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theory, tunctional analysis, and nonrelativisioc quantum mechamcs (partcularly Schridimger operators),
including the connections to atomic and molecular physics. More particularly. his work has focused on
broad areas of mathematical physics and analysis covering: quantum field theory, statistical mechanics,
Brownian motion, random matrix theory, general nonrelativistic quantum mechanics (including N-body
systems and resonances), nonrelativistic quantum mechanics in electric and magnetic felds, the semi-classical
limit, the singular continuous spectrum, random and ergodic Schridinger operators, orthogonal
polynomials, and non-selfadjoint spectral theory.

Professor Simon has authored more than 300 publications on mathematics and physics. A brilliant student,
Simon became a Putnam Fellow in 1965 at 19 vears old. He received his AB. in 1966 from Harvard College
and his Ph.D. in Physics at Princeton University in 1970, Following his doctoral studies, D, Simon took
professorship at Princeton for many years, often working with colleague Elliott H. Liek on the
Thomas-Fermi Theory and Hartree-Fock Theory of atoms in addiiion to phase transitions and mentoring
many of the same students as Lieb. He eventually was persuaded to take a post at Caltech, a post he currently
holds. His status is legendary in mathematical physics and he is renowned for his ability to write scientific
manuscripts "in five percent of the time ordinary mortals need to write such papers.”

A colleague of his. in a tale revealing of his brilliance, once stated:

Barry has always been remarkable for his vast knowledge of mathematics, so it was many vears before
I can recall ever telling him a published theorem he didn't already know. One dav I saw Barry in
Princeton shortly after a meeting and told him about an old inequality for PDE=, which, as I could tell
fromm has intent look, was new o hime T said, "It seems to be useful. Do you want to see the proof?" His
response "No, that's OK." Then he went to the board and wrote down a flawless proof on the spot.

There 15 a similar account of how the mathematical physics seminars at Princeton were conducted while
Simon was in residence.

There was an outside speaker most of the tme. Wigner would usually show up and ask his typical
"Wignerian" guestions. Barry would sit in the audience and write a paper. From time to time he would
look up from his notes and ask a question that would unsettle most speakers: Someone in the andience
seemed o know more about what he was talking about than himself. Sometimes, at the end of the talk,
Barry would go to the board and give his version of the proof, which was always slick.

Quotes

"To first approximation., the human brain is a harmonic oscillator.”



Danke vielmals, danke schon,
Fritz!




Peter 1n healthier times. Get well soon!
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and the foundations of time-dependent perturbation theory.
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The time-independent perturbation theory in non-relativistic quantum theory has
been on a firm mathematical footing since the well-known work of Rellich and Kato.
The corresponding time-dependent perturbation theory is not so well founded. There
are questions even about the precise nature of the guantity whose calculation the
theory should permit. In a substantial introduction the author reviews various
approaches to the theory, with references to the physics literature. The scope of the
theory is described with reference to a "physically realistic™ model of the helium atom
and includes the theory of resonances, scattering and autgionising states. The author
identifies two main approaches to the problem: the Friedrichs-Howland approach, in
which the resonance energy is viewed as a pole of a certain resoclvent, and a second
approach, associated with the names of Livs\u\i ¢ and Grossmann {(see the review of
the paper by C. L. Dolph [Bull. Amer. Math. Soc. 67 [(1961), 1--69; MR0142219 (25
"E56121]), in which the resonance energies are viewed as eigenvalues of a
non-self-adjoint operator associated in some way with the self-adjoint operator (the
Hamiltonian) of interest. A synthesis of these two approaches is proposed to provide
a rigorous time-dependent theory for the restricted class of systems mentioned in the
title. The potentials considered here are, however, sufficiently general to include
certain power-law potentials [$\gamma™{-\alpha}{0<\alpha=< {\textstyle\frac
3923115, including the Coulomb potentials], Yukawa potentials
f[hgamma™{-1}re*{-urkip=01]%, and Yukawian potentials
$lhoamma™{-1int_{m_0}*\infty e™{-mr}\dp(m} (m_0=0)}%, s\inth,dp<\infty]$,
and are more precisely characterised in an appendix.




1. Schlagheck P, Paul T
Complex-scaling approach to the decay of Bose-Einstein condensates
PHYSICAL REVIEW A 73 (2): Art. No. 023619 FEB 2006

Times Cited: O
Context Sensitive Links View full text from the publisher American Physical Society
2. Prodan E, Garcia SR, Putinar M

Norm estimates of complex symmetric operators applied to quantum systems
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 39 (2): 389-400 JAN 13 2006
Times Cited: O
Context Sensitive Links
3. Jensen A, Nenciu G
The Fermi Golden Rule and its form at thresholds in odd dimensions
COMMUNICATIONS IN MATHEMATICAL PHYSICS 261 (3): 693-727 FEB 2006

Times Cited: 0
Context Sensitive Links View full text from the publisher Springer Verlag
4. Lefebvre R, Sindelka M, Moiseyev N

Resonance positions and lifetimes for flexible complex absorbing potentials
PHYSICAL REVIEW A 72 (5): Art. No. 052704 NOV 2005

Times Cited: 0
Context Sensitive Links View full text from the publisher American Physical Society
5. Sajeev Y, Santra R, Pal S

Correlated complex independent particle potential for calculating electronic resonances
JOURNAL OF CHEMICAL PHYSICS 123 (20): Art. No. 204110 NOV 22 2005

Times Cited: O
Context Sensitive Links View full text from the publisher American Institute of Physics
6. Moiseyev N, Cederbaum LS

Resonance solutions of the nonlinear Schrodinger equation: Tunneling lifetime and fragmentation of trapped
PHYSICAL REVIEW A 72 (3): Art. No. 033605 SEP 2005

Times Cited: 1
Context Sensitive Links View full text from the publisher American Physical Society
7. Yeager DL, Mishra MK

Algebraic modifications to second quantization for non-Hermitian complex scaled Hamiltonians with applicai
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 104 (6): 871-879 SEP 20 2005

Tirmnac Citad- N



Physical mechanisms for
quantum resonance

e Shape resonance (Alpha emission)/Stark
effect - confinement of a particle by a
barrier, through which tunneling occurs.

e Dissolving of embedded eigenvalues by a
small perturbation. Auger effect.



From Simon 1973:

“The goals of the time-dependent
theory are much more ambitious
than merely proving certain
eigenvalues dissolve. The time--
dependent theory 1s supposed to
compute a characteristic lifetime =,
for the decay of a state ... It turns
out to be a very hard problem to
define the lifetime directly.”



1. What is the definition of a resonance energy?
2. Is there a “resonance state.” and how is it defined?
3. How can the resonance energy be calculated?

4. How can the time-decay of a resonance be quantified?



The first resonances defined as
complex eigenvalues associated
with a radiation condition

Quiz: who and when?



J.J. Thomson, 1884



The evidence: J.J. Thomson, 1884




Why did physicists adopt the
Schrodinger theory?



Why did physicists adopt the
Schrodinger theory?




PICTURE OF
SCHRODINGER EMOVED

Quantisierung als Eigenwertproblem. (Dritte Mitteilung.), Ann. Physik, 1926.



PICTURE OF STARK REMOVED,
(PERMISSION REFUSED BY
DEUTSCHES MUSEUM)

elffect
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Both published in 1913, different experimental techniques.



One of Stark’s measurements. Ann. der Phys. 5 (1929), p. 1016.




Proper Values (Part I11)

PERTURBATION THEORY, WITH APPLICATION TO THE STARK EFFECT
: OF THE BALMER LINES

{Annalen der Physik (4), vol, 80, 1926)
Introduction, Abstract

As has already been mentioned at the end of the preceding paper,
the available range of application of the proper value theory can by
comparatively elementary methods be considerably increased beyond
the ““ directly soluble problems”™; for proper values and functions
can readily be approximately determined for sueh houndary value
problems as are sufficiently closely related to a directly soluble
problem, In analogy with ordinary mechanics, let us call the method
in question the perfurbation method. It is based upon the important
property of comtinuily possessed by proper values and functions,?
principally, for our purpose, upon their continuous dependence on
the coefficients of the differential equation, and less upon the extent
of the domain and on the boundary conditions, since m our case the
domain (“ entire g-space ) and the boundary conditions (' remaining
finite '} are generally the same for the unperfurbed and perturbed
probiems.

The method is essentially the same as that used by Lord Rayleigh
in investigating ® the vibrations of a string with small inhomogencifies
in his Theory of Sound (2nd edit., vol. i., pp. 115-118, London, 1894).
This was a particularly simple case, as the differential equation of
the unperturbed problem: had constani coefficients, and only the per-
turbing terms were arbitrary functions along the string, A complete
generalisation is possible not merely with regard to these points, but
also for the specially important case of several independent variables,
i.e. for partial differential equations, in which muliiple proper values
appear in the unperturbed problem, and where the addition of a

1 Last two paragraphs of Part IL
2 Mamma vk Hilhert rhar ol 88D 4 v RRT7
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Some little problems with
Schrodinger’s analysis



Some little problems with
Schrodinger’s analysis

* The Stark Hamiltonian has no eigenvalues
at all, as soon as k >0 (Titchmarsh 1951;
Avron-Herbst 1977).



Some little problems with
Schrodinger’s analysis

e The series coefficients follow a precise
asymptotic law, and the radius of
convergence 18 0 (Gratti-Grecchi 1978,
Harrell-Simon 1980).
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J. Robert Oppenheimer
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THREE NOTES ON THE QUANTUM THEORY OF
CAPLERIODIC EFFECTS

Bv J. R QprunHEIMER*

ARSTRACT

In Section 1 it is shown that the nermalization of the characterdstic {unctions
cortesponding to 2 continuous speciruim, which has been iatroduced by Hellinper
aml Weyl, satistes the requiremenis of the #-normalization of the Dirac-Tordan
transformation theory, Tt is further shown thot this normualization makes the flux
to ard from infinity of syvsiems for which an integral of motion F lies in the little
range 43" equal to

(aEhadhag'.

In Section 2 the cendition for the validity of classical mechanies in the form grad
Mt <1, where A is Lhe instantaneaus wave length A= (b 1) 20 E— L1718 is applied
to establish Ruthorford's formula for the scattering of a-particles.

In Section 3 a method is developed for computing the transition probabilitics
between states of the same energy, and which are represented by almost orthogonal
gigenfunciions, The theory is applied o Lhe wmization of hydrogen atoms in a
constant electric field, The period of ionization in a field of 1 voit per cm is (o
se¢. The bearing of such transitious on the problem. ol metallic conduction is dis-
cussed.

ITE normalization of continucus spectra has been formulated mathemati-
cally bv Hellinger and Wevl; and it has been shown that this mayv be
applhied to a large class of guantum-mechanical problems without in-
consistency.! The problem can, however, he treated a good deal more simply
and generally. It may he [ormulated as follows: The #-normalization
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where p—0. Frr the wave tunction drops oft expanertiaily wichin a sphere
of racivs proporional to 2, whereas (4] 15 not satisied within a sphere of
raaliing proportiunal e Serdng £ =140 within this Tatuer sphore does not,
therefore, in the Timic =0, aftect the scaltering. There 3, howover, no
reason to suppose that for intermediate @ the clazsical formulae holbd.

30 1 ome separatos the wave cgration {or o hvdrogen atom in an homo-
genentts clecine held in parabwolic coomdinales, one Gmls chat onge of the
cidatmns has a potential cncrey which heoomes mepalively inlniie for
infEnite valnes of the cocrdinate, Such an equation has oo qguadeaticalls
integrable solutions, and no point spectium.”  There are this no sizble
stationary states pos=able for 4 hydrogen atom 1n such o teld,

1 one encloses the atom o3 large bos, periodic muobions, of course.
bacoarra 1‘r|j:-:-i.‘-'»|'|'s]{:. T the held 15 now made VTN f—'1rh1”, Lhe aolitioms of the
wine Eoiaiinn are very much like thase for 1the unperinehed alom; hot if
the drap ia potearial across the box 1z comiparable with the resonance
poetential of the stom this 13 no longer the case. We must, therefore, conclude
that, under the customary cyxperimental conditions the charweteristic lunec-
tond found by the perluthadion methad, which vield the Stark eflect, are
net 1he stationary selutions ot the wave equation, and 1hat they do nnt
completely describe the effect of the feld.

The phvsicsl interpretution of this result is very simple. 1 we imagine
the potential energy 8 of the electron plotted along the direction of the
Held, wo see Lhet 10 Talls Teom o very bigh value ot one end of the box 1o a
very Tow walue al che other; this antorm fall 1= beoken by a sharep deop due
Lo the nuclens. On the ow poteauiul zide of the nucleus there 1z a maximnam,
sharp inside Dot gradual ootside, U, therefore, we specify the energy of this
system, we cenoot be certaim that the electron 1y in the netghborhood of the
rgclows; i may alane bz in che bow potential paen of Lhe Tiehd. 70 we meake
Lhe bBox infinite, 1then i hecomes iereasingly probahle that we shall f1nd che
electron in this part of the feld, and hence the motion becnmes apericdic.
In the clussicatl theory, however, this situation cavsed an difficulifles; for
wee couwld speeily the other coordinates of the electron (hesides the enerzy),
ane thuz make certain that it was near the oucleus; and it could aot leave
Lhis regicr wilhonl gelling cncrph energy 1o clear the masimum o L5

-
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where p—0. Frr the wave tunction drops oft expanertiaily wichin a sphere
of racivs proporional to 2, whereas (4] 15 not satisied within a sphere of
raaliing proportiunal e Serdng £ =140 within this Tatuer sphore does not,
therefore, in the Timic =0, aftect the scaltering. There 3, howover, no
reason to suppose that for intermediate @ the clazsical formulae holbd.

30 1 ome separatos the wave cgration {or o hvdrogen atom in an homo-
genentts clecine held in parabwolic coomdinales, one Gmls chat onge of the
cidatmns has a potential cncrey which heoomes mepalively inlniie for
infEnite valnes of the cocrdinate, Such an equation has oo qguadeaticalls
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oo 1‘r|j:-:-i.‘-'»|'|'s]{:. T the held /s now msade VTN einall, the soliptions of the
wine Eoiaiinn are very much like thase for 1the unperinehed alom; hot if
the drap ia potearial across the box 1z comiparable with the resonance
poetential of the stom this 13 no longer the case. We must, therefore, conclude
that, under the customary cyxperimental conditions the charweteristic lunec-
tond found by the perluthadion methad, which vield the Stark eflect, are
net 1he stationary selutions ot the wave equation, and 1hat they do nnt
completely describe the effect of the feld.

The phvsicsl interpretution of this result is very simple. 1 we imagine

11 H, Weyl, Math. Ann. 68, 220 {1910).

A—



Oppenheimer’s formula (original)

ur~ale— (213 Qotr) /2 (Ao hg)?/ 161178 . (17)

I = 20/4¢-31T(3/4) /T(1/2)T(15/4)



Problems with Oppy’s formula

pr~ale= (213 Qobh) 2 o (N\o )9/ 161078 (17)

T = 20/e=31T(3/4) /T(1/2)T(15/4)

* Fishy derivation

e (Calculation errors

e Typographic errors



An early example

of truthinass?




* And wrong:

1L v=_2mE
Authors (aa.)
Ground state
Oppenheimer * 01093t/ 3F
Oppenheimer {corrected)® Fret/oF
Landauw and Lifshite® (4/F)e2/3F
Prezent work9d {4/ E)e 3

States with m’ =1; A3V =py+ 1.

b 29t 0} 1(3201)“2'350} Loy -zps™ ( 2
- Ey BT 5 =1 § e =afg 3 _  —
Lanczos {Brn ) - (zw’F) exp | 3{n; —ny) T
L { “ted) {2 pdyt ) 4 ypyeaf” 3 2
anczos {porrected T it B #"Fl exp {30y —ny) = Eyer=
Rice and Good T (nF/myexpi-2/3n"F) .
. 1ed Bl (03 =t spezal® 2
FPresent work [ @ — I g 1" ga F) g exp | Bl —ng) — AeF
States with arbitrary ny, s, and m; 85° =uy+3)m] +3.
Present work® (1% ! (g & | m2])1) ‘i(ﬁi‘nslf‘}'zﬂ*im exp (d (g —np) — 3-271;)
e

)
)

)

®Reference 8. - Y Emfion (126Y.

Yamabe, Tachibana, Silverstone, PRA 1977



Physical mechanisms for
quantum resonance

e Shape resonance (Alpha emission)/Stark
effect - confinement of a particle by a
barrier, through which tunneling occurs.

e Dissolving of embedded eigenvalues by a
small perturbation. Auger effect.



PICTURE OF GAMOW REMOVED,
PENDING PERMISSION



Almost every introduction to quantum mechanics has copied Gamow’s diagrams:







And now for
completely different
textbook diagrams...



And now for
completely different
textbook diagrams...

see Thaller’s Visual Quantum
Mechanics at

http://www.kfunigraz.ac.at/imawww/vgm/pages/supplementary/107S_resonance-1.html



How to define a quantum resonance?

1

(w—wo)? + I

Weisskopt-Wigner, 1930. (Breit was later.)



How to define a quantum resonance?

Bumps 1n scattering amplitude

........... poles 1n its analytic continuation
Zeroes 1n Jost function

Poles in Green function

Non-real eigenvalues



How to define a resonance?

Howland’s razor:

No satisfactory definition of a
resonance can depend only on
the structure of a single operator
on an abstract Hilbert space.




PICTURE OF FERMI REMOVED,
PENDING PERMISSION

E. Fermi
Assume | (Wg, exp(—itH)W) |* ~ Cexp(—Tt)

According to the Fermi Golden Rule, I' is proportional to
the square of a matrix element of the perturbation.



Fermi's golden rule

From Wikipedia, the free encyclopedia

In quantum physics, Fermi's golden rule is a way to calculate the transition rate between two eigenstates of |
quantum system using time-dependent perturbation theory, which means it's an approximation.

The one-to-many transition probability per unit of time from a state { § > to a set of states | f = 15 given, to
tirst order in the perturbation, by:

oy £y 12
Tiy = 2 [(FIH]D)] p

where P is the density of final states, and < f| &' | i > 15 the matrix element {in bra-ket notation) of the
perturbation, H', between the final and initial states_

The most common way to derive the equation 15 to start with time-dependent perturbation theory and to taki
the limit for absorption under the assumption that the time of the measurement is much larger than the time

necded for the transition.

Although named after Fermi, most of the work leading to the Golden Rule was done by Dirac.



Exponential decay in time 1s
impossible!

e Herbst, 1980: If true as t — oo, it would imply that the
Radon-Nikodym derivative of the spectral measure is

analytic in a strip, and by unique analytic continuation, its
support must include all of R.



Exponential decay 1n time 1s
impossible!

Herbst, 1980: If true as t — oo, it would imply that the Radon-
Nikodym derivative of the spectral measure is analytic in a strip, and
by unique analytic continuation, its support must include all of R.

For t — 0, clearly quadratic.



Exponential decay 1n time 1s
impossible!

Herbst, 1980: If true as t — oo, it would imply that the Radon-
Nikodym derivative of the spectral measure is analytic in a strip, and
by unique analytic continuation, its support must include all of R.

For t — 0, clearly quadratic.

Best hope:

(W, exp(—itH)Wq) = exp(—i(E —i['/2)t) + b(t),



Exponential decay impossible!

Herbst, 1980: If true as t — oo, it would imply that the Radon-
Nikodym derivative of the spectral measure is analytic in a strip, and
by unique analytic continuation, its support must include all of R.

For t — 0, clearly quadratic.

Best hope:

(W, exp(—itH)Wq) = exp(—i(E —i['/2)t) + b(t),

How to calculate I'?



Spectral concentration

e E.C. Titchmarsh, 40s

and 505 PICTURE OF TITCHMARSH
| REMOVED PENDING
* Conley-Rejto, PERMISSION

Riddell, Howland,
Nenciu



Spectral concentration

Let H_ be a sequence of self-adjoint operators with spectral
projectors E (S). Let T and {S,} be subsets of R. Then the part
of the spectrum of H_ in T 1s concentrated on S_ provided that

ET-S) —=0
in the strong sense.



Spectral concentration

Let H, be a sequence of self-adjoint operators with spectral

projectors E (S). Let T and {S, } be subsets of R. Then the part

of the spectrum of H_ in T 1s concentrated on S, provided that
En(T-S,) —=0

in the strong sense.

Titchmarsh showed that Schrodinger’s series for the Stark effect
could be used to define shrinking intervals on which the
spectrum was concentrated.



Rigorous perturbation and scattering theory.

M. Sh. Birman

T. Kato

F. Rellich



Early 1970’s

J.-M. Combes S. Graffi



Complex scaling

The unitary group of dilatations depends on a real parameter
O such that x -> exp(®) x, hence

[U(O) 1](x) :=exp(vO/2) f(exp(®) x)
1S a unitary group.

For suitable potentials one can treat ® as a complex variable
and regard Hg := U*(0®) H U(®) as an analytic family.

Complex eigenvalues may arise, but are constant so long as
isolated. Therefore they are inherent to H.



Complex scaling

Since
-V2g 1= -e?9V2,

the (purely essential) spectrum of HO 1s simply rotated into the
complex plane, to e? m©@R,









Many variants of complex scaling

* Translation analyticity (Avron-Herbst 1977)
e Exterior scaling (Stmon, 1979)

e Distortion scaling (Hunziker, 1986)



Summing divergent series

e Padé approximation

e Borel summation

— Anharmonic oscillator - Analysis by Bender-
Wu , Banks-Bender-Wu, Simon, and Graffi-
Grecchi-Simon related high-order perturbation
theory, analytic continuation, tunneling.



Simon’s 1973 Annals paper

Connected various notions of resonance

With complex scaling, reduced questions of
resonances to Kato-Rellich perturbation
theory

Interpretation of Fermi Golden Rule as
leading-order non-real perturbation
correction to eigenvalue

Spectral concentration for Auger-like
resonances



Simon’s 1973 Annals paper

Simon identified a suitable interpretation of the Fermi Golden Rule for I' in (3) and
as an estimate of the imaginary part of the Tavlor coefficient a, of a resonance eigenv
assoclated with a bound state at & = (0. (The coeflicient a; 1s real by first-order perturba
theorv.) Using Stone’s formula and second-order perturbation theory, one can express
resonance width for a perturbed non-degenerate discrete bound state as

I il .= .
5 =2 <‘1*'ﬂ= WP ‘1‘”>‘

— )

where @ 1s the unperturbed eigenfunction and f“"{ A) 15 the spectral projector for [ —oc,
{Ao}, cf. [147].



The menagerie of canonical
models 1n the 70s-80s

)
. 1‘



The menagerie of canonical
models 1n the 70s-80s

(Some with physical resonances, some without)

Anharmonic oscillator -d%/dx? + x* + k x*

Double well -d%/dx? - x* + ¥ x*

Stark effect - V2 - 1/r + K X,

Hydrogen mol. ion - V2 - 1/Ix] - 1/Ix- R ¢
Somewhat different:

Zeeman Hydrogen + cst. Mag field
Stark Wannier -d*/dx? + cos X + K X

Shape resonance -d*/dx* + R ¥, ,,



Common features for models 1-4 and
somewhat for 5-6

 High symmetry - mostly one-dimensional or
separable.

* Figenvalue perturbation series can be
calculated based on an H,, with discrete
eigenvalues.



Common features for models 1-4 and
somewhat for 5-6

 High symmetry - mostly one-dimensional or
separable.

e Eigenvalue perturbation series can be
calculated based on an H, with discrete
eigenvalues. They diverge.



Common features for models 1-4 and
somewhat for 5-6

 They are boundary values of analytic
functions of K, 1n sufficiently large regions

for summability methods to be valid, if
Taylor coefficients have controlled growth.

The typical region 1s a cut plane.



Common features for models 1-4 and
somewhat for 5-6

 They are boundary values of analytic
functions of K, 1n sufficiently large regions
for summability methods to be valid, 1f
Taylor coefficients have controlled growth.
Note: In the models with continuous
spectra, we need complex scaling to define
these analytic functions as eigenvalues.



Common features for models 1-4 and
somewhat for 5-6

 They are boundary values of analytic
functions of K, 1n sufficiently large regions
for summability methods to be valid, if
Taylor coefficients have controlled growth.
Note: Standard dilatation analyticity might
not be the right kind of complex scaling.



Common features for models 1-4 and
somewhat for 5-6

* An exponentially small quantity related to
the eigenvalues can be identified.
(Imaginary part of a resonance eigenvalue,
imaginary part of continuation of
eigenvalue on the cut, gap from broken
symmetry...)



Common features for models 1-4 and
somewhat for 5-6

 They are boundary values of analytic
functions of K....

* With Cauchy’s formula the Taylor
coefficients can be written as moments of
the discontinuity on the cut plane.

Hence high-order pert. series asymptotics
< asymptotics of the exponentially small

quantity as kK — 0.
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in perturbation theory, non-perturbative
methods are needed.



Common features for models 1-4 and
somewhat for 5-6

e Since an exponentially small quantity would
be swamped by any finite-order correction
in perturbation theory, non-perturbative
methods are needed.



Common features for models 1-4 and
somewhat for 5-6

e Hence high-order pert. series asymptotics
<> asymptotics of the exponentially small
quantity as kK — 0.

o With integration by parts, the exponentially
small quantity can be related back to the
solutions of the Schrodinger equation.



Example: Stark etfect

The dispersion relation:

]_ - A ‘ | N ‘
9y, = —/ kD (k)dk + O(R™)
(

T Jo
For Stark, or any other Schrodinger equations
with real potential but non-real eigenvalue

parameter, as a consequence of Green’s
identity:

[ / |<I)..,1|2d”;’r,' = 2/ Im (<I>—,<I>,) d’ o
Js Jas



Shape resonance

e Perturbation theory with large barriers
H,+ A W, W anonnegative bump

e Ashbaugh thesis, Ashbaugh-Harrell 1982

— Fractional powers of 1/A

— Calculation of resonance width I'



What’s one-dimensional about all that?
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solutions of ODEs but not for PDE:s.



What’s one-dimensional about all that?

 Not much, only that in the early seventies
good pointwise control was available for
solutions of ODEs but not for PDE:s.

e Solutions of elliptic PDEs were better
understood 1n the 1980°s



Ll

S. Agmon, playing hookey at Luminy, 1984.



B. Helffer, book, 1998 J. Sjostrand. Lectures on webpage




Many other resonators

Including, but far from limited to, the following selection:






P. Hislop and Sigal, 1996,
Introduction to spectral theory,
state of art at the time.



Quantum resonance 1n the
post-Simon 1973 era

A. Continuing the tradition.
e Simon did some work 1n the 1980’s, with
occasional appearances into this
millennium!

e Helffer-Sjostrand, etc., basically all the
canonical models without separability.

e Combes-Duclos-Klein-Seiler, Hislop-Sigal,
shape resonances without separability.

 Hunziker, Skibsted, etc. exponential decay
in time.



Quantum resonance 1n the
post-Simon era

B. Independent traditions.
e Lavine,“Sojourn time” and time-delay.

* Melrose-Zworski, in the Lax-Phillips tradition,
studied the effects of “trapping.”

e Attempts at abstract formalisms by Gesztesy,
Holden, more recently Agmon

* Asymptotics and bounds on resonances of various
kinds (Ashbaugh, Burqg, Froese, Gérard, Harrell,
Jensen, Martinez, Melrose, Sjostrand, Svirsky,
Z/worski)



Quantum resonance 1n the
post-Simon era

C. Conceptual advances in questions inspired by Simon 1973

 Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of

* In canonical case, A 1s symmetrized
generator of dilatations, B = 1[H,A],

and a Mourre estimate 1s of the form
P,BP, =oP, +K



Quantum resonance 1n the
post-Simon era

C. Conceptual advances in questions inspired by Simon 1973

 Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of

— originally not connected with resonances, but
notice the continued presence of the group of
dilatations.



Quantum resonance 1n the
post-S1mon era

C. Conceptual advances in questions inspired by Simon 1973

e Mourre estimates - Commutator bound
implying local a.c. spectrum and decay of
Green functions.

e [1vshits-Feshbach matrix

— Howland realized the importance of this
already in the 1970s.

— Thesis and article of Orth



Definition 2 Let H be self-adjoint and let P be a finite-dimensional projector (norm
the projector onto the unperturbed eigenvector v of a reference operator Hy). The Liw
Feshbach matriz is the finite-dimensional operator B(z) acting on K := RanP such that

(B(z)—21)'=P(H—-z1)"'P, {

when the right side is “compressed”™ to A

B is the “Schur complement of (1-P)(H-z)(1-P)” in the
block decomposition of (H-z).



Definition 2 Let H be self-adjoint and let P he a finite-dimensional projector (norm
the projector onto the unperturbed eigenvector v of a reference operator Hy). The Liw
Feshbach matriz is the finite-dimensional operator B(z) acting on K := RanP such that

(B(z)—z21)'=P(H-=z1)"'P. {

when the right side is “compressed” to k.

B 1s the “Schur complement of (1-P)(H-z)(1-P)” in the
block decomposition of (H-z).

Howland showed B(z) meromorphic off the essential spectrum,
with only real singularities, & Kato-Rellich methods work.



It follows by a caleulation from (12) that, with P = (1 — P) and H == PHP,
B(z)=PHP - PHP(H —z) 'PHP. (13)

{Again, this formula is to be interpreted as compressed to K.) Replacing H by Hy + W
and taking 7 as the orthogonal projector corresponding to an eigenvalue Ay € o,( Hy) with
normalized eigenvector @ vields the Feshbach formula

B(z,k) = M1+ kPWP — &*F(z, r).

where F(z, k) = PWP(H — z)"'PWP [48]. When P is one-dimensional, B(z,x) and F
reduce to scalar functions that satisfy

Bz k) = Mg+ £ (0, W) — 67 F (2, k). (14)

Observe that the first-order term is identical to that of Ravleigh-Schrodinger perturbation
theory for the first-order correction to a non-degenerate eigenvalue, and that —x2F(z, k)
resembles the second-order correction. From (14) the leading order expression for the reso-
nance width is found to be

r
5 = ~ImF (A +ie€,0). (15)



Definition 3 Suppose that there exists a dense subspace H, containing K, W(K), and all
possible eigenvectors of H(x). If for A in some neighborhood of Ay and & near 0, ((1 —
PYH(k)(1 — P) — 1) can be continued analvtically in z to the real axis as a bounded
operator from H, onto its dual ‘H_, and that the continuation 1s Lipschitz continuous with
Lipschitz constant O(x~?), then B(z, x) can likewise be continued to the real axis, and the
resonance eigenvalue near Ay 1s the fixed point of the equation

M) = B(A(k), A).

Orth showed spectral concentration



Recent mileposts using
Howland-Orth definition

e Soffer-Weinstein, 1998. Assuming the decay implied by a
Mourre est., nonvanishing of FGR, nonthreshold, then mod
exponential decay in time.

e Jensen-Nenciu, 2006. Nice analysis of Livshits-Feshbach
matrix, modified FGR that works at some thresholds

e C(Cattaneo-Graf-Hunziker, preprint. Lay out very general
assumptions (Mourre + existence of some commutators
involving A s.t. exi(isA) maps D(H) to itself). Then
modified exp. Decay in time for states smoothly projected
near an unperturbed eigenvalue.



Recent mileposts using
Howland-Orth definition

* Soffer-Weinstein, 1998. Assuming the decay implied by a Mourre
est., nonvanishing of FGR, nonthreshold, then mod exponential decay
in time.

e Jensen-Nenciu, 2006. Nice analysis of Livshits-Feshbach matrix,
modified FGR that works at some thresholds

e (attaneo-Graf-Hunziker, preprint. Lay out very general assumptions
(Mourre + existence of some commutators involving A s.t. exi(isA)
maps D(H) to itself). Then modified exp. Decay in time for states
smoothly projected near an unperturbed eigenvalue.

The canonical choice of A continues to be the generator of dilatations.
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