TREE-DECOMPOSITIONS OF GRAPHS

Robin Thomas

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas

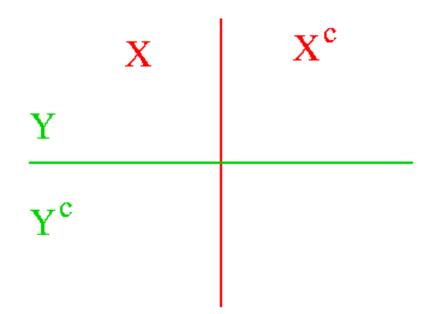
MOTIVATION

X X^c

 $\delta X = \text{edges with one end in } X$, one in V(G) - X

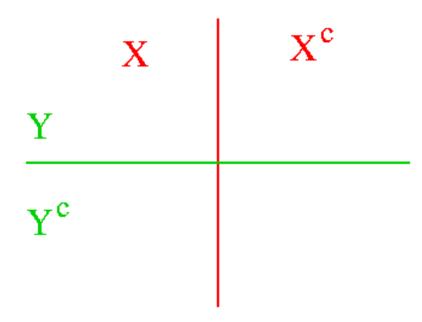
MOTIVATION

 $\delta X =$ edges with one end in X, one in V(G) - X



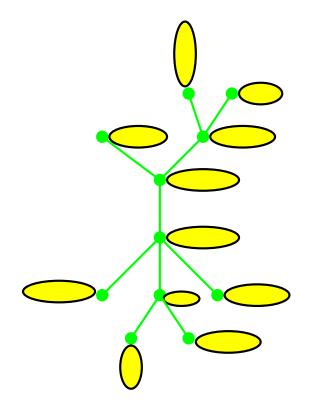
MOTIVATION

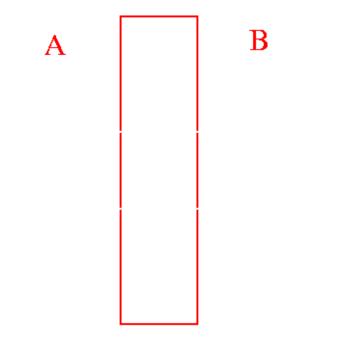
 $\delta X =$ edges with one end in X, one in V(G) - X

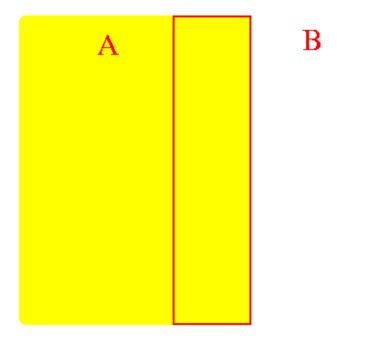


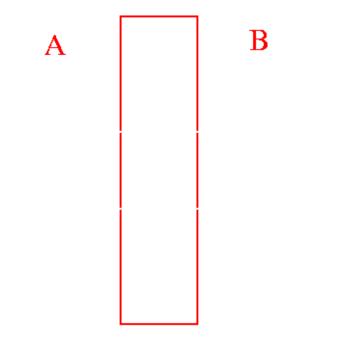
Two edge-cuts δX , δY do not cross if: $X \subseteq Y$ or $X \subseteq Y^c$ or $X^c \subseteq Y$ or $X^c \subseteq Y^c$. Example of a cross-free family of edge-cuts:

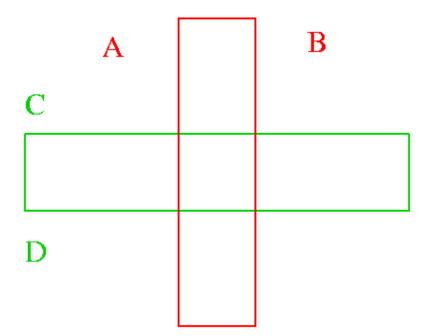
Let T be a tree, and $(W_t : t \in V(T))$ a partition of V(G). Every edge of T defines a cut; the collection of cuts thus obtained is cross-free.

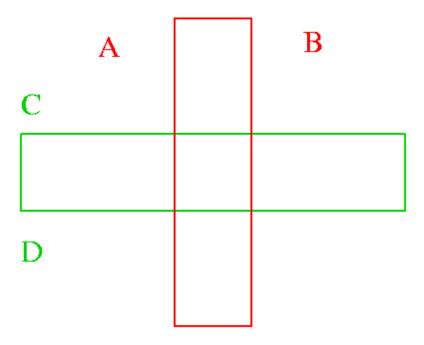




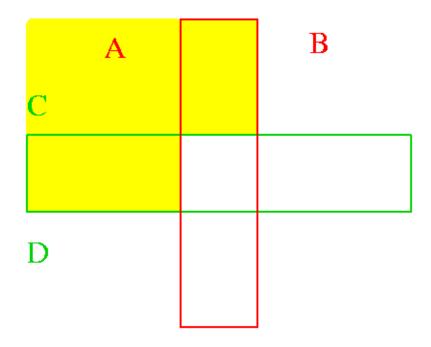




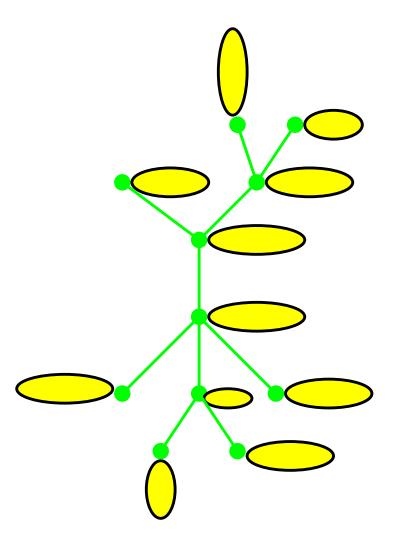




Two separations (A, B) and (C, D) do not cross if: $A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.



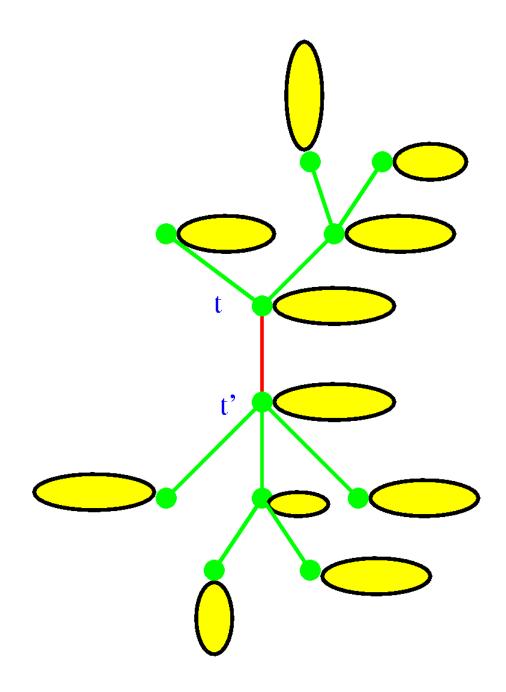
Two separations (A, B) and (C, D) do not cross if: $A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$. A family of cross-free separations gives rise to a tree-decompositon.



A tree-decomposition of a graph G is (T, W), where T is a tree and $W = (W_t : t \in V(T))$ satisfies $(T1) \bigcup_{t \in V(T)} W_t = V(G)$, (T2) if $t' \in T[t, t'']$, then $W_t \cap W_{t''} \subseteq W_{t'}$, $(T3) \forall uv \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_t$.

The width is $\max(|W_t| - 1 : t \in V(T))$.

The tree-width of G is the minimum width of a tree-decomposition of G.



• $tw(G) \leq 1 \Leftrightarrow G$ is a forest

- $tw(G) \leq 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel

- $tw(G) \le 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $tw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:

- $tw(G) \le 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $tw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:

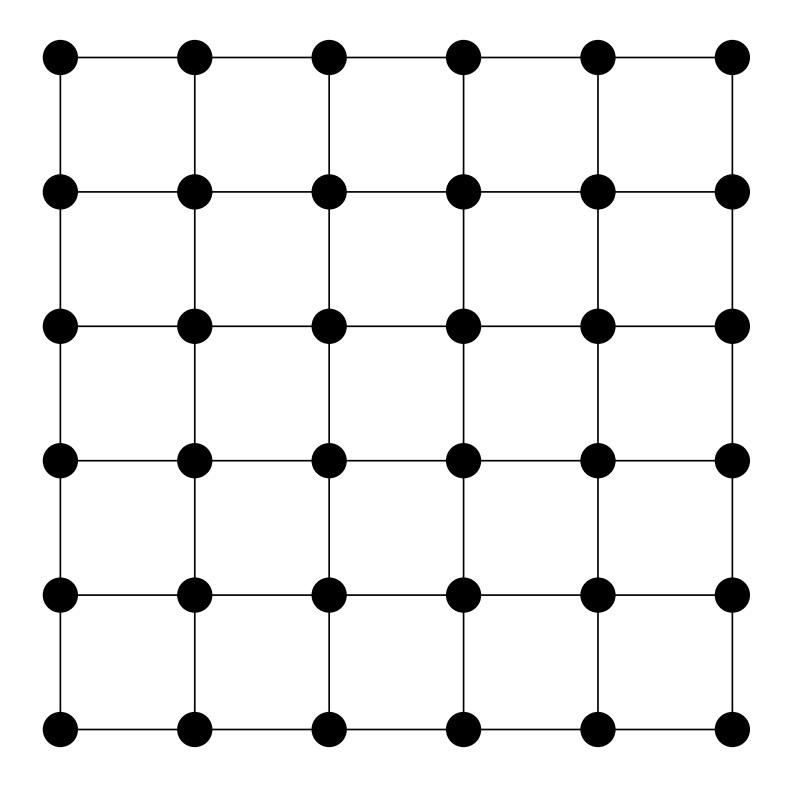
• $tw(K_n) = n - 1$

- $tw(G) \le 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $tw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:

- $tw(K_n) = n 1$
- tree-width is minor-monotone

- $tw(G) \le 1 \Leftrightarrow G$ is a forest
- $tw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $tw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:

- $tw(K_n) = n 1$
- tree-width is minor-monotone
- The $k \times k$ grid has tree-width k



Consider all functions ϕ mapping graphs into integers such that

(1) $\phi(K_n) = n - 1$,

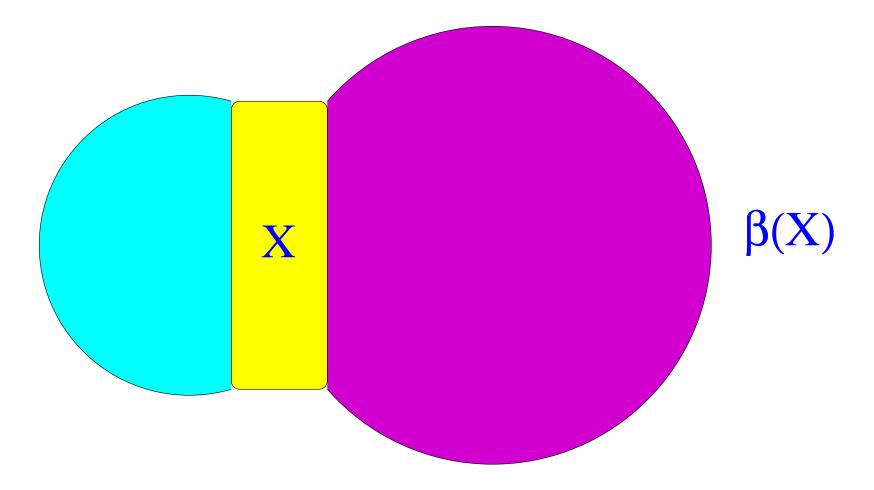
(2) G minor of $H \Rightarrow \phi(G) \leq \phi(H)$,

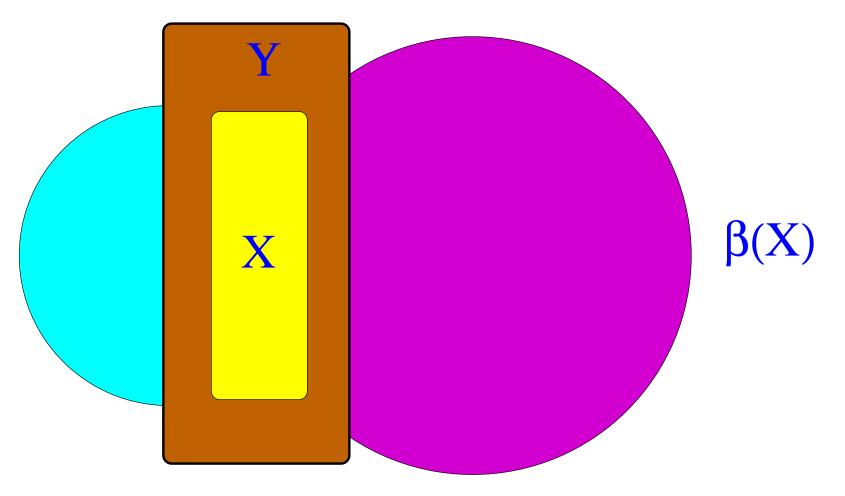
(3) If $G \cap H$ is a clique, then $\phi(G \cup H) = \max\{\phi(G), \phi(H)\}.$

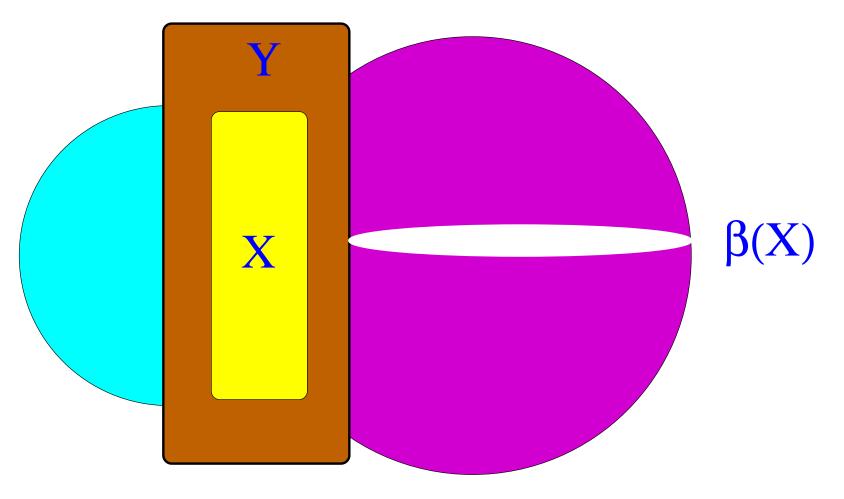
Order such functions by $\phi \leq \psi$ if $\phi(G) \leq \psi(G)$ for all G.

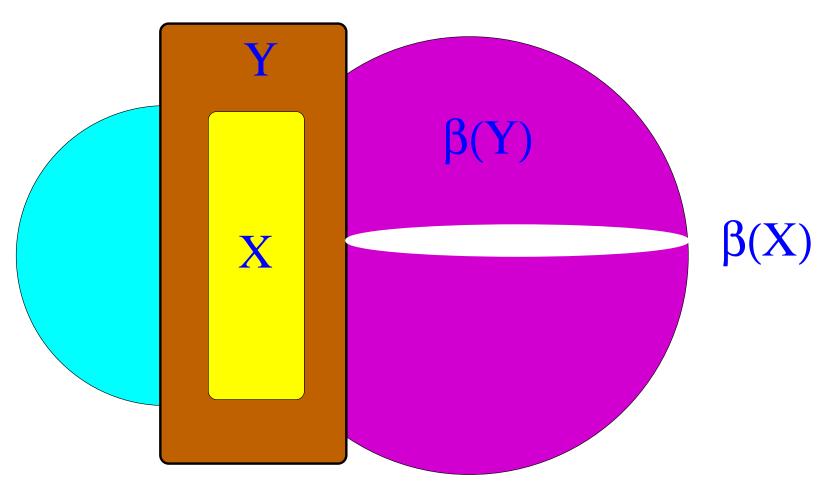
THEOREM (Halin) Tree-width is the maximum element in the above poset.

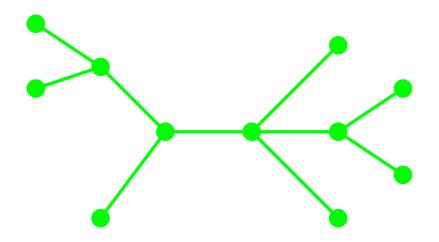
A haven β of order k in G assigns to every $X \in [V(G)]^{<k}$ the vertex-set of a component of $G \setminus X$ such that (H) $X \subseteq Y \in [V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

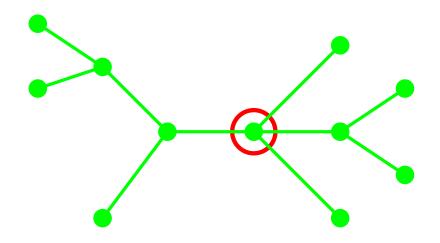


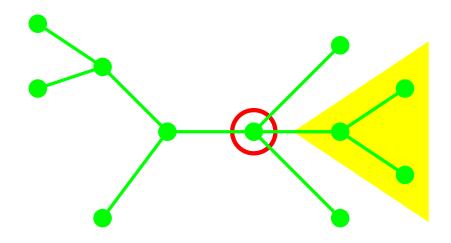


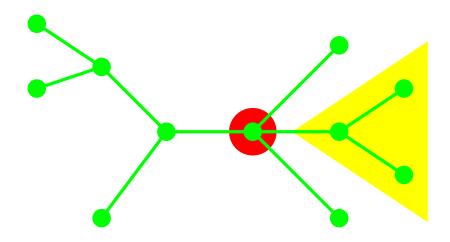


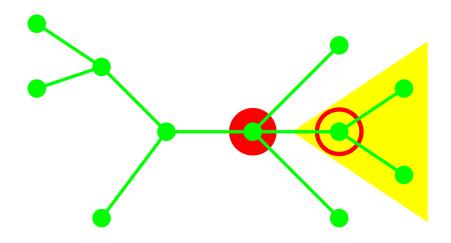


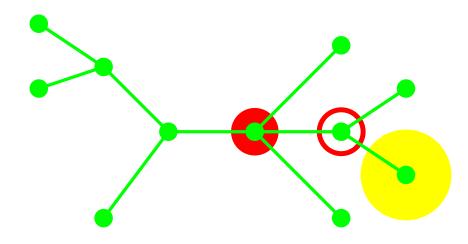


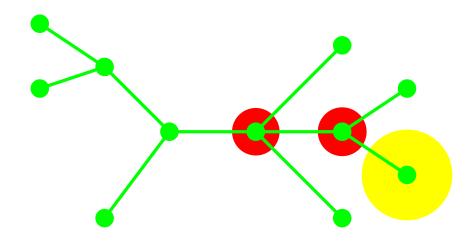


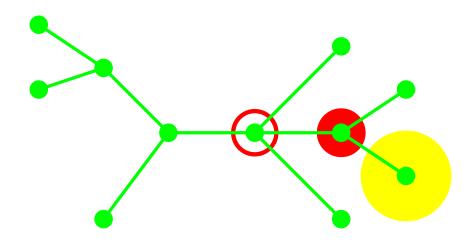


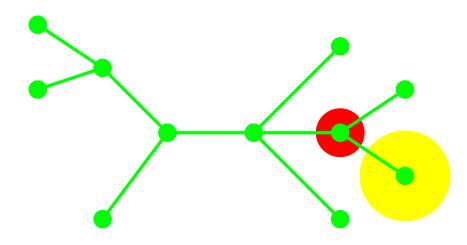


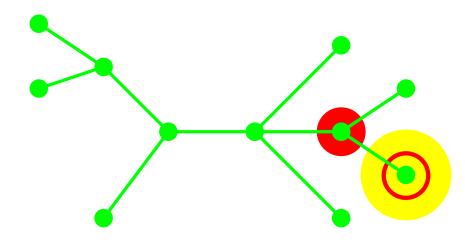












Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

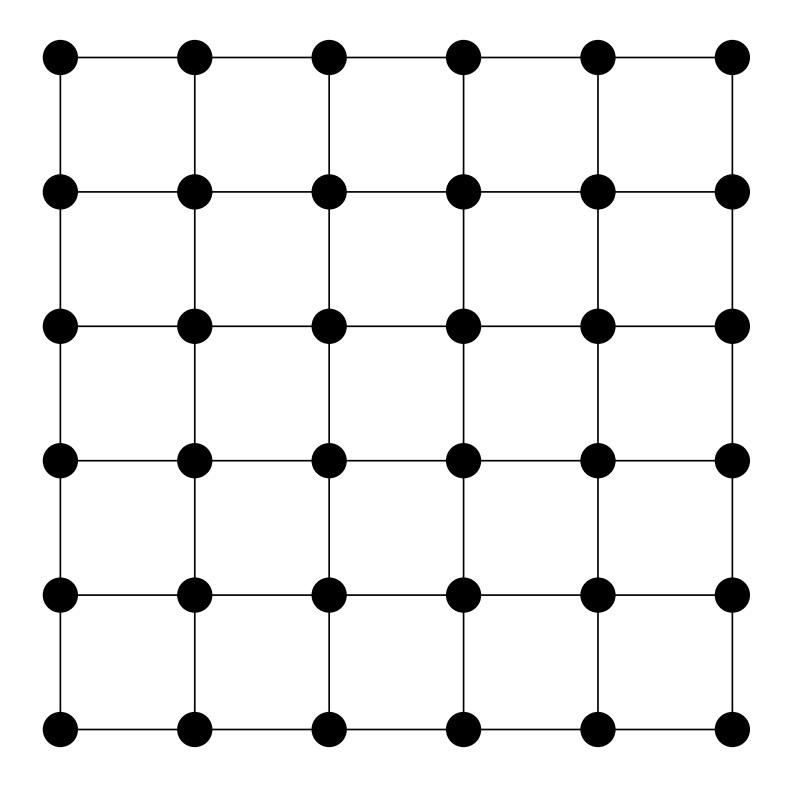
THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least k - 1

Fact. A tree-decomposition of width k - 1 gives a search strategy for k cops.

Fact. A haven gives an escape strategy for the robber.

THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow G$ has tree-with at least k - 1

COR Search strategy \Rightarrow monotone search strategy.



THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $tw(G) \le k$.

THEOREM (Robertson, Seymour, RT) Every graph of tree-width $\geq 20^{2g^5}$ has a $g \times g$ grid minor.

THEOREM (Bodlaender) For every k there is a linear-time algorithm to decide whether $tw(G) \le k$.

THEOREM (Arnborg, Proskurowski, ...) Many problems can be solved in linear time when restricted to graphs of bounded tree-width. Tree-width is useful in

- theory
- design of theoretically fast algorithms
- practical computations

FEEDBACK VERTEX-SET FOR FIXED k

INSTANCE A graph G

QUESTION Is there a set $X \subseteq V(G)$ such that $|X| \leq k$ and $G \setminus X$ is acyclic?

ALGORITHM If tw(G) is small use bounded tree-width methods. Otherwise answer "no". That's correct, because big tree-width \Rightarrow big grid $\Rightarrow k + 1$ disjoint circuits $\Rightarrow X$ does not exist.

k DISJOINT PATHS IN PLANAR GRAPHS INSTANCE A planar graph G, vertices

 $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of G

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?

k DISJOINT PATHS IN PLANAR GRAPHS INSTANCE A planar graph G, vertices

 $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of G

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?

k DISJOINT PATHS IN PLANAR GRAPHS

INSTANCE A planar graph G, vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ of G

QUESTION Are there disjoint paths $P_1, ..., P_k$ such that P_i has ends s_i and t_i ?

ALGORITHM tw(G) small \Rightarrow bounded tree-width methods. Otherwise big grid minor \Rightarrow big grid minor with the terminals outside. The middle vertex of this grid minor can be deleted, without affecting the feasibility of the problem.

APPLICATIONS

THEOREM (Erdös, Pósa) There exists a function f such that every graph has either k disjoint cycles, or a set X of at most f(k) vertices such that $G \setminus X$ is acyclic.

THEOREM (Robertson, Seymour) For every planar graph H there exists a function f such that every graph has either k disjoint H minors, or a set X of at most f(k) vertices such that $G \setminus X$ has no H minor.

False for every nonplanar graph H. Open for subdivisions.

THEOREM (Oporowski, Oxley, RT) There exists a function f such that every 3-connected graph on at least f(t) vertices has a minor isomorphic to W_t or $K_{3,t}$.

THEOREM (Oporowski, Oxley, RT) There exists a function f such that every 4-connected graph on at least f(t) vertices has a minor isomorphic to D_t , M_t , O_t , or $K_{4,t}$.

THEOREM (Ding, Oporowski, RT, Vertigan) There exists a function f such that every 4-connected nonplanar graph on at least f(t) vertices has a minor isomorphic to D'_t , M_t , or $K_{4,t}$.

COROLLARY (Ding, Oporowski, RT, Vertigan) There exists a constant *c* such that every minimal graph of crossing number at least two on at least *c* vertices belongs to a well-defined family of graphs.

THEOREM (Arnborg, Proskurowski)

- Let P(G, Z) be some information about a graph G and set $Z \subseteq V(G)$ such that
- (i) P(G, Z) can be computed in constant time if $|V(G)| \le k+1$
- (ii) if $Z' \subseteq Z$ then P(G, Z') can be computed from P(G, Z) in constant time
- (iii) if (A, B) is a separation of G with $A \cap B \subseteq Z$, then P(G, Z) can be computed from $P(G \upharpoonright A, A \cap Z), P(G \upharpoonright B, B \cap Z)$ in constant time.

Then $P(G, \emptyset)$ can be computed in linear time if a tree-decomposition of G of width $\leq k$ is given.

EXAMPLE. For $A \subseteq V(G)$, let α_A be the maximum cardinality of an independent set $I \subseteq V(G)$ with $I \cap Z = A$. Let $P(G, Z) = (\alpha_A : A \subseteq Z)$.

 \mathcal{M}_G = all Hermitian matrices $A = (a_{ij})$ s.t. $a_{i,j} \neq 0$ if i, j are adjacent and $a_{i,j} = 0$ if $i \neq j$ and not adjacent.

 \mathcal{M}_G = all Hermitian matrices $A = (a_{ij})$ s.t. $a_{i,j} \neq 0$ if i, j are adjacent and $a_{i,j} = 0$ if $i \neq j$ and not adjacent.

 \mathcal{W}_{ℓ} = all positive semi-definite Hermitian matrices with ℓ -dimensional kernel

 \mathcal{M}_G = all Hermitian matrices $A = (a_{ij})$ s.t. $a_{i,j} \neq 0$ if i, j are adjacent and $a_{i,j} = 0$ if $i \neq j$ and not adjacent.

 \mathcal{W}_{ℓ} = all positive semi-definite Hermitian matrices with ℓ -dimensional kernel

DEFINITION (Colin de Verdière) Let $\nu(G)$ be the maximum ℓ such that there exists $A \in \mathcal{M}_G \cap \mathcal{W}_\ell$ such that those manifolds intersect transversally at A.

 \mathcal{M}_G = all Hermitian matrices $A = (a_{ij})$ s.t. $a_{i,j} \neq 0$ if i, j are adjacent and $a_{i,j} = 0$ if $i \neq j$ and not adjacent.

 \mathcal{W}_{ℓ} = all positive semi-definite Hermitian matrices with ℓ -dimensional kernel

DEFINITION (Colin de Verdière) Let $\nu(G)$ be the maximum ℓ such that there exists $A \in \mathcal{M}_G \cap \mathcal{W}_\ell$ such that those manifolds intersect transversally at A.

THEOREM (Colin de Verdière) $\nu(G) \leq tw'(G)$, where tw'(G) is a slight variation of tree-width s.t. $tw(G) \leq tw'(G) \leq tw(G) + 1$.

A path decomposition of G is a sequence W_1, W_2, \ldots, W_n such that

(i) $\bigcup W_i = V(G)$, and every edge has both ends in some W_i , and

(ii) if i < i' < i'' then $W_i \cap W_{i''} \subseteq W_{i'}$

The width of W_1, \ldots, W_n is

 $\max\{|W_i| - 1 : 1 \le i \le n\}$

The path-width of G is the minimum width of a path-decomposition.

HISTORY Originally due to Robertson and Seymour. Current bound by Bienstock, Robertson, Seymour, RT. New proof by Diestel.

Diestel's proof. Let $V(F) = \{v_1, v_2, \ldots, v_k\}$ s.t. v_i is adjacent to $\leq 1 v_j$ for j < i. Let $\mathcal{L} = \{(A, B) : G \upharpoonright B$ has no path-decomposition W_1, W_2, \ldots, W_t of width $\leq k - 2$ with $A \cap B \subset W_1\}$.

Choose $i \in \{0, 1, \dots, k\}$ and $(A, B) \in \mathcal{L}$ such that

(i) G ↑ A has a minor isomorphic to F ↑ {v₁,...,v_i} s.t. each "node" intersects A ∩ B in precisely one vertex
(ii) ≇ (A', B') ∈ L with A ⊆ A', B ⊇ B', |A' ∩ B'| < |A ∩ B|
(iii) i is maximum subject to (i) and (ii)
(iv) |B| is minimum subject to (i), (ii), (iii)

CLAIM $\nexists (A', B') \in \mathcal{L}$ with $A \subseteq A', B \supseteq B',$ $|A' \cap B'| \leq |A \cap B|.$

PROOF OF CLAIM. Suppose not. By (ii) equality holds.

PROOF OF THM Let j be the only index $\leq i$ such that $v_{i+1} \sim v_j$. Pick any vertex of B - A adjacent to the unique vertex of $A \cap B$ that belongs to the v_j -node.

Let (T, W) be a tree-decomposition of G and $t \in V(T)$. The torso at t is $G \upharpoonright W_t$ plus all edges with both ends in $W_t \cap W_{t'}$ for some $t' \sim t$.

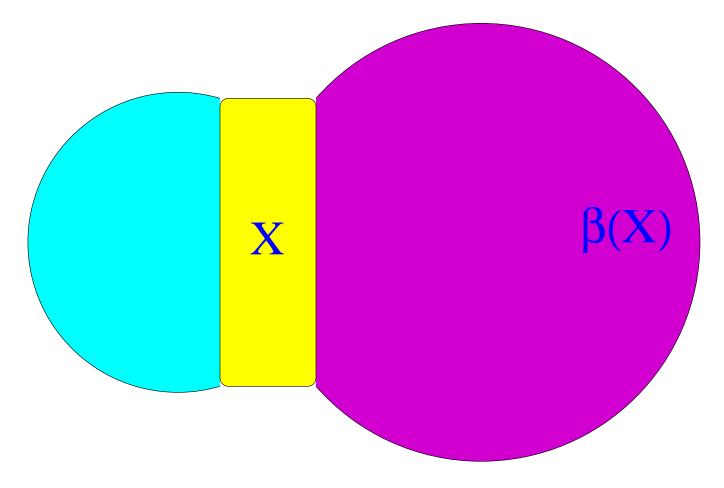
(T, W) is a tree-decomposion over \mathcal{F} if every torso belongs to \mathcal{F} .

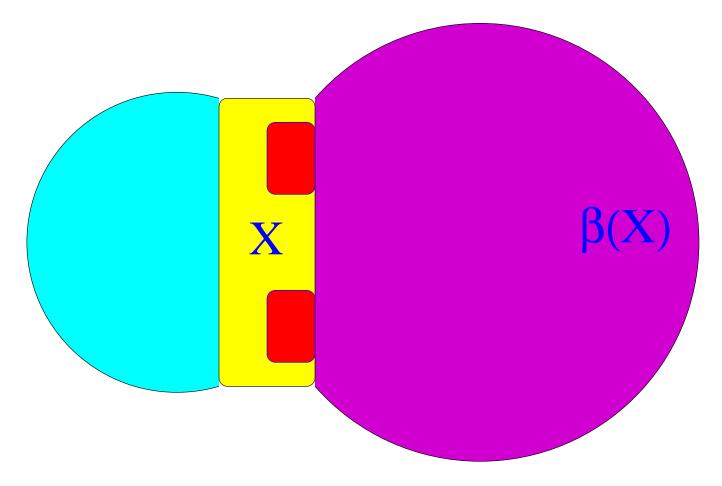
HOW TO USE A HAVEN?

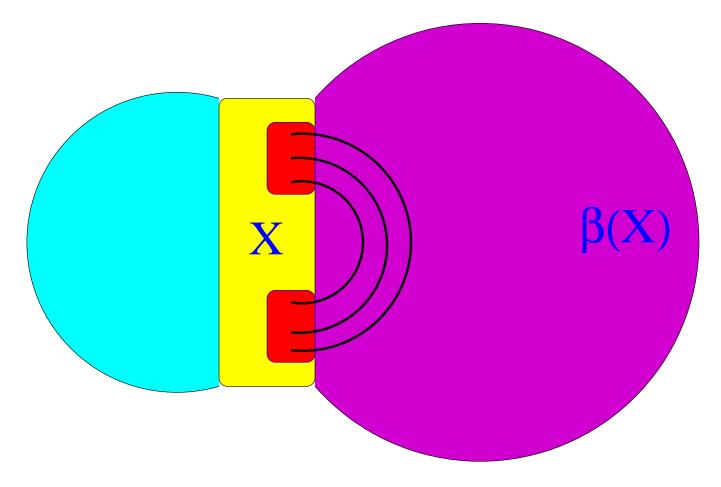
REMINDER A haven β of order k in D assigns to every $X \in [V(D)]^{< k}$ the vertex-set of a strong component of $D \setminus X$ such that

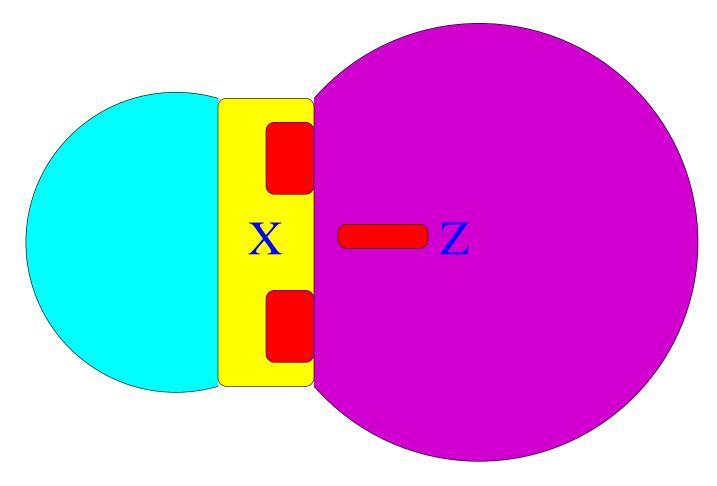
(H) $X \subseteq Y \in [V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

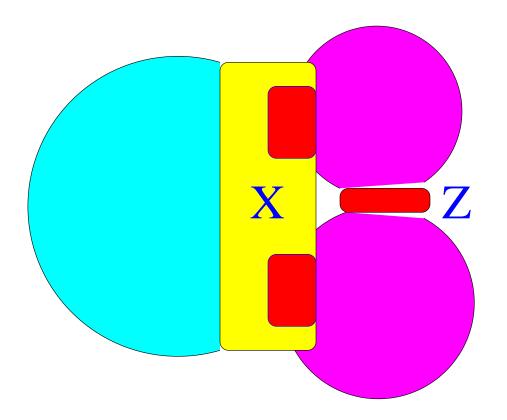
Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k/2$ and $\beta(X)$ minimum. Then X is "externally linked":

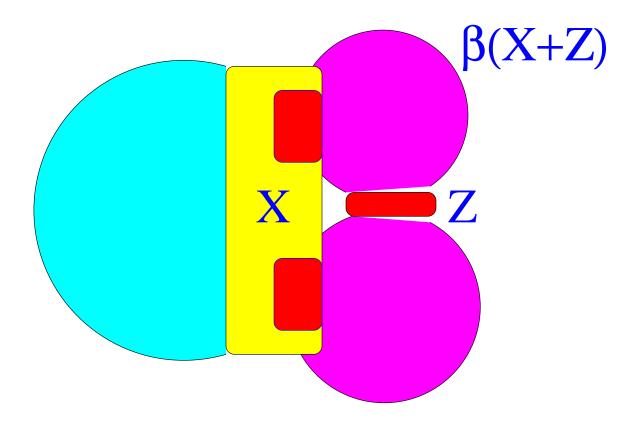


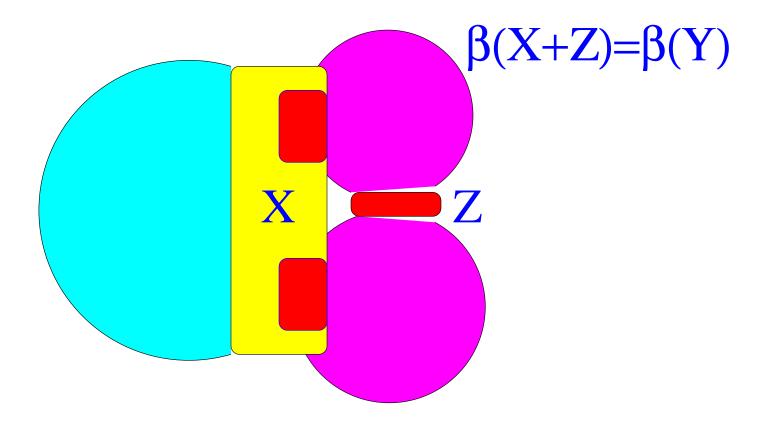












Let Σ be a surface with k holes, C_1, \ldots, C_k their boundaries ("cuffs").

A graph G can be nearly embedded in Σ if G has a set X of at most k vertices such that $G \setminus X$ can be written as $G_0 \cup G_1 \cup \ldots \cup G_k$, where for i > 0:

- **1**. G_0 has an embedding in Σ
- 2. G_i are pairwise disjoint
- **3.** $U_i := V(G_0) \cap V(G_i) = V(G_0) \cap C_i$

4. G_i has a path decomposition $(X_u)_{u \in U_i}$ of width $\langle k$,

s.t. $u \in X_u$ for all $u \in U_i$ (the order on U_i given by C_i)

NOTATION: $G \in \mathcal{F}(\Sigma)$

 $\Sigma - k = \Sigma$ with k holes removed

 Σ_H = orientable surface of largest genus that does not embed H

 Σ'_H same for non-orientable

THEOREM (Robertson, Seymour) For every finite graph H there exists $k \ge 0$ such that every graph with no H minor has a tree-decomposition over

$$\mathcal{F}(\Sigma_H - k) \cup \mathcal{F}(\Sigma'_H - k).$$

INFINITE GRAPHS

THEOREM (Halin) A graph has no ray (= 1-way infinite path) \Leftrightarrow it has a tree-decomposition (T, W) such that T is rayless and each W_t is finite.

With Robertson and Seymour we characterize graphs with no K_{κ} minor, no T_{κ} subdivision, or no half-grid minor. Havens and searching play an important role.

SAMPLE RESULT. A graph has no T_{\aleph_1} -minor \Leftrightarrow it has no tree-decomposition (T, W), where T is rayless and each W_t is at most countable.

MOTIVATION

THEOREM (RT) There exists a sequence G_1, G_2, \ldots of (uncountable) graphs such that for $i < j \ G_j$ has no G_i minor.

CONJECTURE True for countable graphs.

THEOREM (RT) Known when G_1 is finite and planar.

FACT Not known even when every component is finite.

LEMMA (Kříž, RT) Let \mathcal{F} be "compact" (if every finite subgraph of G belongs to \mathcal{F} , then $G \in \mathcal{F}$). If every finite subgraph of G has a tree-decomposition over \mathcal{F} , then so does G. THEOREM (Diestel, Thomas) For every finite graph H there exists an integer k such that every (infinite) graph with no H minor has a tree-decomposition over

$$\mathcal{F}(\Sigma_H - k) \cup \mathcal{F}(\Sigma'_H - k).$$

A graph G is plane with one vortex if for some k it has a near-embedding $G_0, G_1, ..., G_k$ in the sphere with k holes, where $G_2, ..., G_k$ are null.

A tree-dec. (T, W) has finite adhesion if

- for every t, $|W_t \cap W_{t'}|$ is bounded $(t' \sim t)$,
- for every ray t_1, t_2, \ldots in T, $\liminf |W_{t_i} \cap W_{t_{i+1}}|$ is finite.

THEOREM (Diestel, Thomas) An infinite graph has no K_{\aleph_0} -minor if and only if it has a tree-decomposition of finite adhesion over plane graphs with at most one vortex.

THEOREM (Robertson, Seymour, RT)

Every planar graph with no minor isomorphic to a $g \times g$ grid has tree-width < 5g.

PROOF Suppose G has tree-width $\geq 5g$. Then G has a haven β of order $\geq 5g$. Take a planar drawing of G and a circular cutset X of order $\leq 4g$ with $\beta(X)$ inside X and with inside of X minimal.