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THE TWO PATHS PROBLEM

Given G and s1, s2, t1, t2 ∈ V (G) do there exist disjoint

paths joining si to ti?
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THE TWO PATHS PROBLEM

Given G and s1, s2, t1, t2 ∈ V (G) do there exist disjoint

paths joining si to ti?
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OBSTRUCTION: G drawn in a disk with s1, s2, t1, t2
drawn on the boundary in order
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A reduction
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THEOREM Robertson, Seymour, Shiloach, Thomassen,

Watkins If G is reduced, then the paths exist ⇔ G

cannot be drawn in a disk with s1, s2, t1, t2 drawn on the

boundary of the disk in order.
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PLANAR GRAPHS
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A plane graph is a graph drawn in the plane with no

crossings. A graph is planar if it can be drawn in the

plane with no crossings.

Edges can be represented by
• homeomorphic images of [0, 1]
• continuous images of [0, 1]
• piecewise-linear images of [0, 1]
• straight-line segments (Fáry’s theorem)

EULER’S FORMULA For a connected plane graph G,

|V (G)|+ |F (G)| = |E(G)|+ 2.

COROLLARY |E(G)| ≤ 3|V (G)| − 6
|E(G)| ≤ 2|V (G)| − 4 if G has no triangles
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KURATOWSKI’S THEOREM. A graph is planar⇔ it has

no subgraph isomorphic to a subdivision of K5 or K3,3.
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KURATOWSKI’S THEOREM. A graph is planar⇔ it has

no subgraph isomorphic to a subdivision of K5 or K3,3.

PF. ⇒ K5 and K3,3 have too many edges.

⇐ (Thomassen) By induction. We may assume G is

3-connected, G/uv is 3-connected and planar.
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TESTING PLANARITY IN LINEAR TIME

• 1974 Hopcroft and Tarjan

• 1967 Lempel, Even and Cederbaum, 1976 Booth and

Lueker

• Shih and Hsu, Boyer and Myrvold, RT class notes
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COLIN de VERDIERE’S PARAMETER

Let µ(G) be the maximum corank of a matrix M

satisfying

(i) for i 6= j, Mij = 0 if ij 6∈ E and Mij < 0 otherwise,

(ii) M has exactly one negative eigenvalue,

(iii) if X is a symmetric n× n matrix such that MX = 0
and Xij = 0 whenever i = j or ij ∈ E, then X = 0.
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COLIN de VERDIERE’S PARAMETER

Let µ(G) be the maximum corank of a matrix M

satisfying

(i) for i 6= j, Mij = 0 if ij 6∈ E and Mij < 0 otherwise,

(ii) M has exactly one negative eigenvalue,

(iii) if X is a symmetric n× n matrix such that MX = 0
and Xij = 0 whenever i = j or ij ∈ E, then X = 0.

THEOREM µ(G) ≤ 3 ⇔ G is planar.
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SEPARATORS

Let G have n vertices. A separator in G is a set S such

that every component of G\S has at most 2n/3 vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a

separator of size at most
√

8n.
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SEPARATORS

Let G have n vertices. A separator in G is a set S such

that every component of G\S has at most 2n/3 vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a

separator of size at most
√

8n.

Alon, Seymour, RT improved to
√

4.5n, and proved that

graphs not contractible to Kt have a separator of size at

most
√
t3n.
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STEINITZ’ THEOREM

THEOREM G is the graph of a 3-dim convex polytope
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STEINITZ’ THEOREM

THEOREM G is the graph of a 3-dim convex polytope

⇔ G is 3-connected and planar

CIRCLE PACKING

THEOREM (Koebe, Andreev, Thurston) Every plane

graph has a circle packing representation (= intersection

graph of closed disks with disjoint interiors)

THEOREM (Brightwell, Scheinerman) Every 3-connected

plane graph has a primal-dual circle packing

representation.
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SCHNYDER’S THEOREM and DRAWING
ON A GRID

THEOREM A graph is planar ⇔ its vertex-edge poset

has dimension at most three.
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SCHNYDER’S THEOREM and DRAWING
ON A GRID

THEOREM A graph is planar ⇔ its vertex-edge poset

has dimension at most three.

The latter is equivalent to: ∃ linear orderings ≤1,≤2,≤3

satisfying: ∀uv ∈ E(G) ∀w ∈ V (G)− {u, v} ∃i s.t.

u ≤i w and v ≤i w.

Given ≤1,≤2,≤3 there exists a 1-1 map

v ∈ V (G)→ (v1, v2, v3) ∈ R3 s.t.
(i) v1 + v2 + v3 = 2n− 5 for all v ∈ V (G)
(ii) vi ∈ [0, 2n− 5] is an integer
(iii) for uv ∈ E(G): u ≤i v ⇔ ui ≤ vi

It follows that this gives a straight-line embedding.
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THRACKLE CONJECTURE

CONJECTURE (Conway) If a graph G can be drawn in

the plane such that every two distinct edges meet exactly

once (cross or share an end), then |E(G)| ≤ |V (G)|.

NOTE Enough to show that 1-sum of two even cycles

cannot be drawn in such a way.
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STRING GRAPHS

OPEN PROBLEM Can every planar graph be represented

as an intersection graph of simple closed curve in the

plane such that any two curves meet at most once?
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Y∆-TRANSFORMATIONS

THEOREM Every planar graph can be reduced to K0 by

Y∆,∆Y -transformations and series-parallel reductions.
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Y∆-TRANSFORMATIONS

THEOREM Every planar graph can be reduced to K0 by

Y∆,∆Y -transformations and series-parallel reductions.

QUESTION Which graphs can be so reduced?

APPLICATION Fast computation of spanning trees, . . ..
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THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
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THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.

Comments:

• Simple statement, yet proof is long.

• A 1976 proof by Appel and Haken.

• A simpler proof by Robertson, Sanders, Seymour, RT

• Proof is computer assisted.

• Over two dozen equivalent formulations (in terms

of vector cross products, Lie algebras, divisibility,

Temperley-Lieb algebras,...)

• Conjectured generalizations.

• See August 1998 Notices of the AMS for a survey.
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THEOREM. (Matiyasevich) There exist linear functions

Ak, Bk, Ck, Dk (k = 1, .., 986) of 21 variables such that

the 4CT is equivalent to the assertion that
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THEOREM. (Matiyasevich) There exist linear functions

Ak, Bk, Ck, Dk (k = 1, .., 986) of 21 variables such that

the 4CT is equivalent to the assertion that for every two

integers n,m there exist integers c1, . . . , c20 such that∏(
Ak(m, c1, .., c20) + 7nBk(m, c1, .., c20)
Ck(m, c1, .., c20) + 7nDk(m, c1, .., c20)

)
is not divisible by 7.
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Let G be a cubic planar graph.
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sgn(v) = sign of cyclic order of colors
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∏
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c induces a coloring of G: take mod 3 sum

THM Matiyasevich Let c1, c2 be colorings of H chosen

independently at random. Then the events

A = [c1, c2 have the same sign] and

B = [c1, c2 induce the same coloring of G]
are not independent.

THM Matiyasevich Above is equivalent to 4CT.
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THM Matiyasevich Let c1, c2 be colorings of H chosen

independently at random. Then the events

A = [c1, c2 have the same sign] and

B = [c1, c2 induce the same coloring of G]
are not independent.

THM Matiyasevich Above equivalent to 4CT.

THM Matiyasevich

P [B|A]− P [B] = 48−n · (# edge 3-colorings of G)
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EDGE 3-COLORING

THEOREM (Tait) The 4CT is equivalent to the

statement that every 2-connected cubic planar graph is

edge 3-colorable.
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EDGE 3-COLORING

THEOREM (Tait) The 4CT is equivalent to the

statement that every 2-connected cubic planar graph is

edge 3-colorable.

THEOREM (Robertson, Sanders, Seymour, RT) Every

2-connected cubic graph with no Petersen minor is edge

3-colorable.

MAIN STEPS IN THE PROOF
(1) Every minimal counterexample is apex or doublecross.
(2)True for apex graphs.
(3)True for doublecross graphs.
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GRÖTZSCH’S THEOREM

THEOREM Every triangle-free planar graph is

3-colorable.
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GRÖTZSCH’S THEOREM

THEOREM Every triangle-free planar graph is

3-colorable.

THEOREM (Thomassen) Every graph of girth ≥ 5 on

the projective plane or the torus is 3-colorable.

THEOREM (RT, Walls) Same for the Klein bottle.

CONJECTURE For every Σ, there are only finitely many

4-critical graphs of girth ≥ 5 in Σ.

Proved by Thomassen
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FLOWS

A k-flow in a graph G is an integer flow f in an

orientation of G with 0 < |f(e)| < k for every edge e of

G.

CONJECTURE (Tutte 1972) Every edge 4-connected

graph has a 3-flow.

CONJECTURE (Tutte 1966) Every edge 2-connected

graph with no Petersen minor has a 4-flow.

CONJECTURE (Tutte 1954) Every edge 2-connected

graph has a 5-flow.
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PROOF OF THE
TWO PATHS THEOREM
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THEOREM Robertson, Seymour, Shiloach, Thomassen,

Watkins If G is reduced, then the paths exist ⇔ G

cannot be drawn in a disk with s1, s2, t1, t2 drawn on the

boundary of the disk in order.

LEMMA G 3-connected, cannot be drawn as above ⇒
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LEMMA G 3-connected, cannot be drawn as above ⇒
disjoint paths exist or G has a “double triad”
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LEMMA G 3-connected, cannot be drawn as above ⇒
disjoint paths exist or G has a “double triad”

PROOF Add vertex and a cycle. Now nonplanar.

s1

t2 1t

s
2

⇒ K3,3 subdivision or K5 subdivision
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LEMMA G 3-connected, cannot be drawn as above ⇒
disjoint paths exist or G has a “double triad”

PROOF Add vertex and a cycle. Now nonplanar.

⇒ K3,3 subdivision

WMA extra vertex not used by K3,3 subdivision

WMA one of s1, s2, t1, t2 not used, say t2
Find three disjoint paths from s1, s2, t1 to the branch

vertices of K3,3 subdivision

⇒ double triad

COR Linear-time algorithm to find paths or double triad.

PROOF OF THM By Lemma WMA double triad. Get a

fourth path.
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OPEN QUESTION

Can the TWO DISJOINT PATHS problem be solved in

linear time?
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Let G have n vertices. A separator in G is a set S such

that every component of G\S has at most 2n/3 vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a

separator of size at most
√

8n.

PROOF WMA G is a triangulation. Let k = b
√

2nc.
Choose a cycle C of length ≤ 2k with out(C) < 2n/3
and ins(C)−out(C) minimum. Then ins(C) < 2n/3.


