
1 Dimension of lin(M)

Scribe: Sangho Shim, January 31, 2005

Exercise 1.1 (Homework Due Feb 7) Construct a graph G and a tight cut
C that is not of any of types listed among our examples of tight cuts.

Conjecture 1.2 Let D be a digraph and A a subset of V (D). An A-cycle is
a dicycle C in D such that V (C) ∩ A 6= ∅ 6= V (C) − A. Is there a function
f : N → N such that, for any k and D, D has either k disjoint A-cycles, or
a set X ⊂ V (D) of size ≤ f(k) such that D − X has no A-cycles.

Exercise 1.3 There exists a function g : N → N such that, for any graph
G and any k, G has either k disjoint cycles, or a set X ⊂ V (G) of size ≤ g(k)
such that G − X has no cycles. Moreover, g(k) = Θ(k log k).

Recall the linear hull lin(M) is the same as {x ∈ RE(G) : x(C) =
x(D), ∀ tight cuts C, D}, where M is the set of induced vectors of perfect
matchings.

Lemma 1.4 Let A be the incidence matrix of a connected graph G. Then

rank(A) = n − 1, if G is bipartite,

= n, otherwise,

where n = |V (G)|.

Let T be the incidence matrix of tight cuts vs edges. We observed

aff(M) = {x ∈ RE(G) : x(C) = 1 for ∀tight cut C} = {x : Tx = 1},

dim aff(M) = m − rank(T ),

where m = |E(G)|.

Corollary 1.5

dim lin(M) = dim aff(M) + 1

= m − rankT + 1.

Theorem 1.6 If G is a brick, then dim lin(M) = m − n + 1.
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Proof.

dim lin(M) = m − rank(T ) + 1 = m − rank(A) + 1

= m − n + 1

Lemma 1.7 If G is bipartite, then dim lin(M) = m − n + 2.

Proof. In a bipartite graph, the rows of T corresponding to trivial cuts
generate the row space of T . In other words, the characteristic vector of a
tight cut is a linear combination of characteristic vectors of trivial tight cuts.

Let (A, B) be the bipartition, and X ⊂ B and Y ⊂ A form a tight cut
C = δ(X ∪ Y ). Then we have |X| + 1 = |Y | and C = δ(Y ) − δ(X), or
|Y | + 1 = |X| and C = δ(X) − δ(Y ), and so, by symmetry, we may assume
the former. Assign +1 to X-vertices and −1 to Y -vertices, and notice that

1C =
∑

y∈Y

1δ(y) −
∑

x∈X

1δ(x).

Thus,

dim lin(M) = m − rank(T ) + 1

= m − rankA + 1

= m − (n − 1) + 1 = m − n + 2

Definition 1.8 Let C = δ(S) be a cut in a graph G. Let G1 be obtained
by identifying all vertices in S into a new vertex and let G2 be obtained by
identifying V (G)−S into a new vertex. We call G1, G2 the two C-contractions
of G.

Note that E(G1) ∪ E(G2) = E(G) and E(G1) ∩ E(G2) = C.

Lemma 1.9 Let G be 1-extendable, C a tight cut, and let G1, G2 be the two
C-contractions of G. Then

dim lin(M(G)) = dim lin(M(G1)) + dim lin(M(G2)) − |C|.
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Proof. Let Fi ⊂ M(Gi) be a basis for lin(M(Gi)), and F e
i = {F ∈ Fi : e ∈

F} for e ∈ C, i = 1, 2. Fix a perfect matching F e
i in F e

i for every e ∈ C.
It suffices to show the claim that

⋃

e∈C

{F ∪ F e
2 : F ∈ F e

1} ∪ {F e
1 ∪ F : F ∈ F e

2}

is a basis for lin(M(G)). Note that F e
1 ∪ F e

2 are counted twice.
To prove the claim, let’s show linear independence first. Suppose

∑

e∈C

∑

F∈Fe

1

λF1F∪F e

2
+

∑

e∈C

∑

F∈Fe

2
−{F e

2
}

µF1F e

1
∪F = 0. (1)

Restricted to E(G1) this gives

∑

e∈C

∑

F∈Fe

1

λF1F +
∑

e∈C





∑

F∈Fe

2
−{F e

2
}

µF



 1F e

1
= 0. (2)

Then λF = 0 for all F ∈ F e
1 − {F e

1 }. From (1) restricted to E(G2), we get

∑

e∈C





∑

F∈Fe

1

λF



 1F e

2
+

∑

e∈C

∑

F∈Fe

2
−{F e

2
}

µF1F = 0,

which implies µF = 0 for all F ∈ F e
2 − {F e

2 }. Now (2) implies λF = 0 for all
F ∈ F1. So we have the linearity.

It is a simple exercise that the set is spanning.

Exercise 1.10 Prove that the set is spanning.

By the tight cut decomposition of a graph G, we mean repeatedly re-
placing G by the two C-contractions of G for some tight cut C. At the end
we end up with a list of bricks and braces. Those are called the bricks and
braces of G.

Theorem 1.11 (Lovasz) The underlying simple graphs of the bricks and
braces resulting from a tight cut decomposition do not depend on the choice
of tight cuts made during the process.
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Proof. omitted.

Definition 1.12 A brick of a graph G is any brick B obtained at the end of
a tight cut decomposition of G.

Theorem 1.13 Let G be a connected 1-extendable graph. Then dim lin(M) =
m − n + 2 − b, where b is the number of bricks in a tight cut decomposition
of G.

Proof. By induction on E(G). If G has no tight cut, then it is a brick or
a brace, and the theorem follows from earlier results. Thus we may assume
that G has a tight cut, say C. Let G1 and G2 be the two C-contractions of
G, and let bi be the number of bricks in a tight cut decomposition of Gi. By
Theorem 1.6, Lemma 1.7, Lemma 1.9 and the induction hypothesis,

dim lim(M(G)) = dim lim(M(G1)) + dim lim(M(G2)) − |C|

= m(G1) − n(G1) + 2 − b1

+ m(G2) − n(G2) + 2 − b2

− |C|.

Note m(G1) + m(G2) − |C| = m(G) and n(G) = n(G1) + n(G2) − 2. Then,
we have

dim lim(M(G)) = m(G) − n(G) + 2 − b1 − b2 = m(G) − n(G) + 2 − b,

as desired.
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