1 Dimension of $\operatorname{lin}(\mathcal{M})$

Scribe: Sangho Shim, January 31, 2005

Exercise 1.1 (Homework Due Feb 7) Construct a graph G and a tight cut C that is not of any of types listed among our examples of tight cuts.

Conjecture 1.2 Let D be a digraph and A a subset of $V(D)$. An A-cycle is a dicycle C in D such that $V(C) \cap A \neq \emptyset \neq V(C)-A$. Is there a function $f: N \rightarrow N$ such that, for any k and D, D has either k disjoint A-cycles, or a set $X \subset V(D)$ of size $\leq f(k)$ such that $D-X$ has no A-cycles.

Exercise 1.3 There exists a function $g: N \rightarrow N$ such that, for any graph G and any k, G has either k disjoint cycles, or a set $X \subset V(G)$ of size $\leq g(k)$ such that $G-X$ has no cycles. Moreover, $g(k)=\Theta(k \log k)$.

Recall the linear hull $\operatorname{lin}(\mathcal{M})$ is the same as $\left\{x \in R^{E(G)}: x(C)=\right.$ $x(D), \forall$ tight cuts $C, D\}$, where \mathcal{M} is the set of induced vectors of perfect matchings.

Lemma 1.4 Let A be the incidence matrix of a connected graph G. Then

$$
\begin{aligned}
\operatorname{rank}(A) & =n-1, \text { if } G \text { is bipartite, } \\
& =n, \text { otherwise, }
\end{aligned}
$$

where $n=|V(G)|$.
Let T be the incidence matrix of tight cuts vs edges. We observed

$$
\begin{aligned}
\operatorname{aff}(\mathcal{M}) & =\left\{x \in R^{E(G)}: x(C)=1 \text { for } \forall \text { tight cut } C\right\}=\{x: T x=\mathbf{1}\}, \\
\operatorname{dim} \operatorname{aff}(\mathcal{M}) & =m-\operatorname{rank}(T)
\end{aligned}
$$

where $m=|E(G)|$.

Corollary 1.5

$$
\begin{aligned}
\operatorname{dim} \operatorname{lin}(\mathcal{M}) & =\operatorname{dim} \operatorname{aff}(\mathcal{M})+1 \\
& =m-\operatorname{rank} T+1
\end{aligned}
$$

Theorem 1.6 If G is a brick, then $\operatorname{dim} \operatorname{lin}(\mathcal{M})=m-n+1$.

Proof.

$$
\begin{aligned}
\operatorname{dim} \operatorname{lin}(\mathcal{M}) & =m-\operatorname{rank}(T)+1=m-\operatorname{rank}(A)+1 \\
& =m-n+1
\end{aligned}
$$

Lemma 1.7 If G is bipartite, then $\operatorname{dim} \operatorname{lin}(\mathcal{M})=m-n+2$.
Proof. In a bipartite graph, the rows of T corresponding to trivial cuts generate the row space of T. In other words, the characteristic vector of a tight cut is a linear combination of characteristic vectors of trivial tight cuts.

Let (A, B) be the bipartition, and $X \subset B$ and $Y \subset A$ form a tight cut $C=\delta(X \cup Y)$. Then we have $|X|+1=|Y|$ and $C=\delta(Y)-\delta(X)$, or $|Y|+1=|X|$ and $C=\delta(X)-\delta(Y)$, and so, by symmetry, we may assume the former. Assign +1 to X-vertices and -1 to Y-vertices, and notice that

$$
\mathbf{1}_{C}=\sum_{y \in Y} \mathbf{1}_{\delta(y)}-\sum_{x \in X} \mathbf{1}_{\delta(x)} .
$$

Thus,

$$
\begin{aligned}
\operatorname{dim} \operatorname{lin}(\mathcal{M}) & =m-\operatorname{rank}(T)+1 \\
& =m-\operatorname{rank} A+1 \\
& =m-(n-1)+1=m-n+2
\end{aligned}
$$

Definition 1.8 Let $C=\delta(S)$ be a cut in a graph G. Let G_{1} be obtained by identifying all vertices in S into a new vertex and let G_{2} be obtained by identifying $V(G)-S$ into a new vertex. We call G_{1}, G_{2} the two C-contractions of G.

Note that $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G)$ and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=C$.
Lemma 1.9 Let G be 1-extendable, C a tight cut, and let G_{1}, G_{2} be the two C-contractions of G. Then

$$
\operatorname{dim} \operatorname{lin}(\mathcal{M}(G))=\operatorname{dim} \operatorname{lin}\left(\mathcal{M}\left(G_{1}\right)\right)+\operatorname{dim} \operatorname{lin}\left(\mathcal{M}\left(G_{2}\right)\right)-|C| .
$$

Proof. Let $\mathcal{F}_{i} \subset \mathcal{M}\left(G_{i}\right)$ be a basis for $\operatorname{lin}\left(\mathcal{M}\left(G_{i}\right)\right)$, and $\mathcal{F}_{i}^{e}=\left\{F \in \mathcal{F}_{i}: e \in\right.$ $F\}$ for $e \in C, i=1,2$. Fix a perfect matching F_{i}^{e} in \mathcal{F}_{i}^{e} for every $e \in C$.

It suffices to show the claim that

$$
\bigcup_{e \in C}\left\{F \cup F_{2}^{e}: F \in \mathcal{F}_{1}^{e}\right\} \cup\left\{F_{1}^{e} \cup F: F \in \mathcal{F}_{2}^{e}\right\}
$$

is a basis for $\operatorname{lin}(\mathcal{M}(G))$. Note that $F_{1}^{e} \cup F_{2}^{e}$ are counted twice.
To prove the claim, let's show linear independence first. Suppose

$$
\begin{equation*}
\sum_{e \in C} \sum_{F \in \mathcal{F}_{1}^{e}} \lambda_{F} \mathbf{1}_{F \cup F_{2}^{e}}+\sum_{e \in C} \sum_{F \in \mathcal{F}_{2}^{e}-\left\{F_{2}^{e}\right\}} \mu_{F} \mathbf{1}_{F_{1}^{e} \cup F}=\mathbf{0} . \tag{1}
\end{equation*}
$$

Restricted to $E\left(G_{1}\right)$ this gives

$$
\begin{equation*}
\sum_{e \in C} \sum_{F \in \mathcal{F}_{1}^{e}} \lambda_{F} \mathbf{1}_{F}+\sum_{e \in C}\left(\sum_{F \in \mathcal{F}_{2}^{e}-\left\{F_{2}^{e}\right\}} \mu_{F}\right) \mathbf{1}_{F_{1}^{e}}=\mathbf{0} \tag{2}
\end{equation*}
$$

Then $\lambda_{F}=0$ for all $F \in \mathcal{F}_{1}^{e}-\left\{F_{1}^{e}\right\}$. From (1) restricted to $E\left(G_{2}\right)$, we get

$$
\sum_{e \in C}\left(\sum_{F \in \mathcal{F}_{1}^{e}} \lambda_{F}\right) \mathbf{1}_{F_{2}^{e}}+\sum_{e \in C} \sum_{F \in \mathcal{F}_{2}^{e}-\left\{F_{2}^{e}\right\}} \mu_{F} \mathbf{1}_{F}=\mathbf{0}
$$

which implies $\mu_{F}=0$ for all $F \in \mathcal{F}_{2}^{e}-\left\{F_{2}^{e}\right\}$. Now (2) implies $\lambda_{F}=0$ for all $F \in \mathcal{F}_{1}$. So we have the linearity.

It is a simple exercise that the set is spanning.

Exercise 1.10 Prove that the set is spanning.
By the tight cut decomposition of a graph G, we mean repeatedly replacing G by the two C-contractions of G for some tight cut C. At the end we end up with a list of bricks and braces. Those are called the bricks and braces of G.

Theorem 1.11 (Lovasz) The underlying simple graphs of the bricks and braces resulting from a tight cut decomposition do not depend on the choice of tight cuts made during the process.

Proof. omitted.
Definition 1.12 A brick of a graph G is any brick B obtained at the end of a tight cut decomposition of G.

Theorem 1.13 Let G be a connected 1-extendable graph. Then $\operatorname{dim} \operatorname{lin}(\mathcal{M})=$ $m-n+2-b$, where b is the number of bricks in a tight cut decomposition of G.
Proof. By induction on $E(G)$. If G has no tight cut, then it is a brick or a brace, and the theorem follows from earlier results. Thus we may assume that G has a tight cut, say C. Let G_{1} and G_{2} be the two C-contractions of G, and let b_{i} be the number of bricks in a tight cut decomposition of G_{i}. By Theorem 1.6, Lemma 1.7, Lemma 1.9 and the induction hypothesis,

$$
\begin{aligned}
\operatorname{dim} \lim (\mathcal{M}(G)) & =\operatorname{dim} \lim \left(\mathcal{M}\left(G_{1}\right)\right)+\operatorname{dim} \lim \left(\mathcal{M}\left(G_{2}\right)\right)-|C| \\
& =m\left(G_{1}\right)-n\left(G_{1}\right)+2-b_{1} \\
& +m\left(G_{2}\right)-n\left(G_{2}\right)+2-b_{2} \\
& -|C|
\end{aligned}
$$

Note $m\left(G_{1}\right)+m\left(G_{2}\right)-|C|=m(G)$ and $n(G)=n\left(G_{1}\right)+n\left(G_{2}\right)-2$. Then, we have

$$
\operatorname{dim} \lim (\mathcal{M}(G))=m(G)-n(G)+2-b_{1}-b_{2}=m(G)-n(G)+2-b
$$

as desired.

