Conditionals on structural properties of strings and their stochastic counterparts in a declarative formalism

Stochastics Seminar
Thursday, November 13, 2008 - 15:00
1 hour (actually 50 minutes)
Skiles 269
Helsink University
Many context-free formalisms based on transitive properties of trees and strings have been converted to probabilitic models. We have Probabilistic Finite Automaton, Probabilistic Context Free Grammar and Probabilistic Tree Adjoining Grammars and many other probabilistic models of grammars. Typically such formalisms employ context-free productions that are transitively closed. Context-free grammars can be represented declaratively through context-sensitive grammars that analyse or check wellformedness of trees. When this direction is elaborated further, we obtain constraint-based representations for regular, context-free and mildly-context sensitive languages and their associated structures. Such representations can also be Probabilistic and this could be achieved by combining weighted rational operations and Dyck languages. More intuitively, the rational operations are packed to a new form of conditional rule: Generalized Restriction or GR in short (Yli-Jyrä and Koskenniemi 2004), or a predicate logic over strings. The conditional rule, GR, is flexible and provides total contexts, which is very useful e.g. when compiling rewriting rules for e.g. phonological alternations or speech or text normalization. However, the total contexts of different conditional rewriting rules can overlap. This implies that the conditions of different rules are not independent and the probabilities do not combine like in the case of context-free derivations. The non-transitivity causes problems for the general use of probabilistic Generalized Restriction e.g. when adding probabilities to phonological rewriting grammars that define regular relations.