# GRAPH PLANARITY and RELATED TOPICS 

Robin Thomas

School of Mathematics
Georgia Institute of Technology www.math.gatech.edu/~thomas

## THE TWO PATHS PROBLEM

Given $G$ and $s_{1}, s_{2}, t_{1}, t_{2} \in V(G)$ do there exist disjoint paths joining $s_{i}$ to $t_{i}$ ?


## THE TWO PATHS PROBLEM

Given $G$ and $s_{1}, s_{2}, t_{1}, t_{2} \in V(G)$ do there exist disjoint paths joining $s_{i}$ to $t_{i}$ ?


OBSTRUCTION:

## THE TWO PATHS PROBLEM

Given $G$ and $s_{1}, s_{2}, t_{1}, t_{2} \in V(G)$ do there exist disjoint paths joining $s_{i}$ to $t_{i}$ ?


OBSTRUCTION: $G$ drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary in order


A reduction


A reduction


A reduction


A reduction


THEOREM Robertson, Seymour, Shiloach, Thomassen, Watkins If $G$ is reduced, then the paths exist $\Leftrightarrow G$ cannot be drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary of the disk in order.

## PLANAR GRAPHS

A plane graph is a graph drawn in the plane with no crossings. A graph is planar if it can be drawn in the plane with no crossings.

A plane graph is a graph drawn in the plane with no crossings. A graph is planar if it can be drawn in the plane with no crossings.

Edges can be represented by

- homeomorphic images of $[0,1]$
- continuous images of $[0,1]$
- piecewise-linear images of $[0,1]$
- straight-line segments (Fáry's theorem)

A plane graph is a graph drawn in the plane with no crossings. A graph is planar if it can be drawn in the plane with no crossings.

Edges can be represented by

- homeomorphic images of $[0,1]$
- continuous images of $[0,1]$
- piecewise-linear images of $[0,1]$
- straight-line segments (Fáry's theorem)

EULER'S FORMULA For a connected plane graph $G$, $|V(G)|+|F(G)|=|E(G)|+2$.

A plane graph is a graph drawn in the plane with no crossings. A graph is planar if it can be drawn in the plane with no crossings.

Edges can be represented by

- homeomorphic images of $[0,1]$
- continuous images of $[0,1]$
- piecewise-linear images of $[0,1]$
- straight-line segments (Fáry's theorem)

EULER'S FORMULA For a connected plane graph $G$, $|V(G)|+|F(G)|=|E(G)|+2$.

COROLLARY $|E(G)| \leq 3|V(G)|-6$
$|E(G)| \leq 2|V(G)|-4$ if $G$ has no triangles

KURATOWSKI'S THEOREM. A graph is planar $\Leftrightarrow$ it has no subgraph isomorphic to a subdivision of $K_{5}$ or $K_{3,3}$.

KURATOWSKI'S THEOREM. A graph is planar $\Leftrightarrow$ it has no subgraph isomorphic to a subdivision of $K_{5}$ or $K_{3,3}$.

PF. $\Rightarrow K_{5}$ and $K_{3,3}$ have too many edges.
$\Leftarrow$ (Thomassen) By induction. We may assume $G$ is 3 -connected, $G / u v$ is 3 -connected and planar.

## TESTING PLANARITY IN LINEAR TIME

- 1974 Hopcroft and Tarjan
- 1967 Lempel, Even and Cederbaum, 1976 Booth and Lueker
- Shih and Hsu, Boyer and Myrvold, RT class notes


## COLIN de VERDIERE'S PARAMETER

Let $\mu(G)$ be the maximum corank of a matrix $M$ satisfying
(i) for $i \neq j, M_{i j}=0$ if $i j \notin E$ and $M_{i j}<0$ otherwise,
(ii) $M$ has exactly one negative eigenvalue,
(iii) if $X$ is a symmetric $n \times n$ matrix such that $M X=0$ and $X_{i j}=0$ whenever $i=j$ or $i j \in E$, then $X=0$.

## COLIN de VERDIERE'S PARAMETER

Let $\mu(G)$ be the maximum corank of a matrix $M$ satisfying
(i) for $i \neq j, M_{i j}=0$ if $i j \notin E$ and $M_{i j}<0$ otherwise,
(ii) $M$ has exactly one negative eigenvalue,
(iii) if $X$ is a symmetric $n \times n$ matrix such that $M X=0$ and $X_{i j}=0$ whenever $i=j$ or $i j \in E$, then $X=0$.

THEOREM $\mu(G) \leq 3 \Leftrightarrow G$ is planar.

## SEPARATORS

Let $G$ have $n$ vertices. A separator in $G$ is a set $S$ such that every component of $G \backslash S$ has at most $2 n / 3$ vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a separator of size at most $\sqrt{8 n}$.

## SEPARATORS

Let $G$ have $n$ vertices. A separator in $G$ is a set $S$ such that every component of $G \backslash S$ has at most $2 n / 3$ vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a separator of size at most $\sqrt{8 n}$.

Alon, Seymour, RT improved to $\sqrt{4.5 n}$, and proved that graphs not contractible to $K_{t}$ have a separator of size at most $\sqrt{t^{3} n}$.

## STEINITZ' THEOREM

THEOREM $G$ is the graph of a 3-dim convex polytope $\Leftrightarrow G$ is 3 -connected and planar

## STEINITZ' THEOREM

THEOREM $G$ is the graph of a 3-dim convex polytope $\Leftrightarrow G$ is 3 -connected and planar

## CIRCLE PACKING

THEOREM (Koebe, Andreev, Thurston) Every plane graph has a circle packing representation ( $=$ intersection graph of closed disks with disjoint interiors)

## STEINITZ' THEOREM

THEOREM $G$ is the graph of a 3-dim convex polytope $\Leftrightarrow G$ is 3 -connected and planar

## CIRCLE PACKING

THEOREM (Koebe, Andreev, Thurston) Every plane graph has a circle packing representation ( $=$ intersection graph of closed disks with disjoint interiors)

THEOREM (Brightwell, Scheinerman) Every 3-connected plane graph has a primal-dual circle packing representation.

## SCHNYDER'S THEOREM and DRAWING ON A GRID

THEOREM A graph is planar $\Leftrightarrow$ its vertex-edge poset has dimension at most three.

## SCHNYDER'S THEOREM and DRAWING ON A GRID

THEOREM A graph is planar $\Leftrightarrow$ its vertex-edge poset has dimension at most three.

The latter is equivalent to: $\exists$ linear orderings $\leq_{1}, \leq_{2}, \leq_{3}$ satisfying: $\forall u v \in E(G) \forall w \in V(G)-\{u, v\} \exists i$ s.t. $u \leq_{i} w$ and $v \leq_{i} w$.

## SCHNYDER'S THEOREM and DRAWING ON A GRID

THEOREM A graph is planar $\Leftrightarrow$ its vertex-edge poset has dimension at most three.

The latter is equivalent to: $\exists$ linear orderings $\leq_{1}, \leq_{2}, \leq_{3}$ satisfying: $\forall u v \in E(G) \forall w \in V(G)-\{u, v\} \exists i$ s.t. $u \leq_{i} w$ and $v \leq_{i} w$.

Given $\leq_{1}, \leq_{2}, \leq_{3}$ there exists a 1-1 map $v \in V(G) \rightarrow\left(v_{1}, v_{2}, v_{3}\right) \in \mathbf{R}^{3}$ s.t.
(i) $v_{1}+v_{2}+v_{3}=2 n-5$ for all $v \in V(G)$
(ii) $v_{i} \in[0,2 n-5]$ is an integer
(iii) for $u v \in E(G): u \leq_{i} v \Leftrightarrow u_{i} \leq v_{i}$

It follows that this gives a straight-line embedding.

## THRACKLE CONJECTURE

CONJECTURE (Conway) If a graph $G$ can be drawn in the plane such that every two distinct edges meet exactly once (cross or share an end), then $|E(G)| \leq|V(G)|$.


NOTE Enough to show that 1-sum of two even cycles cannot be drawn in such a way.

## STRING GRAPHS

OPEN PROBLEM Can every planar graph be represented as an intersection graph of simple closed curve in the plane such that any two curves meet at most once?

## $Y \Delta$-TRANSFORMATIONS

THEOREM Every planar graph can be reduced to $K_{0}$ by $Y \Delta, \Delta Y$-transformations and series-parallel reductions.

## $Y \Delta$-TRANSFORMATIONS

THEOREM Every planar graph can be reduced to $K_{0}$ by $Y \Delta, \Delta Y$-transformations and series-parallel reductions.

QUESTION Which graphs can be so reduced?

## $Y \Delta$-TRANSFORMATIONS

THEOREM Every planar graph can be reduced to $K_{0}$ by $Y \Delta, \Delta Y$-transformations and series-parallel reductions.

QUESTION Which graphs can be so reduced?
APPLICATION Fast computation of spanning trees,....

## THE FOUR COLOR THEOREM

 Every planar graph is 4-colorable.
## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.

## Comments:

- Simple statement, yet proof is long.


## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
Comments:

- Simple statement, yet proof is long.
- A 1976 proof by Appel and Haken.


## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
Comments:

- Simple statement, yet proof is long.
- A 1976 proof by Appel and Haken.
- A simpler proof by Robertson, Sanders, Seymour, RT


## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
Comments:

- Simple statement, yet proof is long.
- A 1976 proof by Appel and Haken.
- A simpler proof by Robertson, Sanders, Seymour, RT
- Proof is computer assisted.
- Over two dozen equivalent formulations (in terms of vector cross products, Lie algebras, divisibility, Temperley-Lieb algebras,...)


## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
Comments:

- Simple statement, yet proof is long.
- A 1976 proof by Appel and Haken.
- A simpler proof by Robertson, Sanders, Seymour, RT
- Proof is computer assisted.
- Over two dozen equivalent formulations (in terms of vector cross products, Lie algebras, divisibility, Temperley-Lieb algebras,...)
- Conjectured generalizations.


## THE FOUR COLOR THEOREM

Every planar graph is 4-colorable.
Comments:

- Simple statement, yet proof is long.
- A 1976 proof by Appel and Haken.
- A simpler proof by Robertson, Sanders, Seymour, RT
- Proof is computer assisted.
- Over two dozen equivalent formulations (in terms of vector cross products, Lie algebras, divisibility, Temperley-Lieb algebras,...)
- Conjectured generalizations.
- See August 1998 Notices of the AMS for a survey.

THEOREM. (Matiyasevich) There exist linear functions $A_{k}, B_{k}, C_{k}, D_{k}(k=1, . ., 986)$ of 21 variables such that the $4 C T$ is equivalent to the assertion that

THEOREM. (Matiyasevich) There exist linear functions $A_{k}, B_{k}, C_{k}, D_{k}(k=1, . ., 986)$ of 21 variables such that the 4 CT is equivalent to the assertion that for every two integers $n, m$ there exist integers $c_{1}, \ldots, c_{20}$ such that

$$
\prod\binom{A_{k}\left(m, c_{1}, . ., c_{20}\right)+7^{n} B_{k}\left(m, c_{1}, . ., c_{20}\right)}{C_{k}\left(m, c_{1}, . ., c_{20}\right)+7^{n} D_{k}\left(m, c_{1}, . ., c_{20}\right)}
$$

is not divisible by 7 .

Let $G$ be a cubic planar graph.


Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$.

Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$.

Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$.

Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$. $\operatorname{sgn}(v)=\operatorname{sign}$ of cyclic order of colors

Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using 1,2,3. $\operatorname{sgn}(v)=$ sign of cyclic order of colors
$\operatorname{sgn}(c)=\prod \operatorname{sgn}(v)$

Let $G$ be a cubic planar graph.


Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$.
$\operatorname{sgn}(v)=$ sign of cyclic order of colors
$\operatorname{sgn}(c)=\prod \operatorname{sgn}(v)$
$c$ induces a coloring of $G$ : take mod 3 sum

Let $G$ be a cubic planar graph.
Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$. $\operatorname{sgn}(v)=$ sign of cyclic order of colors
$\operatorname{sgn}(c)=\prod \operatorname{sgn}(v)$
$c$ induces a coloring of $G$ : take mod 3 sum

Let $G$ be a cubic planar graph.
Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$.
$\operatorname{sgn}(v)=$ sign of cyclic order of colors
$\operatorname{sgn}(c)=\prod \operatorname{sgn}(v)$
$c$ induces a coloring of $G$ : take mod 3 sum
THM Matiyasevich Let $c_{1}, c_{2}$ be colorings of $H$ chosen independently at random. Then the events
$A=\left[c_{1}, c_{2}\right.$ have the same sign $]$ and
$B=\left[c_{1}, c_{2}\right.$ induce the same coloring of $\left.G\right]$
are not independent.

Let $G$ be a cubic planar graph.
Snip every edge in the middle to get $H$. Let $c$ be a coloring of the (half-)edges of $H$ using $1,2,3$.
$\operatorname{sgn}(v)=$ sign of cyclic order of colors
$\operatorname{sgn}(c)=\prod \operatorname{sgn}(v)$
$c$ induces a coloring of $G$ : take mod 3 sum
THM Matiyasevich Let $c_{1}, c_{2}$ be colorings of $H$ chosen independently at random. Then the events
$A=\left[c_{1}, c_{2}\right.$ have the same sign $]$ and
$B=\left[c_{1}, c_{2}\right.$ induce the same coloring of $\left.G\right]$ are not independent.

THM Matiyasevich Above is equivalent to 4CT.

THM Matiyasevich Let $c_{1}, c_{2}$ be colorings of $H$ chosen independently at random. Then the events
$A=\left[c_{1}, c_{2}\right.$ have the same sign $]$ and $B=\left[c_{1}, c_{2}\right.$ induce the same coloring of $\left.G\right]$ are not independent.

THM Matiyasevich Above equivalent to 4CT.

THM Matiyasevich Let $c_{1}, c_{2}$ be colorings of $H$ chosen independently at random. Then the events
$A=\left[c_{1}, c_{2}\right.$ have the same sign $]$ and $B=\left[c_{1}, c_{2}\right.$ induce the same coloring of $\left.G\right]$ are not independent.

THM Matiyasevich Above equivalent to 4CT.
THM Matiyasevich

$$
P[B \mid A]-P[B]=48^{-n} \cdot(\# \text { edge 3-colorings of } G)
$$

## EDGE 3-COLORING

THEOREM (Tait) The 4CT is equivalent to the statement that every 2-connected cubic planar graph is edge 3-colorable.

## EDGE 3-COLORING

THEOREM (Tait) The 4CT is equivalent to the statement that every 2-connected cubic planar graph is edge 3-colorable.

THEOREM (Robertson, Sanders, Seymour, RT) Every 2-connected cubic graph with no Petersen minor is edge 3-colorable.

## EDGE 3-COLORING

THEOREM (Tait) The 4CT is equivalent to the statement that every 2-connected cubic planar graph is edge 3-colorable.

THEOREM (Robertson, Sanders, Seymour, RT) Every 2-connected cubic graph with no Petersen minor is edge 3-colorable.

## MAIN STEPS IN THE PROOF

(1) Every minimal counterexample is apex or doublecross.
(2)True for apex graphs.
(3)True for doublecross graphs.

## GRÖTZSCH'S THEOREM

THEOREM Every triangle-free planar graph is 3-colorable.

## GRÖTZSCH'S THEOREM

THEOREM Every triangle-free planar graph is 3-colorable.

THEOREM (Thomassen) Every graph of girth $\geq 5$ on the projective plane or the torus is 3 -colorable.

## GRÖTZSCH'S THEOREM

THEOREM Every triangle-free planar graph is 3-colorable.

THEOREM (Thomassen) Every graph of girth $\geq 5$ on the projective plane or the torus is 3 -colorable.

THEOREM (RT, Walls) Same for the Klein bottle.

## GRÖTZSCH'S THEOREM

THEOREM Every triangle-free planar graph is 3-colorable.

THEOREM (Thomassen) Every graph of girth $\geq 5$ on the projective plane or the torus is 3 -colorable.

THEOREM (RT, Walls) Same for the Klein bottle.
CONJECTURE For every $\Sigma$, there are only finitely many 4-critical graphs of girth $\geq 5$ in $\Sigma$.

## GRÖTZSCH'S THEOREM

THEOREM Every triangle-free planar graph is 3-colorable.

THEOREM (Thomassen) Every graph of girth $\geq 5$ on the projective plane or the torus is 3 -colorable.

THEOREM (RT, Walls) Same for the Klein bottle.
CONJECTURE For every $\Sigma$, there are only finitely many 4-critical graphs of girth $\geq 5$ in $\Sigma$.

Proved by Thomassen

## FLOWS

A $k$-flow in a graph $G$ is an integer flow $f$ in an orientation of $G$ with $0<|f(e)|<k$ for every edge $e$ of $G$.

## FLOWS

A $k$-flow in a graph $G$ is an integer flow $f$ in an orientation of $G$ with $0<|f(e)|<k$ for every edge $e$ of $G$.

CONJECTURE (Tutte 1972) Every edge 4-connected graph has a 3 -flow.

## FLOWS

A $k$-flow in a graph $G$ is an integer flow $f$ in an orientation of $G$ with $0<|f(e)|<k$ for every edge $e$ of $G$.

CONJECTURE (Tutte 1972) Every edge 4-connected graph has a 3 -flow.

CONJECTURE (Tutte 1966) Every edge 2-connected graph with no Petersen minor has a 4 -flow.

## FLOWS

A $k$-flow in a graph $G$ is an integer flow $f$ in an orientation of $G$ with $0<|f(e)|<k$ for every edge $e$ of $G$.

CONJECTURE (Tutte 1972) Every edge 4-connected graph has a 3 -flow.

CONJECTURE (Tutte 1966) Every edge 2-connected graph with no Petersen minor has a 4 -flow.

CONJECTURE (Tutte 1954) Every edge 2-connected graph has a 5 -flow.

## PROOF OF THE TWO PATHS THEOREM

A reduction


A reduction


A reduction


A reduction


THEOREM Robertson, Seymour, Shiloach, Thomassen, Watkins If $G$ is reduced, then the paths exist $\Leftrightarrow G$ cannot be drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary of the disk in order.

THEOREM Robertson, Seymour, Shiloach, Thomassen, Watkins If $G$ is reduced, then the paths exist $\Leftrightarrow G$ cannot be drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary of the disk in order.

THEOREM Robertson, Seymour, Shiloach, Thomassen, Watkins If $G$ is reduced, then the paths exist $\Leftrightarrow G$ cannot be drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary of the disk in order.

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

THEOREM Robertson, Seymour, Shiloach, Thomassen, Watkins If $G$ is reduced, then the paths exist $\Leftrightarrow G$ cannot be drawn in a disk with $s_{1}, s_{2}, t_{1}, t_{2}$ drawn on the boundary of the disk in order.

LEMMA $G 3$-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"


LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.

$\Rightarrow K_{3,3}$ subdivision or $K_{5}$ subdivision

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.

$\Rightarrow K_{3,3}$ subdivision

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision WMA one of $s_{1}, s_{2}, t_{1}, t_{2}$ not used, say $t_{2}$

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision WMA one of $s_{1}, s_{2}, t_{1}, t_{2}$ not used, say $t_{2}$
Find three disjoint paths from $s_{1}, s_{2}, t_{1}$ to the branch vertices of $K_{3,3}$ subdivision

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision
WMA one of $s_{1}, s_{2}, t_{1}, t_{2}$ not used, say $t_{2}$
Find three disjoint paths from $s_{1}, s_{2}, t_{1}$ to the branch vertices of $K_{3,3}$ subdivision
$\Rightarrow$ double triad

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision
WMA one of $s_{1}, s_{2}, t_{1}, t_{2}$ not used, say $t_{2}$
Find three disjoint paths from $s_{1}, s_{2}, t_{1}$ to the branch vertices of $K_{3,3}$ subdivision
$\Rightarrow$ double triad
COR Linear-time algorithm to find paths or double triad.

LEMMA $G$ 3-connected, cannot be drawn as above $\Rightarrow$ disjoint paths exist or $G$ has a "double triad"

PROOF Add vertex and a cycle. Now nonplanar.
$\Rightarrow K_{3,3}$ subdivision
WMA extra vertex not used by $K_{3,3}$ subdivision
WMA one of $s_{1}, s_{2}, t_{1}, t_{2}$ not used, say $t_{2}$
Find three disjoint paths from $s_{1}, s_{2}, t_{1}$ to the branch vertices of $K_{3,3}$ subdivision
$\Rightarrow$ double triad
COR Linear-time algorithm to find paths or double triad.
PROOF OF THM By Lemma WMA double triad. Get a fourth path.

## OPEN QUESTION

Can the TWO DISJOINT PATHS problem be solved in linear time?

Let $G$ have $n$ vertices. A separator in $G$ is a set $S$ such that every component of $G \backslash S$ has at most $2 n / 3$ vertices.

Let $G$ have $n$ vertices. A separator in $G$ is a set $S$ such that every component of $G \backslash S$ has at most $2 n / 3$ vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a separator of size at most $\sqrt{8 n}$.

Let $G$ have $n$ vertices. A separator in $G$ is a set $S$ such that every component of $G \backslash S$ has at most $2 n / 3$ vertices.

THEOREM (Lipton, Tarjan) Every planar graph has a separator of size at most $\sqrt{8 n}$.

PROOF WMA $G$ is a triangulation. Let $k=\lfloor\sqrt{2 n}\rfloor$. Choose a cycle $C$ of length $\leq 2 k$ with out $(C)<2 n / 3$ and ins $(C)$-out $(C)$ minimum. Then ins $(C)<2 n / 3$.

