
Discrete Mathematics 256 (2002) 129–136
www.elsevier.com/locate/disc

Containment orders for similar ellipses with a common
center

P.C. Fishburna ;∗, W.T. Trotterb
aInformation Sciences Research Centre, AT&T Labs-Research, Room C227,

180 Park Avenue, Florham Park, NJ 07932, USA
bArizona State University, Tempe, AZ 85287, USA

Received 13 July 1999; received in revised form 18 May 2000; accepted 30 May 2000

Abstract

Every .nite two-dimensional partially ordered set has an inclusion representation by similar
noncircular ellipses centered at the origin. The representing ellipses have the same ratio r of
minor axis length to major axis length, and any r ∈ (0; 1) can be used for the representation.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A .nite irre7exive poset (partially ordered set) P = (X;≺) has an inclusion repre-
sentation by circular disks centered at the origin (0; 0)∈R2 if and only if ≺ on X is a
weak order, i.e., if and only if the symmetric complement ∼ of ≺, de.ned by u ∼ v if
neither u ≺ v nor v ≺ u, is an equivalence relation. The representation maps equivalent
points in X into the same circular disk, and the disk for u has a smaller radius than
the disk for v if and only if u ≺ v.

Weak orders constitute a small subset of the family of posets of order dimension [2]
1 or 2, where dim(P)6 2 if ≺ equals the intersection of not necessarily di=erent linear
orders ¡1 and ¡2 on X . Our purpose is to show that the circular result of the preceding
paragraph changes dramatically when we allow inclusion representations by similar
noncircular ellipses centered at the origin. In particular, every .nite two-dimensional
poset has such an inclusion representation, and this is true for every family of similar
ellipses that are not circular disks. A precise statement of our main result follows
shortly. A survey of other geometric inclusion representations of posets is given in [4].
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Two ellipses in R2 are similar if one can be obtained from the other by translation,
rotation, and uniform rescaling. In other words, ellipses E and E′ are similar if both
are circular disks, or if neither is circular and they have the same ratio r ¡ 1 of minor
axis length to major axis length. For each 0¡r¡ 1 let E(r) denote the set of all
planar ellipses with minor to major axis length ratio r, and let E0(r) be the subset of
E(r) whose members are centered at the origin.

Theorem 1. Suppose P = (X;≺) is a ;nite poset with dim(P) 6 2, and 0¡r¡ 1.
Then there is a map f : X → E0(r) such that, for all u; v ∈ X ,

u ≺ v ⇔ f(u) ⊂ f(v): (1)

Theorem 1 is proved in the next two sections. It is remarkable that the conclusion
obviously fails for circular disks, but holds for every other origin-centered family of
similar ellipses, even those with r arbitrarily near 1. We also remark that, when r ¡ 1
is .xed, each member of E0(r) is fully determined by the length and slope of its
major axis. It then follows from the degrees-of-freedom theorem in Alon and Schein-
erman [1] that for every r ∈ (0; 1) there are .nite three-dimensional posets that are not
inclusion-representable by ellipses in E0(r).

In contrast to the situation for E0(r), the picture for E(r), where centers are un-
restricted, is unclear. We know [3] that some .nite three-dimensional posets are not
inclusion-representable by circular disks, but do not know if this is true also for similar
noncircular ellipses. Our ignorance on the matter along with Theorem 1 suggests the
following two-part question for further research.

Question: Is every .nite three-dimensional poset inclusion-representable by el-
lipses in E(r) for some r? If so, does the existence of such a representation
depend on r in any way other than 0¡r¡ 1?

2. Key lemma

The next section describes a scheme for positioning right-hand major axis endpoints
of ellipses in E0(r) for any .nite two-dimensional poset that will con.rm (1) when
a special angle � of the scheme is suitably small. The present section proves a key
lemma that will be used to analyze the scheme. We assume throughout that 0¡r¡ 1
and let

�= r2:

Lemma 2. Suppose E1 and E2 are ellipses in E0(r) with major semi-axis lengths of l1
and l2, respectively, and with angle � ∈ (0; �=4) between their major axes. If E2 ⊂ E1

and the two touch at boundary points, then(
l2
l1

)2

= 1− (1− �)sin �
2�

[
√
(1− �)2 sin2 �+ 4�− (1− �)sin �]:
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Fig. 1. Containment with touching points.

In proving this, we let �= l2=l1 or, with no loss of generality, let l1 = 1 and l2 = �.
We assume also, with no loss of generality, that E1’s major axis lies on the abscissa
and E2’s major axis makes an angle � counterclockwise from the positive abscissa.
We assume further that E2 ⊂ E1 and that the two touch at their boundaries. The upper
touching point, where the boundary tangents are equal, is denoted by q: see Fig. 1.
Our task is to show that �2 equals the right-hand side of the equation in Lemma 2.
The boundary equation of E1 is x2 + y2=r2 = 1, or

�x2 + y2 = �;

and the boundary equation of E2 is

�(x cos �+ y sin �)2 + (y cos �− x sin �)2 = ��2

with 0¡�¡ 1. We solve these for y in the vicinity of q:

y = r
√

1− x2; (2)

y = [x(1− �)cos � sin �+ r
√
�2R− x2]=R; (3)

where R= �+ (1− �)cos2 �.

Point q is determined by two equations. The .rst equation says that q lies on both
boundaries, so we equate the right-hand sides of (2) and (3) to get

Rr
√
1− x2 = x(1− �)cos � sin �+ r

√
�2R− x2: (4)

The second, for tangency, says that dy=dx for (2) equals dy=dx for (3). Di=erentiation
gives

dy=dx =−rx=
√

1− x2; (2′)

dy=dx = [(1− �)cos � sin �− rx=
√
�2R− x2]=R: (3′)

So we equate the right-hand sides of (2′) and (3′) to get

Rrx=
√
1− x2 = rx=

√
�2R− x2 − (1− �)cos � sin �: (5)

We now solve (4) and (5) for the � terms. Let

S = (1− �)cos � sin �=r:
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Then (4) and (5) rewritten are√
�2R− x2 = R

√
1− x2 − Sx (4)

√
�2R− x2 =

x
√
1− x2

Rx + S
√
1− x2

: (5)

By equating the right-hand sides here, we obtain

(R
√
1− x2 − Sx)(Rx + S

√
1− x2) = x

√
1− x2: (6)

In addition, multiplication of (4) and (5) rewritten gives

�2R− x2 =
(R
√
1− x2 − Sx)x

√
1− x2

Rx + S
√
1− x2

;

which reduces to �2 = x=(Rx + S
√
1− x2) or, using (6), to

�2 = R− Sx√
1− x2

= �+ (1− �)cos2 �− Sx√
1− x2

: (7)

We complete the derivation of �2 by assessing x=
√
1− x2. By (6),

RS(1− 2x2) = x
√

1− x2(1 + S2 − R2): (8)

We solve this for x2, but before doing this, we note that 1¿R2 ⇒ 1 + S2 − R2¿ 0,
so (8) requires x2¡ 1

2 , or x¡ 0:707 : : : for point q. More speci.cally,

1 + S2 − R2 = S2 + (1 + R)(1− R)

= S2 + [(1 + �) + (1− �)cos2 �][(1− �)− (1− �)cos2 �]

= (1− �)2 cos2 � sin2 �=�+ (1− �) sin2 �[(1 + �) + (1− �)cos2 �]

=
(
1− �
�

)
[(1− �)cos2 � sin2 �+ �(1+ �) sin2 �+ �(1− �)cos2 � sin2 �]

=
(1− �)(1 + �)sin2 �

�
[�+ (1− �)cos2 �]

=
(1− �2)(sin2 �)R

�
;

so, in addition,

RS
1 + S2 − R2 =

[
�

(1− �2)sin2 �

]
(1− �)cos � sin �

r

=
r cos �

(1 + �)sin �
: (9)

Let

v= x2;

A= (RS)2;

B= (1 + S2 − R2)2
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and square both sides of (8) to get

v2(4A+ B)− v(4A+ B) + A= 0:

Because x2¡ 1
2 , we use the − sign of the quadratic solution for v to obtain

v= x2 =
4A+ B−

√
(4A+ B)2 − 4A(4A+ B)
2(4A+ B)

=
1
2

(
1− 1 + S2 − R2

√
4A+ B

)
:

By (8), the result just derived, and (9), we have
√
1− x2

x
=

RS
1 + S2 − R2

(
1
x2

− 2
)

=
(

RS
1 + S2 − R2

)
2(1 + S2 − R2)√

4(RS)2 + (1 + S2 − R2)2 − (1 + S2 − R2)

=
2RS=(1 + S2 − R2)√

4(RS)2=(1 + S2 − R2)2 + 1− 1

=
2r cos �=[(1 + �)sin �]√

4� cos2 �=(1 + �)2 sin2 �+ 1− 1

=
2r cos �√

4� cos2 �+ (1 + �)2 sin2 �− (1 + �)sin �

=
2r cos �√

(1− �)2 sin2 �+ 4�− (1 + �)sin �
: (10)

Using (10), it follows from (7) that

�2 = �+(1−�)cos2 �−
[
(1−�)cos � sin �

r

]

√

(1− �)2 sin2 �+ 4�− (1 + �)sin �

2r cos �




= �+ (1− �)cos2 �− (1− �)sin �
2�

[
√
(1− �)2 sin2 �+ 4�− (1 + �)sin �]

=
2�2 + 2�(1− �)cos2 �+ (1− �2)sin2 �− (1− �) sin �

√
(1− �)2 sin2 �+ 4�

2�

=
2�+ (1− �)2 sin2 �− (1− �)sin �

√
(1− �)2 sin2 �+ 4�

2�

= 1− (1− �)sin �
2�

[
√
(1− �)2 sin2 �+ 4�− (1− �)sin �]:

This completes the proof of Lemma 2.
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3. Proof of Theorem 1

Let

Pm = ({1; 2; : : : ; m}2;¡0);

with

(i; j)¡0 (k; l) if (i 6 k; j 6 l; i + j¡k + l):

It is easily seen that every .nite P=(X;≺) with dim(P)6 2 is isomorphic to an induced
subset of Pm for some m, so it suLces to prove Theorem 1 for Pm with m ∈ {2; 3; : : :}.

Our proof for Pm uses a partial nesting of ellipses in E0(r) that are determined
by their right-hand major axis endpoints, which lie on, above, or below the positive
abscissa. The designated endpoint for the ellipse assigned to (i; j) ∈ {1; 2; : : : ; m}2 is
denoted by E(i; j). The proof uses two basic rules for locating the E(i; j). First, all
E(i; j) with the same value of i + j lie on the same circle centered at the origin. The
radii of these circles increase as i+ j increases, so the ellipse for i+ j is smaller than
that for k + l if i + j¡k + l. Second, all E(i; j) with the same value of j − i lie
on the same ray emanating from the origin. The angle between the positive abscissa
and the ray for constant j − i is (j − i)�, where � is a small positive angle, so the
E(i; j) are clustered around the positive abscissa. Those with i= j lie on the abscissa.
When j′ − i′ = j − i and i¡ i′, we have j¡ j′ and (i; j)¡0 (i′; j′), and the ellipse
for (i; j) lies inside the ellipse for (i′; j′). The delicate part of the proof is to choose
� and the radii of the circles that contain the E(i; j) so that E(i; j) is properly inclu-
ded in E(k; l) if and only if (i; j)¡0 (k; l). We now consider the details of the
construction.
Let � be a small angle with 0¡m�¡ �=4. Given � and �= r2, de.ne �¿ 0 by the

equation of Lemma 2 when �= �, i.e.,

�2 = 1− (1− �)sin �
2�

[
√
(1− �)2 sin2 �+ 4�− (1− �)sin �]: (11)

We then take E(i; j) as the point at distance �2m−i−j from the origin on the ray from
the origin at angle (j − i)� with the positive abscissa. As noted above, all E(i; j)
with the same j − i are on the same ray (above the abscissa if j¿ i, below if j¡ i),
and all E(i; j) with the same i + j lie on the circle of radius �2m−i−j centered at the
origin.
Let Eij denote the ellipse assigned to (i; j). Fig. 2 illustrates the right halves of

Ej−1; j+1, Ejj, and Ej−1; j. By the de.nition of � and Lemma 2, Ej−1; j is as large as
possible within the intersection of Ej−1; j+1 and Ejj. The boundary of Ej−1; j touches the
upper boundary of Ejj at q and touches the lower boundary of Ej−1; j+1 at q′. A similar
picture, unique up to rotation around the origin and uniform rescaling, applies to every
triple (Ei−1; j+1; Eij; Ei−1; j), with Ei−1; j as large as possible within Ei−1; j+1 ∩ Eij.
To satisfy the inclusion representation of Theorem 1 for Pm, we need

(i; j)¡0 (k; l) ⇔ Eij ⊂ Ekl (12)
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Fig. 2. Ej−1; j ⊂ Ej−1; j+1 ∩ Ejj , snugly.

for all distinct (i; j), (k; l) ∈ {1; 2; : : : ; m}2. The ⇒ part of (12) follows from our
construction and transitivity: if k= i+a, l= j+b, a¿ 0; b¿ 0 and a+b¿ 1, then a
sequence of unit increases in the indices gives Eij ⊂ · · · ⊂ Ei+a; j+b. This part of (12)
is insensitive to �, but it may be necessary to make � very small to ensure all desired
noninclusions.
Some noninclusions demanded by (12) are obvious, as when i+ j= k + l, or when

i+ j= k + l− 1 and |i− k|¿ 2. The analytically most sensitive occur between Ei+1;1

and Ei;m, and between E1; i+1 and Em;i. In fact, if E1; i+1 �⊂ Em;i for i = 1; 2; : : : ; m − 1,
then Ei+1;1 �⊂ Ei;m by symmetry, and all other noninclusions required for (12) are
valid. Moreover, the scaling aspects of our construction imply that if E1; i+1 �⊂ Em;i for
one i, then it is true for every i. Hence to complete the proof, it suLces to show that
if �¿ 0 is suLciently small then

E12 �⊂ Em1: (13)

Let n=m− 2. The angle between the major axes of E12 and Em1 is �− (1−m)�=
(n + 2)�, and the square of the ratio of the major semi-axis length of E12 to that of
Em1 is

[�2m−3=�2m−m−1]2 = (�2)n:

Let E0 denote the ellipse in E0(r) whose major axis is collinear with the major axis
of E12 and whose boundary touches the boundary of Em1 above the major axis of Em1
at point q0 with E0 ⊆ Em1. By Lemma 2 with �= (n+ 2)�, the square of the ratio of
the major semi-axis length of E0 to that of Em1 is

 2 = 1− (1− �)sin[(n+ 2)�]
2�

×
{√

(1− �)2 sin2[(n+ 2)�] + 4�− (1− �)sin[(n+ 2)�]
}
:

It follows that E12 �⊂ Em1 if and only if  2¡ (�2)n, for then the major semi-axis length
of E12 is greater than that of E0, so a segment of E12 lies outside and above Em1 near
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q0. We conclude that (13) holds if and only i=

1− (1− �)sin[(n+2)�]
2�

{√
(1− �)2 sin2[(n+2)�] + 4�− (1− �)sin[(n+2)�]

}

¡
{
1− (1− �)sin �

2�
[
√
(1− �)2 sin2 �+ 4�− (1− �)sin �]

}n

: (14)

We complete the proof of Theorem 1 by noting that (14) holds when � is near 0.
Fix n and �, 0¡�¡ 1, and let

t = sin �:

When (n+ 2)�=� is near zero, we have

sin[(n+ 2)�] = (n+ 2− "0)t;√
(1− �)2 sin2[(n+ 2)�] + 4�− (1− �)sin[(n+ 2)�] = 2r − "1;

√
(1− �)2 sin2 �+ 4�− (1− �)sin �= 2r − "2;

where the "i are positive and approach 0 as � → 0. Because the "i can be made
vanishingly small in comparison to the .xed terms they are subtracted from, i.e., n+2
and 2r, we approximate the left-hand side of (14) by

1− (1− �)(n+ 2)t
r

(15)

and the right-hand side of (14) by{
1− (1− �)t

r

}n

: (16)

Binomial expansion of (16) gives

1− (1− �)nt
r

+
n∑

k=2

(−1)k
(
n
k

)[
(1− �)t

r

]k
;

and, by taking n(1− �)t=r near 0 with small �, we can ensure that
∑n

2 is negligible in
comparison to (1− �)nt=r. In summary, (14) can be rewritten as

− (1− �)(n+ 2)t
r

+ "3¡− (1− �)nt
r

+ "4;

where "i=[(1 − �)nt=r] → 0 as � → 0 for i = 3; 4, and it follows that (14) holds for
suitably small �.
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