Hyperbolic volume and the complexity of Heegaard splittings of 3-manifolds

Series: 
Geometry Topology Seminar
Monday, March 30, 2009 - 13:00
1 hour (actually 50 minutes)
Location: 
Skiles 269
,  
University of Arkansas
Organizer: 
Let M be a hyperbolic 3-manifold, that is, a 3-manifold admitting a complete, finite volume Riemannian metric of constant section curvature -1. Let S be a Heegaard surface in M, that is, M cut open along S consists of two handlebodies. Our goal is to prove that is the volume of M (denoted Vol(M)) if small than S is simple. To that end we define two complexities for Heegaard surfaces. The first is the genus of the surface (denoted g(S)) and the second is the distance of the surface, as defined by Hempel (denoted d(S)). We prove that there exists a constant K>0 so that for a generic manifold M, if g(S) \geq 76KVol(M) + 26, then d(S) \leq 2. Thus we see that for a generic manifold of small volume, either the genus of S is small or its distance is at most two. The term generic will be explained in the talk.