TREE-DECOMPOSITIONS OF GRAPHS

Robin Thomas

School of Mathematics
Georgia Institute of Technology
www.math.gatech.edu/~thomas

MOTIVATION

$\delta X=$ edges with one end in X, one in $V(G)-X$

MOTIVATION

$\delta X=$ edges with one end in X, one in $V(G)-X$

MOTIVATION

$\delta X=$ edges with one end in X, one in $V(G)-X$

Two edge-cuts $\delta X, \delta Y$ do not cross if: $X \subseteq Y$ or $X \subseteq Y^{c}$ or $X^{c} \subseteq Y$ or $X^{c} \subseteq Y^{c}$.

Example of a cross-free family of edge-cuts:
Let T be a tree, and ($W_{t}: t \in V(T)$) a partition of $V(G)$. Every edge of T defines a cut; the collection of cuts thus obtained is cross-free.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

Two separations (A, B) and (C, D) do not cross if:
$A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

Two separations (A, B) and (C, D) do not cross if:
$A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.

A family of cross-free separations gives rise to a tree-decompositon.

A tree-decomposition of a graph G is (T, W), where T is a tree and $W=\left(W_{t}: t \in V(T)\right)$ satisfies
(T1) $\bigcup_{t \in V(T)} W_{t}=V(G)$,
(T2) if $t^{\prime} \in T\left[t, t^{\prime \prime}\right]$, then $W_{t} \cap W_{t^{\prime \prime}} \subseteq W_{t^{\prime}}$,
(T3) $\forall u v \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_{t}$.
The width is $\max \left(\left|W_{t}\right|-1: t \in V(T)\right)$.
The tree-width of G is the minimum width of a tree-decomposition of G.
e8

- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $\operatorname{tw}(G) \leq 1 \Leftrightarrow G$ is a forest
- tw $(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $t w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
$K_{5}, 5$-prism, octahedron, V_{8}
- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $t w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
$K_{5}, 5$-prism, octahedron, V_{8}
- $t w\left(K_{n}\right)=n-1$
- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $t w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
$K_{5}, 5$-prism, octahedron, V_{8}
- $t w\left(K_{n}\right)=n-1$
- tree-width is minor-monotone
- $t w(G) \leq 1 \Leftrightarrow G$ is a forest
- $t w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $t w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
$K_{5}, 5$-prism, octahedron, V_{8}
- $t w\left(K_{n}\right)=n-1$
- tree-width is minor-monotone
- The $k \times k$ grid has tree-width k

Consider all functions ϕ mapping graphs into integers such that
(1) $\phi\left(K_{n}\right)=n-1$,
(2) G minor of $H \Rightarrow \phi(G) \leq \phi(H)$,
(3) If $G \cap H$ is a clique, then $\phi(G \cup H)=\max \{\phi(G), \phi(H)\}$.

Order such functions by $\phi \leq \psi$ if $\phi(G) \leq \psi(G)$ for all G.
THEOREM (Halin) Tree-width is the maximum element in the above poset.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.
THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least $k-1$

Cops and robbers. Fix a graph G and an integer k. There are k cops, they move slowly in helicopters. There is a robber, who moves infinitely fast along cop-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

Fact. A tree-decomposition of width $k-1$ gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.
THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least $k-1$

COR Search strategy \Rightarrow monotone search strategy.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $\operatorname{tw}(G) \leq k$.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2 g^{5}}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $\operatorname{tw}(G) \leq k$.

THEOREM (Arnborg, Proskurowski, ...)
Many problems can be solved in linear time when restricted to graphs of bounded tree-width.

Tree-width is useful in

- theory
- design of theoretically fast algorithms
- practical computations

FEEDBACK VERTEX-SET FOR FIXED k

INSTANCE A graph G
QUESTION Is there a set $X \subseteq V(G)$ such that $|X| \leq k$ and $G \backslash X$ is acyclic?

ALGORITHM If $\operatorname{tw}(G)$ is small use bounded tree-width methods. Otherwise answer "no". That's correct, because big tree-width \Rightarrow big grid $\Rightarrow k+1$ disjoint circuits $\Rightarrow X$ does not exist.

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
$s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G
QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
$s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G
QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices
$s_{1}, s_{2}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ of G
QUESTION Are there disjoint paths $P_{1}, . ., P_{k}$ such that P_{i} has ends s_{i} and t_{i} ?

ALGORITHM $\operatorname{tw}(G)$ small \Rightarrow bounded tree-width methods. Otherwise big grid minor \Rightarrow big grid minor with the terminals outside. The middle vertex of this grid minor can be deleted, without affecting the feasibility of the problem.

APPLICATIONS

THEOREM (Erdös, Pósa) There exists a function f such that every graph has either k disjoint cycles, or a set X of at most $f(k)$ vertices such that $G \backslash X$ is acyclic.

THEOREM (Robertson, Seymour) For every planar graph H there exists a function f such that every graph has either k disjoint H minors, or a set X of at most $f(k)$ vertices such that $G \backslash X$ has no H minor.

False for every nonplanar graph H. Open for subdivisions.

THEOREM (Oporowski, Oxley, RT) There exists a function f such that every 3 -connected graph on at least $f(t)$ vertices has a minor isomorphic to W_{t} or $K_{3, t}$.

THEOREM (Oporowski, Oxley, RT) There exists a function f such that every 4 -connected graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}, M_{t}, O_{t}, or $K_{4, t}$.

THEOREM (Ding, Oporowski, RT, Vertigan) There exists a function f such that every 4 -connected nonplanar graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}^{\prime}, M_{t}, or $K_{4, t}$.

COROLLARY (Ding, Oporowski, RT, Vertigan) There exists a constant c such that every minimal graph of crossing number at least two on at least c vertices belongs to a well-defined family of graphs.

THEOREM (Arnborg, Proskurowski)
Let $P(G, Z)$ be some information about a graph G and set $Z \subseteq V(G)$ such that
(i) $P(G, Z)$ can be computed in constant time if $|V(G)| \leq k+1$
(ii) if $Z^{\prime} \subseteq Z$ then $P\left(G, Z^{\prime}\right)$ can be computed from $P(G, Z)$ in constant time
(iii) if (A, B) is a separation of G with $A \cap B \subseteq Z$, then $P(G, Z)$ can be computed from $P(G \upharpoonright A, A \cap Z), P(G \upharpoonright B, B \cap Z)$ in constant time.

Then $P(G, \emptyset)$ can be computed in linear time if a tree-decomposition of G of width $\leq k$ is given.

EXAMPLE. For $A \subseteq V(G)$, let α_{A} be the maximum cardinality of an independent set $I \subseteq V(G)$ with $I \cap Z=A$. Let $P(G, Z)=\left(\alpha_{A}: A \subseteq Z\right)$.
$\mathcal{M}_{G}=$ all Hermitian matrices $A=\left(a_{i j}\right)$ s.t. $a_{i, j} \neq 0$ if i, j are adjacent and $a_{i, j}=0$ if $i \neq j$ and not adjacent.
$\mathcal{M}_{G}=$ all Hermitian matrices $A=\left(a_{i j}\right)$ s.t. $a_{i, j} \neq 0$ if i, j are adjacent and $a_{i, j}=0$ if $i \neq j$ and not adjacent. $\mathcal{W}_{\ell}=$ all positive semi-definite Hermitian matrices with ℓ-dimensional kernel
$\mathcal{M}_{G}=$ all Hermitian matrices $A=\left(a_{i j}\right)$ s.t. $a_{i, j} \neq 0$ if i, j are adjacent and $a_{i, j}=0$ if $i \neq j$ and not adjacent. $\mathcal{W}_{\ell}=$ all positive semi-definite Hermitian matrices with ℓ-dimensional kernel

DEFINITION (Colin de Verdière) Let $\nu(G)$ be the maximum ℓ such that there exists $A \in \mathcal{M}_{G} \cap \mathcal{W}_{\ell}$ such that those manifolds intersect transversally at A.
$\mathcal{M}_{G}=$ all Hermitian matrices $A=\left(a_{i j}\right)$ s.t. $a_{i, j} \neq 0$ if i, j are adjacent and $a_{i, j}=0$ if $i \neq j$ and not adjacent.
$\mathcal{W}_{\ell}=$ all positive semi-definite Hermitian matrices with ℓ-dimensional kernel

DEFINITION (Colin de Verdière) Let $\nu(G)$ be the maximum ℓ such that there exists $A \in \mathcal{M}_{G} \cap \mathcal{W}_{\ell}$ such that those manifolds intersect transversally at A.

THEOREM (Colin de Verdière) $\nu(G) \leq t w^{\prime}(G)$, where $t w^{\prime}(G)$ is a slight variation of tree-width s.t. $t w(G) \leq t w^{\prime}(G) \leq t w(G)+1$.

A path decomposition of G is a sequence $W_{1}, W_{2}, \ldots, W_{n}$ such that
(i) $\bigcup W_{i}=V(G)$, and every edge has both ends in some W_{i}, and
(ii) if $i<i^{\prime}<i^{\prime \prime}$ then $W_{i} \cap W_{i^{\prime \prime}} \subseteq W_{i^{\prime}}$

The width of W_{1}, \ldots, W_{n} is

$$
\max \left\{\left|W_{i}\right|-1: 1 \leq i \leq n\right\}
$$

The path-width of G is the minimum width of a path-decomposition.

THM F forest, $p w(G) \geq|V(F)|-1 \Rightarrow F \leq_{m} G$.

THM F forest, $p w(G) \geq|V(F)|-1 \Rightarrow F \leq_{m} G$. HISTORY Originally due to Robertson and Seymour. Current bound by Bienstock, Robertson, Seymour, RT. New proof by Diestel.

THM F forest, $p w(G) \geq|V(F)|-1 \Rightarrow F \leq_{m} G$.

THM F forest, $p w(G) \geq|V(F)|-1 \Rightarrow F \leq_{m} G$.
Diestel's proof. Let $V(F)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ s.t. v_{i} is adjacent to $\leq 1 v_{j}$ for $j<i$. Let $\mathcal{L}=\{(A, B): G \upharpoonright B$ has no path-decomposition $W_{1}, W_{2}, \ldots, W_{t}$ of width $\leq k-2$ with $\left.A \cap B \subset W_{1}\right\}$.

Choose $i \in\{0,1, \ldots, k\}$ and $(A, B) \in \mathcal{L}$ such that
(i) $G \upharpoonright A$ has a minor isomorphic to $F \upharpoonright\left\{v_{1}, \ldots, v_{i}\right\}$ s.t. each "node" intersects $A \cap B$ in precisely one vertex
(ii) $\nexists\left(A^{\prime}, B^{\prime}\right) \in \mathcal{L}$ with $A \subseteq A^{\prime}, B \supseteq B^{\prime},\left|A^{\prime} \cap B^{\prime}\right|<|A \cap B|$
(iii) i is maximum subject to (i) and (ii)
(iv) $|B|$ is minimum subject to (i), (ii), (iii)
$\operatorname{CLAIM} \nexists\left(A^{\prime}, B^{\prime}\right) \in \mathcal{L}$ with $A \subseteq A^{\prime}, B \supseteq B^{\prime}$, $\left|A^{\prime} \cap B^{\prime}\right| \leq|A \cap B|$.

PROOF OF CLAIM. Suppose not. By (ii) equality holds.

PROOF OF THM Let j be the only index $\leq i$ such that $v_{i+1} \sim v_{j}$. Pick any vertex of $B-A$ adjacent to the unique vertex of $A \cap B$ that belongs to the v_{j}-node.

Let (T, W) be a tree-decomposition of G and $t \in V(T)$. The torso at t is $G \upharpoonright W_{t}$ plus all edges with both ends in $W_{t} \cap W_{t^{\prime}}$ for some $t^{\prime} \sim t$.
(T, W) is a tree-decomposion over \mathcal{F} if every torso belongs to \mathcal{F}.

HOW TO USE A HAVEN?

REMINDER A haven β of order k in D assigns to every $X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
(H) $X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let Σ be a surface with k holes, C_{1}, \ldots, C_{k} their boundaries ("cuffs").

A graph G can be nearly embedded in Σ if G has a set X of at most k vertices such that $G \backslash X$ can be written as $G_{0} \cup G_{1} \cup \ldots \cup G_{k}$, where for $i>0$:

1. G_{0} has an embedding in Σ
2. G_{i} are pairwise disjoint
3. $U_{i}:=V\left(G_{0}\right) \cap V\left(G_{i}\right)=V\left(G_{0}\right) \cap C_{i}$
4. G_{i} has a path decomposition $\left(X_{u}\right)_{u \in U_{i}}$ of width $<k$, s.t. $u \in X_{u}$ for all $u \in U_{i}$ (the order on U_{i} given by C_{i})

NOTATION: $G \in \mathcal{F}(\Sigma)$
$\Sigma-k=\Sigma$ with k holes removed
$\Sigma_{H}=$ orientable surface of largest genus that does not embed H
Σ_{H}^{\prime} same for non-orientable
THEOREM (Robertson, Seymour)
For every finite graph H there exists $k \geq 0$ such that every graph with no H minor has a tree-decomposition over

$$
\mathcal{F}\left(\Sigma_{H}-k\right) \cup \mathcal{F}\left(\Sigma_{H}^{\prime}-k\right) .
$$

THEOREM (Halin) A graph has no ray (=1-way infinite path) \Leftrightarrow it has a tree-decomposition (T, W) such that T is rayless and each W_{t} is finite.

With Robertson and Seymour we characterize graphs with no K_{κ} minor, no T_{κ} subdivision, or no half-grid minor. Havens and searching play an important role.

SAMPLE RESULT. A graph has no $T_{\aleph_{1}-\text { minor }} \Leftrightarrow$ it has no tree-decomposition (T, W), where T is rayless and each W_{t} is at most countable.

THEOREM (RT) There exists a sequence G_{1}, G_{2}, \ldots of (uncountable) graphs such that for $i<j G_{j}$ has no G_{i} minor.

CONJECTURE True for countable graphs.
THEOREM (RT) Known when G_{1} is finite and planar.
FACT Not known even when every component is finite.

LEMMA (Kříž, RT) Let \mathcal{F} be "compact" (if every finite subgraph of G belongs to \mathcal{F}, then $G \in \mathcal{F}$). If every finite subgraph of G has a tree-decomposition over \mathcal{F}, then so does G.

THEOREM (Diestel, Thomas) For every finite graph H there exists an integer k such that every (infinite) graph with no H minor has a tree-decomposition over

$$
\mathcal{F}\left(\Sigma_{H}-k\right) \cup \mathcal{F}\left(\Sigma_{H}^{\prime}-k\right)
$$

A graph G is plane with one vortex if for some k it has a near-embedding $G_{0}, G_{1}, . ., G_{k}$ in the sphere with k holes, where G_{2}, \ldots, G_{k} are null.

A tree-dec. (T, W) has finite adhesion if

- for every $t,\left|W_{t} \cap W_{t^{\prime}}\right|$ is bounded $\left(t^{\prime} \sim t\right)$,
- for every ray t_{1}, t_{2}, \ldots in T, $\lim \inf \left|W_{t_{i}} \cap W_{t_{i+1}}\right|$ is finite.

THEOREM (Diestel, Thomas) An infinite graph has no $K_{\aleph_{0}}$-minor if and only if it has a tree-decomposition of finite adhesion over plane graphs with at most one vortex.

THEOREM (Robertson, Seymour, RT)

Every planar graph with no minor isomorphic to a $g \times g$ grid has tree-width $<5 g$.

PROOF Suppose G has tree-width $\geq 5 g$. Then G has a haven β of order $\geq 5 g$. Take a planar drawing of G and a circular cutset X of order $\leq 4 g$ with $\beta(X)$ inside X and with inside of X minimal.

