Effective Chabauty for Sym^2

Series: 
Algebra Seminar
Monday, April 29, 2013 - 15:05
1 hour (actually 50 minutes)
Location: 
Skiles 006
,  
MIT
Organizer: 
While we know by Faltings' theorem that curves of genus at least 2 have finitely many rational points, his theorem is not effective. In 1985, R. Coleman showed that Chabauty's method, which works when the Mordell-Weil rank of the Jacobian of the curve is small, can be used to give a good effective bound on the number of rational points of curves of genus g > 1.  In this talk, we draw ideas from tropical geometry to show that we can also give an effective bound on the number of rational points of Sym^2(X) that are not parametrized by a projective line or an elliptic curve, where X is a (hyperelliptic) curve of genus g > 2, when the Mordell-Weil rank of the Jacobian of the curve is at most g-2.