TREE-DECOMPOSITIONS OF GRAPHS II.

Robin Thomas

School of Mathematics
Georgia Institute of Technology
www.math.gatech.edu/~thomas

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

Two separations (A, B) and (C, D) do not cross if:
$A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.

A separation of a graph G is a pair (A, B) such that $A \cup B=V(G)$ and there is no edge between $A-B$ and $B-A$.

Two separations (A, B) and (C, D) do not cross if:
$A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.

A family of cross-free separations gives rise to a tree-decompositon.

A tree-decomposition of a graph G is (T, W), where T is a tree and $W=\left(W_{t}: t \in V(T)\right)$ satisfies
(T1) $\bigcup_{t \in V(T)} W_{t}=V(G)$,
(T2) if $t^{\prime} \in T\left[t, t^{\prime \prime}\right]$, then $W_{t} \cap W_{t^{\prime \prime}} \subseteq W_{t^{\prime}}$,
(T3) $\forall u v \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_{t}$.
The width is $\max \left(\left|W_{t}\right|-1: t \in V(T)\right)$.
The tree-width of G is the minimum width of a tree-decomposition of G.
e8

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

A haven β of order k in G assigns to every $X \in[V(G)]^{<k}$ the vertex-set of a component of $G \backslash X$ such that $(\mathrm{H}) X \subseteq Y \in[V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

$\beta(X)$

APPLICATION TO HOMELAND SECURITY

APPLICATION TO HOMELAND SECURITY

OBJECTIVE.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

APPLICATION TO HOMELAND SECURITY

OBJECTIVE. There are k special forces agents; they move slowly in helicopters. There is a terrorist, who moves infinitely fast along agent-free paths. He can see a helicopter landing, and can run to a safe place before the chopper lands.

BACK TO MATHEMATICS

THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least $k-1$

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$.

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that (1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that
(1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves
(2) $\left|W_{t} \cap W_{t^{\prime}}\right| \leq 2 k-1$ for every edge $t t^{\prime} \in E(T)$

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that
(1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves
(2) $\left|W_{t} \cap W_{t^{\prime}}\right| \leq 2 k-1$ for every edge $t t^{\prime} \in E(T)$
(3) \# verts in bags of size $\geq 3 k$ only is minimum

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that
(1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves
(2) $\left|W_{t} \cap W_{t^{\prime}}\right| \leq 2 k-1$ for every edge $t t^{\prime} \in E(T)$
(3) \# verts in bags of size $\geq 3 k$ only is minimum Suppose $\left|W_{t}\right| \geq 3 k$ for some t. Then t is a leaf; let t^{\prime} be its neighbor.

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that
(1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves
(2) $\left|W_{t} \cap W_{t^{\prime}}\right| \leq 2 k-1$ for every edge $t t^{\prime} \in E(T)$
(3) \# verts in bags of size $\geq 3 k$ only is minimum Suppose $\left|W_{t}\right| \geq 3 k$ for some t. Then t is a leaf; let t^{\prime} be its neighbor. If for every $X \subseteq V(G)$ of size $<k$ there is a component containing $\geq k$ vertices of $W_{t} \cap W_{t^{\prime}}$, then let $\beta(X)$ be that component. Then β is a haven.

THEOREM (Seymour, RT) G has a haven of order $k \Leftarrow$ G has tree-with at least $k-1$
PROOF Assuming tree-width $\geq 3 k-2$. Choose a tree-decomposition (T, W) such that
(1) $\left|W_{t}\right| \leq 3 k-1$ except for leaves
(2) $\left|W_{t} \cap W_{t^{\prime}}\right| \leq 2 k-1$ for every edge $t t^{\prime} \in E(T)$
(3) \# verts in bags of size $\geq 3 k$ only is minimum Suppose $\left|W_{t}\right| \geq 3 k$ for some t. Then t is a leaf; let t^{\prime} be its neighbor. If for every $X \subseteq V(G)$ of size $<k$ there is a component containing $\geq k$ vertices of $W_{t} \cap W_{t^{\prime}}$, then let $\beta(X)$ be that component. Then β is a haven. So $\exists|X|<k \forall$ component of $G \backslash X$ contains $<k$ vertices of $W_{t} \cap W_{t^{\prime}}$. Then refine the tree-decomposition.

REMINDER: HOW TO USE A HAVEN

REMINDER A haven β of order k in D assigns to every $X \in[V(D)]^{<k}$ the vertex-set of a strong component of $D \backslash X$ such that
$(\mathrm{H}) X \subseteq Y \in[V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

Let β be a haven of order k in G. Let $X \subseteq V(G)$ with $|X| \leq k / 2$ and $\beta(X)$ minimum. Then X is "externally linked":

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q}, where \mathcal{P} joins A and $B ;|\mathcal{Q}| \gg|\mathcal{P}|$.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q}, where \mathcal{P} joins A and $B ;|\mathcal{Q}| \gg|\mathcal{P}|$. WMA $\forall e \in E\left(P_{i}\right)$ not in any Q_{j} there do not exist $|\mathcal{P}|$ disjoint $A-B$ paths in $G \backslash e$.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q}, where \mathcal{P} joins A and $B ;|\mathcal{Q}| \gg|\mathcal{P}|$. WMA $\forall e \in E\left(P_{i}\right)$ not in any Q_{j} there do not exist $|\mathcal{P}|$ disjoint $A-B$ paths in $G \backslash e$. There exist large sets $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ and $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ such that either

- $V(P) \cap V(Q)=\emptyset \forall P \in \mathcal{P}^{\prime} \forall Q \in \mathcal{Q}^{\prime}$, or
- $V(P) \cap V(Q) \neq \emptyset \forall P \in \mathcal{P}^{\prime} \forall Q \in \mathcal{Q}^{\prime}$.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q}, where \mathcal{P} joins A and $B ;|\mathcal{Q}| \gg|\mathcal{P}|$. WMA $\forall e \in E\left(P_{i}\right)$ not in any Q_{j} there do not exist $|\mathcal{P}|$ disjoint $A-B$ paths in $G \backslash e$. There exist large sets $\mathcal{P}^{\prime} \subseteq \mathcal{P}$ and $\mathcal{Q}^{\prime} \subseteq \mathcal{Q}$ such that either

- $V(P) \cap V(Q)=\emptyset \forall P \in \mathcal{P}^{\prime} \forall Q \in \mathcal{Q}^{\prime}$, or
- $V(P) \cap V(Q) \neq \emptyset \forall P \in \mathcal{P}^{\prime} \forall Q \in \mathcal{Q}^{\prime}$.

In the latter case get a $k \times k$ grid, where $k=\left|\mathcal{P}^{\prime}\right|$. Let $p=|\mathcal{P}|$.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \backslash \beta(X)$. In X find g^{2} disjoint large sets X_{1}, X_{2}, \ldots, each connected by a disjoint subtree of T. Apply previous idea to $X_{i}-X_{j}$ paths and $X_{p}-X_{q}$ paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \backslash \beta(X)$. In X find g^{2} disjoint large sets X_{1}, X_{2}, \ldots, each connected by a disjoint subtree of T. Apply previous idea to $X_{i}-X_{j}$ paths and $X_{p}-X_{q}$ paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint $\Rightarrow K_{g^{2}}$ minor

THEOREM (Robertson, Seymour) Every graph of tree-width $\geq f(g)$ has a $g \times g$ grid minor.

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \backslash \beta(X)$. In X find g^{2} disjoint large sets X_{1}, X_{2}, \ldots, each connected by a disjoint subtree of T. Apply previous idea to $X_{i}-X_{j}$ paths and $X_{p}-X_{q}$ paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint $\Rightarrow K_{g^{2}}$ minor $\Rightarrow g \times g$ grid minor.

THEOREM (Oporowski, Oxley, RT) Every 3-connected graph on at least $f(t)$ vertices has a minor isomorphic to W_{t} or $K_{3, t}$.

THEOREM (Oporowski, Oxley, RT) Every 3-connected graph on at least $f(t)$ vertices has a minor isomorphic to W_{t} or $K_{3, t}$.
THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}, M_{t}, O_{t}, or $K_{4, t}$.

THEOREM (Oporowski, Oxley, RT) Every 3-connected graph on at least $f(t)$ vertices has a minor isomorphic to W_{t} or $K_{3, t}$.
THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}, M_{t}, O_{t}, or $K_{4, t}$.
THEOREM (Ding, Oporowski, RT, Vertigan) Every internally 4-connected nonplanar graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}^{\prime}, M_{t}, or $K_{4, t}$.

THEOREM (Oporowski, Oxley, RT) Every 3-connected graph on at least $f(t)$ vertices has a minor isomorphic to W_{t} or $K_{3, t}$.
THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}, M_{t}, O_{t}, or $K_{4, t}$.
THEOREM (Ding, Oporowski, RT, Vertigan) Every internally 4-connected nonplanar graph on at least $f(t)$ vertices has a minor isomorphic to D_{t}^{\prime}, M_{t}, or $K_{4, t}$. COROLLARY (Ding, Oporowski, RT, Vertigan) There exists a constant c such that every minimal graph of crossing number at least two on at least c vertices belongs to a well-defined family of graphs.

LEMMA ABOUT NONPLANAR EXTENSIONS R,S,T

Let H, G be almost 4-connected (4-connected except for vertices of degree 3), H planar, G nonplanar, $H \leq_{t} G$. Then either

LEMMA ABOUT NONPLANAR EXTENSIONS R,S,T

Let H, G be almost 4-connected (4-connected except for vertices of degree 3), H planar, G nonplanar, $H \leq_{t} G$.
Then either

- $H+$ nonplanar jump $\leq_{t} G$, or
- $H+$ free cross $\leq_{t} G$.

LEMMA ABOUT NONPLANAR EXTENSIONS R,S,T

Let H, G be almost 4-connected (4-connected except for vertices of degree 3), H planar, G nonplanar, $H \leq_{t} G$.
Then either

- H +nonplanar jump $\leq_{t} G$, or
- $H+$ free cross $\leq_{t} G$.

LEMMA ABOUT NONPLANAR EXTENSIONS R,S,T

Let H, G be almost 4-connected (4-connected except for vertices of degree 3), H planar, G nonplanar, $H \leq_{t} G$.
Then either

- H +nonplanar jump $\leq_{t} G$, or
- $H+$ free cross $\leq_{t} G$.

LEMMA ABOUT NONPLANAR EXTENSIONS R,S,T

Let H, G be almost 4-connected (4-connected except for vertices of degree 3), H planar, G nonplanar, $H \leq_{t} G$.
Then either

- H +nonplanar jump $\leq_{t} G$, or
- $H+$ free cross $\leq_{t} G$.

BRANCH-WIDTH

A branch-decomposition of G is a ternary tree T with leaves the edges of G. Every $\alpha \in E(T)$ defines a separation of G; the order of α is the order of this separation. The width of T is the maximum order of its edges. The branch-width of $G, b w(G)$, is the minimum width of a branch-decomposition

A branch-decomposition of G is a ternary tree T with leaves the edges of G. Every $\alpha \in E(T)$ defines a separation of G; the order of α is the order of this separation. The width of T is the maximum order of its edges. The branch-width of $G, b w(G)$, is the minimum width of a branch-decomposition

- $b w(G) \leq 2 \Leftrightarrow G$ is series-parallel
- $b w(G) \leq 3 \Leftrightarrow$ no minor isomorphic to:
K_{5}, cube, octahedron, V_{8}
- $b w\left(G^{*}\right)=b w(G)$
- $\frac{2}{3} t w(G) \leq b w(G) \leq t w(G)+1$
- $b w(G)$ big $\Leftrightarrow G$ has a big grid minor

THEOREM Seymour, RT Branch-width of planar graphs

 can be computed in polynomial time.
THEOREM Seymour, RT Branch-width of planar graphs

 can be computed in polynomial time.PROOF Proof relies on

THEOREM Seymour, RT Branch-width of planar graphs can be computed in polynomial time.

PROOF Proof relies on
LEMMA $b w(G) \geq k \Leftrightarrow$ there exists an "antipodality" of range $\geq k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\geq k$).

THEOREM Seymour, RT Branch-width of planar graphs can be computed in polynomial time.

PROOF Proof relies on
LEMMA $b w(G) \geq k \Leftrightarrow$ there exists an "antipodality" of range $\geq k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\geq k$).

A game Ratcatcher vs. rat.

THEOREM Seymour, RT Branch-width of planar graphs can be computed in polynomial time.

PROOF Proof relies on
LEMMA $b w(G) \geq k \Leftrightarrow$ there exists an "antipodality" of range $\geq k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\geq k$).

A game Ratcatcher vs. rat. The ratcatcher carries a noisemaker of power k, and the rat will not move through any wall in which the noise level is too high.

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$
let X_{α} be the corresponding cutset.

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$ let X_{α} be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a linked branch-decomposition of width $b w(G)$:

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$ let X_{α} be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a linked branch-decomposition of width $b w(G)$:
If $\alpha, \beta \in E(T)$ and $\left|X_{\alpha}\right|=\left|X_{\beta}\right|=: k$, then either $\left|X_{\gamma}\right|<k$ for some γ between α and β, or there exist k disjoint paths between X_{α} and X_{β}.

