TREE-DECOMPOSITIONS OF GRAPHS II.

Robin Thomas

School of Mathematics Georgia Institute of Technology www.math.gatech.edu/~thomas

Two separations (A, B) and (C, D) do not cross if: $A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$.

Two separations (A, B) and (C, D) do not cross if: $A \subseteq C$ and $B \supseteq D$, or $A \subseteq D$ and $B \supseteq C$, or $A \supseteq C$ and $B \subseteq D$, or $A \supseteq D$ and $B \subseteq C$. A family of cross-free separations gives rise to a tree-decompositon.

A tree-decomposition of a graph G is (T, W), where T is a tree and $W = (W_t : t \in V(T))$ satisfies $(T1) \bigcup_{t \in V(T)} W_t = V(G)$, (T2) if $t' \in T[t, t'']$, then $W_t \cap W_{t''} \subseteq W_{t'}$, $(T3) \forall uv \in E(G) \exists t \in V(T)$ s.t. $u, v \in W_t$.

The width is $\max(|W_t| - 1 : t \in V(T))$.

The tree-width of G is the minimum width of a tree-decomposition of G.

A haven β of order k in G assigns to every $X \in [V(G)]^{<k}$ the vertex-set of a component of $G \setminus X$ such that (H) $X \subseteq Y \in [V(G)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X)$.

OBJECTIVE.

BACK TO MATHEMATICS

THEOREM (Seymour, RT) G has a haven of order $k \Leftrightarrow$ G has tree-with at least k - 1 THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k - 1

THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k - 1PROOF Assuming tree-width $\geq 3k - 2$. THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k-1PROOF Assuming tree-width $\geq 3k-2$. Choose a tree-decomposition (T, W) such that THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k - 1PROOF Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k - 1PROOF Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves (2) $|W_t \cap W_{t'}| \leq 2k - 1$ for every edge $tt' \in E(T)$ THEOREM (Seymour, RT) G has a haven of order $k \leftarrow G$ has tree-with at least k - 1PROOF Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves

(2) $|W_t \cap W_{t'}| \leq 2k - 1$ for every edge $tt' \in E(T)$

(3) # verts in bags of size $\geq 3k$ only is minimum

THEOREM (Seymour, RT) G has a haven of order $k \leftarrow$ G has tree-with at least k-1**PROOF** Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves (2) $|W_t \cap W_{t'}| \leq 2k-1$ for every edge $tt' \in E(T)$ (3) # verts in bags of size $\geq 3k$ only is minimum Suppose $|W_t| \geq 3k$ for some t. Then t is a leaf; let t' be its neighbor.

THEOREM (Seymour, RT) G has a haven of order $k \leftarrow$ G has tree-with at least k-1**PROOF** Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves (2) $|W_t \cap W_{t'}| \leq 2k-1$ for every edge $tt' \in E(T)$ (3) # verts in bags of size $\geq 3k$ only is minimum Suppose $|W_t| \geq 3k$ for some t. Then t is a leaf; let t' be its neighbor. If for every $X \subseteq V(G)$ of size $\langle k$ there is a component containing $\geq k$ vertices of $W_t \cap W_{t'}$, then let $\beta(X)$ be that component. Then β is a haven.

THEOREM (Seymour, RT) G has a haven of order $k \leftarrow$ G has tree-with at least k-1**PROOF** Assuming tree-width $\geq 3k - 2$. Choose a tree-decomposition (T, W) such that (1) $|W_t| \leq 3k - 1$ except for leaves (2) $|W_t \cap W_{t'}| \leq 2k-1$ for every edge $tt' \in E(T)$ (3) # verts in bags of size $\geq 3k$ only is minimum Suppose $|W_t| \geq 3k$ for some t. Then t is a leaf; let t' be its neighbor. If for every $X \subseteq V(G)$ of size $\langle k$ there is a component containing $\geq k$ vertices of $W_t \cap W_{t'}$, then let $\beta(X)$ be that component. Then β is a haven. So $\exists |X| < k \; \forall$ component of $G \setminus X$ contains < k vertices of $W_t \cap W_{t'}$. Then refine the tree-decomposition.

REMINDER: HOW TO USE A HAVEN

REMINDER A haven β of order k in D assigns to every $X \in [V(D)]^{< k}$ the vertex-set of a strong component of $D \setminus X$ such that

(H) $X \subseteq Y \in [V(D)]^{<k} \Rightarrow \beta(Y) \subseteq \beta(X).$

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q} , where \mathcal{P} joins A and B; $|\mathcal{Q}| >> |\mathcal{P}|$.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q} , where \mathcal{P} joins A and B; $|\mathcal{Q}| >> |\mathcal{P}|$. WMA $\forall e \in E(P_i)$ not in any Q_j there do not exist $|\mathcal{P}|$ disjoint A-B paths in $G \setminus e$.

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q} , where \mathcal{P} joins A and B; $|\mathcal{Q}| >> |\mathcal{P}|$. WMA $\forall e \in E(P_i)$ not in any Q_j there do not exist $|\mathcal{P}|$ disjoint A-B paths in $G \setminus e$. There exist large sets $\mathcal{P}' \subseteq \mathcal{P}$ and $\mathcal{Q}' \subseteq \mathcal{Q}$ such that either

- $V(P) \cap V(Q) = \emptyset \ \forall P \in \mathcal{P}' \ \forall Q \in \mathcal{Q}'$, or
- $V(P) \cap V(Q) \neq \emptyset \ \forall P \in \mathcal{P}' \ \forall Q \in \mathcal{Q}'.$

MAIN IDEA Two sets of disjoint paths: \mathcal{P} and \mathcal{Q} , where \mathcal{P} joins A and B; $|\mathcal{Q}| >> |\mathcal{P}|$. WMA $\forall e \in E(P_i)$ not in any Q_j there do not exist $|\mathcal{P}|$ disjoint A-B paths in $G \setminus e$. There exist large sets $\mathcal{P}' \subseteq \mathcal{P}$ and $\mathcal{Q}' \subseteq \mathcal{Q}$ such that either

- $V(P) \cap V(Q) = \emptyset \ \forall P \in \mathcal{P}' \ \forall Q \in \mathcal{Q}'$, or
- $V(P) \cap V(Q) \neq \emptyset \ \forall P \in \mathcal{P}' \ \forall Q \in \mathcal{Q}'.$

In the latter case get a $k \times k$ grid, where $k = |\mathcal{P}'|$. Let $p = |\mathcal{P}|$.

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \setminus \beta(X)$. In X find g^2 disjoint large sets X_1, X_2, \ldots , each connected by a disjoint subtree of T. Apply previous idea to X_i - X_j paths and X_p - X_q paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \setminus \beta(X)$. In X find g^2 disjoint large sets X_1, X_2, \ldots , each connected by a disjoint subtree of T. Apply previous idea to X_i - X_j paths and X_p - X_q paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint $\Rightarrow K_{q^2}$ minor

PROOF Take a haven β of large order. Pick X highly externally linked with a large binary tree T in $G \setminus \beta(X)$. In X find g^2 disjoint large sets X_1, X_2, \ldots , each connected by a disjoint subtree of T. Apply previous idea to X_i - X_j paths and X_p - X_q paths. Either we get a grid for some i, j, p, q, or we will make all the paths disjoint $\Rightarrow K_{q^2}$ minor $\Rightarrow g \times g$ grid minor.

THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least f(t) vertices has a minor isomorphic to D_t , M_t , O_t , or $K_{4,t}$.

THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least f(t) vertices has a minor isomorphic to D_t , M_t , O_t , or $K_{4,t}$. THEOREM (Ding, Oporowski, RT, Vertigan) Every internally 4-connected nonplanar graph on at least f(t)vertices has a minor isomorphic to D'_t , M_t , or $K_{4,t}$.

THEOREM (Oporowski, Oxley, RT) Every internally 4-connected graph on at least f(t) vertices has a minor isomorphic to D_t , M_t , O_t , or $K_{4,t}$. **THEOREM** (Ding, Oporowski, RT, Vertigan) Every internally 4-connected nonplanar graph on at least f(t)vertices has a minor isomorphic to D'_t , M_t , or $K_{4,t}$. **COROLLARY** (Ding, Oporowski, RT, Vertigan) There exists a constant c such that every minimal graph of crossing number at least two on at least c vertices belongs to a well-defined family of graphs.

- H+nonplanar jump $\leq_t G$, or
- H+free cross $\leq_t G$.

- H+nonplanar jump $\leq_t G$, or
- H+free cross $\leq_t G$.

- H+nonplanar jump $\leq_t G$, or
- H+free cross $\leq_t G$.

- H+nonplanar jump $\leq_t G$, or
- H+free cross $\leq_t G$.

BRANCH-WIDTH

A branch-decomposition of G is a ternary tree T with leaves the edges of G. Every $\alpha \in E(T)$ defines a separation of G; the order of α is the order of this separation. The width of T is the maximum order of its edges. The branch-width of G, bw(G), is the minimum width of a branch-decomposition A branch-decomposition of G is a ternary tree T with leaves the edges of G. Every $\alpha \in E(T)$ defines a separation of G; the order of α is the order of this separation. The width of T is the maximum order of its edges. The branch-width of G, bw(G), is the minimum width of a branch-decomposition

- $bw(G) \le 2 \Leftrightarrow G$ is series-parallel
- $bw(G) \leq 3 \Leftrightarrow$ no minor isomorphic to: K_5 , cube, octahedron, V_8
- $bw(G^*) = bw(G)$
- $\frac{2}{3} tw(G) \le bw(G) \le tw(G) + 1$
- bw(G) big $\Leftrightarrow G$ has a big grid minor

PROOF Proof relies on

PROOF Proof relies on

LEMMA $bw(G) \ge k \Leftrightarrow$ there exists an "antipodality" of range $\ge k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\ge k$).

PROOF Proof relies on

LEMMA $bw(G) \ge k \Leftrightarrow$ there exists an "antipodality" of range $\ge k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\ge k$).

A game Ratcatcher vs. rat.

PROOF Proof relies on

LEMMA $bw(G) \ge k \Leftrightarrow$ there exists an "antipodality" of range $\ge k$. (Roughly, it assigns to every edge e a non-null subgraph at distance $\ge k$).

A game Ratcatcher vs. rat. The ratcatcher carries a noisemaker of power k, and the rat will not move through any wall in which the noise level is too high.

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$ let X_{α} be the corresponding cutset.

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$ let X_{α} be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a linked branch-decomposition of width bw(G):

Menger property

Let T be a branch-decomposition of G. For $\alpha \in E(T)$ let X_{α} be the corresponding cutset.

THM Geelen, Gerards, Whittle Every graph G has a linked branch-decomposition of width bw(G): If $\alpha, \beta \in E(T)$ and $|X_{\alpha}| = |X_{\beta}| =: k$, then either $|X_{\gamma}| < k$ for some γ between α and β , or there exist kdisjoint paths between X_{α} and X_{β} .