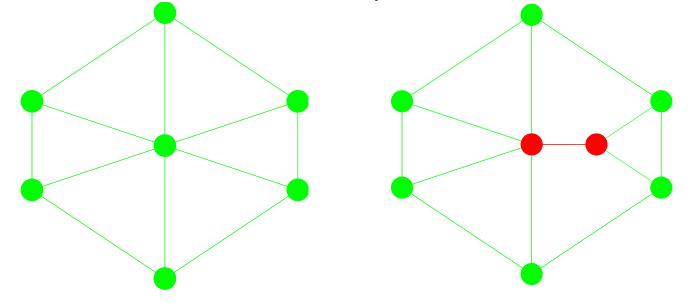
EXCLUDED MINOR THEOREMS

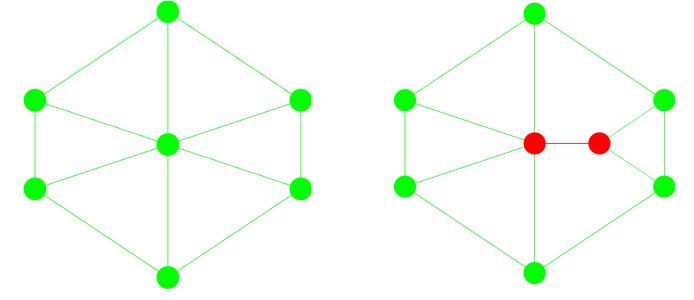
Robin Thomas

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. An H minor is a minor isomorphic to H.









SEYMOUR'S SPLITTER THM Let $H \neq K_4$ and $G \neq$ wheel be simple 3-connected, $H \leq_m G$. Then G can be obtained from H by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.

THEOREM (Hall) A graph has no $K_{3,3}$ minor \Leftrightarrow it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5 .

THEOREM (Hall) A graph has no $K_{3,3}$ minor \Leftrightarrow it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5 .

$$\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) + \left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$$

THEOREM (Hall) A graph has no $K_{3,3}$ minor \Leftrightarrow it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5 .

THEOREM (Hall) A graph has no $K_{3,3}$ minor \Leftrightarrow it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5 .

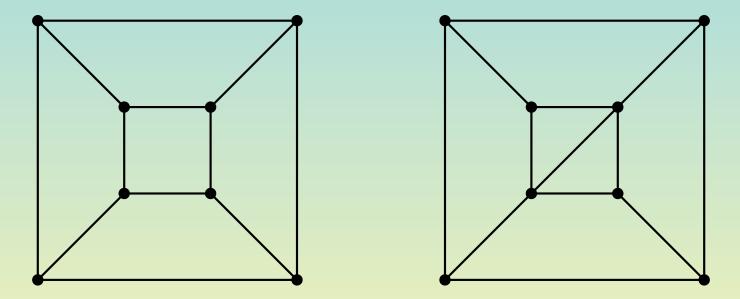
COROLLARY. A simple 3-connected graph G has no $K_{3,3}$ minor $\Leftrightarrow G$ is planar or $G \cong K_5$.

THEOREM (Hall) A graph has no $K_{3,3}$ minor \Leftrightarrow it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5 .

COROLLARY. A simple 3-connected graph G has no $K_{3,3}$ minor $\Leftrightarrow G$ is planar or $G \cong K_5$.

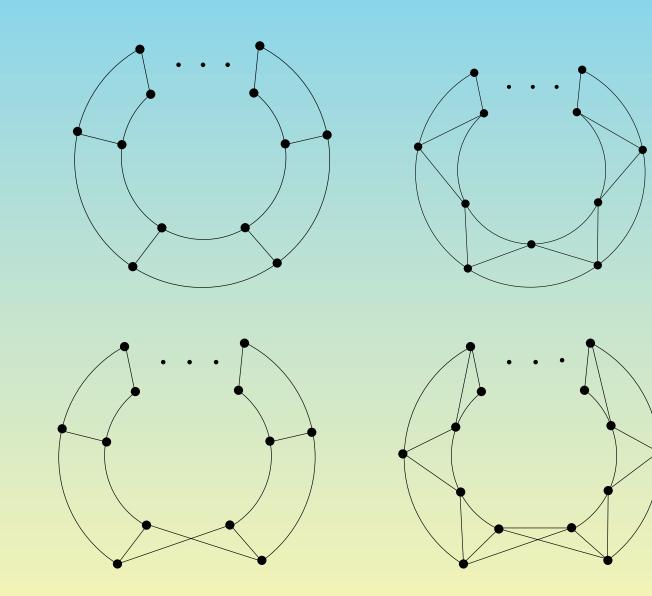
PROOF of \Rightarrow . We may assume *G* is nonplanar. By Kuratowski's theorem *G* has a K_5 minor. By Seymour's theorem *G* can be obtained from K_5 as stated. Now $G \cong K_5$, for otherwise *G* has a $K_{3,3}$ minor.

THEOREM (Wagner) A graph has no K_5 minor \Leftrightarrow it can be obtained by means of 0-, 1-, 2-, and 3-sums from planar graphs and V_8 .

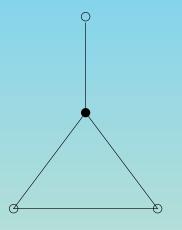


THM (Johnson, RT) Except for eight well-defined families, an I4C graph G can be "built" from an I4C minor of itself similarly as in Seymour's theorem. The intermediate graphs are allowed to have one "violation" of I4C, but the next graph in the sequence "repairs" this violation.

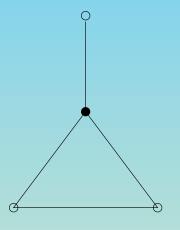
LADDERS

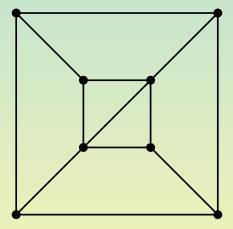


Violating vertex, edge, pair



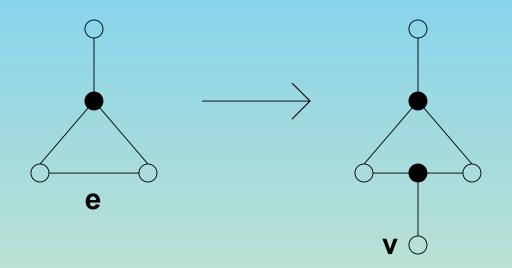
Violating vertex, edge, pair



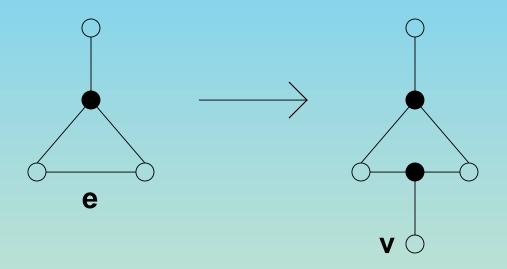


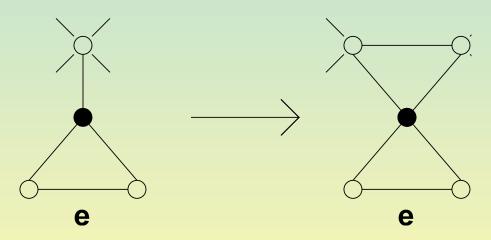
SPECIAL ADDITION

SPECIAL ADDITION



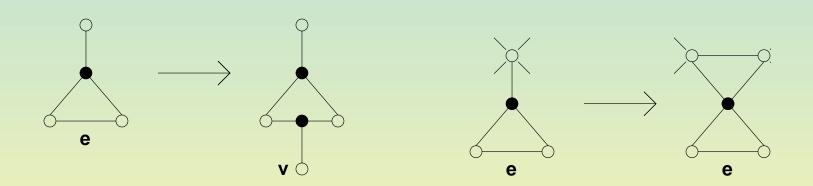
SPECIAL ADDITION





- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split



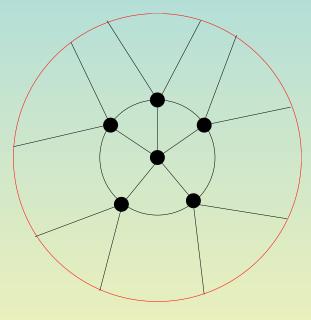
- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split

THM Johnson, RT The minimal nonplanar I4C graphs other than $K_{3,3}, K_5$ are: $K_6^{=}, \overline{C}_7, K_{3,3}$ +deg 4 vertex, V_8 , cube+diagonal.

A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.

A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \rightarrow V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.



A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.

A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.

NEGAMI'S CONJECTURE. A connected graph has a planar cover \Leftrightarrow it is projective planar.

A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.

NEGAMI'S CONJECTURE. A connected graph has a planar cover \Leftrightarrow it is projective planar.

THM (Hliněný, RT) Modulo obvious constructions, there are at most 16 counterexamples to Negami's conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p: V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of p(v) in H.

NEGAMI'S CONJECTURE. A connected graph has a planar cover \Leftrightarrow it is projective planar.

THM (Hliněný, RT) Modulo obvious constructions, there are at most 16 counterexamples to Negami's conjecture.

REMARK. It suffices to show that $K_{1,2,2,2}$ has no planar cover.

ROBERTSON'S THEOREM

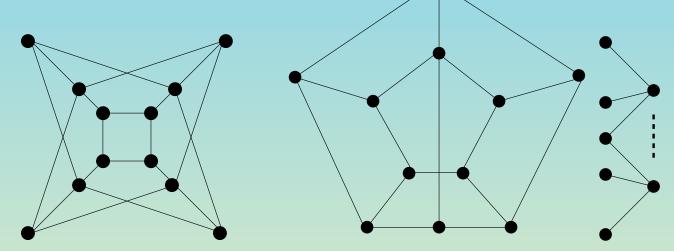
THM An I4C graph G has no V_8 minor \Leftrightarrow (1) G is planar, or (2) $G \setminus X$ is edgeless for some $X \subseteq V(G)$, $|X| \leq 4$, or (3) $G \setminus u \setminus v$ is a cycle for some $u, v \in V(G)$, or (4) $G \cong L(K_{3,3})$, or (5) $|V(G)| \leq 7$

ROBERTSON'S THEOREM

THM An I4C graph G has no V_8 minor \Leftrightarrow (1) G is planar, or (2) $G \setminus X$ is edgeless for some $X \subseteq V(G)$, $|X| \leq 4$, or (3) $G \setminus u \setminus v$ is a cycle for some $u, v \in V(G)$, or (4) $G \cong L(K_{3,3})$, or (5) $|V(G)| \leq 7$

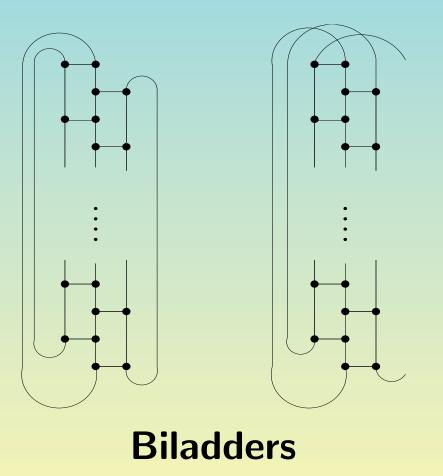
PROOF Let G be nonplanar, I4C, no V_8 minor. We know $G \ge_m K_6^=$, \overline{C}_7 , $K_{3,3}$ +deg 4 vertex, V_8 , or cube+diag.

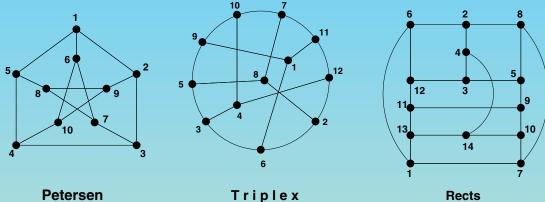
THEOREM An I4C graph has no octahedron minor \Leftrightarrow (1) G is a Möbius ladder, or (2) G is isomorphic to a minor of Petersen,



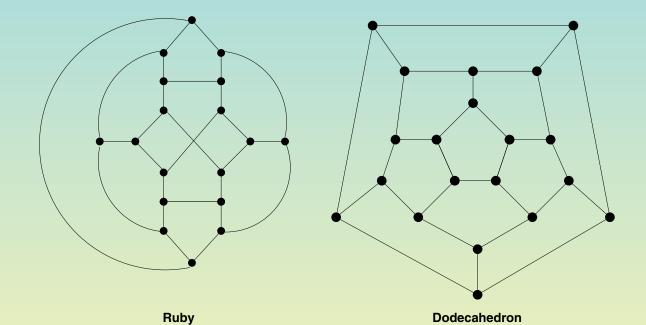
The last graph has all possible triads with feet in the 5-element independent set.

A cubic graph is cyclically 5-connected (C5C) if it is simple, 3-connected, $\neq K_4$, and for every set $F \subseteq E(G)$ of size at most 4, at most 1 component of $G \setminus F$ has cycles.





Triplex



Cyclically 5-connected graphs

THEOREM (Robertson, Seymour, RT) Let G be a C5C cubic graph that is not a biladder, and let H be a C5C minor of G. Then G can be obtained from H by repeatedly applying the operations of

(i) adding a handle

(ii) adding a pentagon.

THEOREM (Robertson, Seymour, RT) A C5C cubic graph G has no Petersen minor if and only if it is

(i) apex $(G \setminus v \text{ planar for some } v)$, or

(ii) doublecross (2 crossings on the same region), or

(iii) has a "hamburger structure", or

(iv) has a "hose structure".

Structure of graphs with no K_6 minor is not known.

22

Structure of graphs with no K_6 minor is not known. THEOREM (Mader) If G has n vertices and no K_6 -minor, then G has at most 4n - 10 edges. Structure of graphs with no K_6 minor is not known.

THEOREM (Mader) If G has n vertices and no K_6 -minor, then G has at most 4n - 10 edges.

JORGENSEN'S CONJECTURE Every 6-connected graph with no K_6 -minor is apex (=planar + one vertex).

EXTREMAL PROBLEMS

For small *t*: No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges For small t: No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges No K_2 minor \Rightarrow at most 0 edges

No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges

No K_2 minor \Rightarrow at most 0 edges

No K_4 minor \Rightarrow at most 2n - 3 edges

No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges

No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges

No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges No K_7 minor \Rightarrow at most 5n - 15 edges

No K_t minor \Rightarrow at most $(t-2)n - \binom{t-1}{2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges No K_7 minor \Rightarrow at most 5n - 15 edges No K_8 minor \Rightarrow at most 6n - 21 edges

No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges No K_7 minor \Rightarrow at most 5n - 15 edges No K_8 minor \Rightarrow at most 6n - 21 edges No K_8 minor \Rightarrow at most 6n - 20 edges

No K_t minor \Rightarrow at most $(t-2)n - \binom{t-1}{2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges No K_7 minor \Rightarrow at most 5n - 15 edges No K_8 minor \neq at most 6n - 21 edges No K_8 minor \Rightarrow at most 6n - 20 edges No K_9 minor \Rightarrow at most 7n - 27 edges??

No K_t minor \Rightarrow at most $(t-2)n - \binom{t-1}{2}$ edges No K_2 minor \Rightarrow at most 0 edges No K_4 minor \Rightarrow at most 2n - 3 edges No K_5 minor \Rightarrow at most 3n - 6 edges No K_6 minor \Rightarrow at most 4n - 10 edges No K_7 minor \Rightarrow at most 5n - 15 edges No K_8 minor \neq at most 6n - 21 edges No K_8 minor \Rightarrow at most 6n - 20 edges No K_9 minor \Rightarrow at most 7n - 27 edges??

THM Thomason No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log t}n$ edges For small *t*: No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges THM Thomason

No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log t}n$ edges

For small t: No K_t minor \Rightarrow at most $(t-2)n - {t-1 \choose 2}$ edges THM Thomason No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log tn}$ edges **CONJECTURE** $\forall t \exists N$ if G is (t-2)-connected and |G| > N, then $|E(G)| \leq (t-2)n - {t-1 \choose 2}$. THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges.

THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges. THEOREM (Mader, conjectured by Dirac) Every graph on n vertices and at least 3n - 5 edges has a K_5 subdivision. THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges. THEOREM (Mader, conjectured by Dirac) Every graph on n vertices and at least 3n - 5 edges has a K_5 subdivision.

CONJECTURE (Kelmans, Seymour) Every 5-connected nonplanar graph has a K_5 subdivision. THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges. THEOREM (Mader, conjectured by Dirac) Every graph on n vertices and at least 3n - 5 edges has a K_5 subdivision.

CONJECTURE (Kelmans, Seymour) Every 5-connected nonplanar graph has a K_5 subdivision.

Implies Mader's theorem (Kezdy, McGuiness)