[Special Time] A mathematical model for bunching and meandering instabilities during epitaxial growth of a thin film

Series: 
Applied and Computational Mathematics Seminar
Thursday, January 13, 2011 - 11:00
1 hour (actually 50 minutes)
Location: 
Skiles 006
,  
University of Kentucky
Organizer: 
Recent experiments indicate that one- and two-dimensionalinstabilities, bunching and meandering, respectively, coexist duringepitaxial growth of a thin film in the step-flow regime. This is in contrastto the predictions of existing Burton–Cabrera–Frank (BCF) models. Indeed, inthe BCF framework, meandering is predicated on an Ehrlich–Schwoebel (ES)barrier whereas bunching requires an inverse ES effect. Hence, the twoinstabilities appear to be a priori mutually exclusive. In this talk, analternative theory is presented that resolves this apparent paradox. Itsmain ingredient is a generalized Gibbs–Thomson relation for the stepchemical potential resulting in jump conditions along the steps that coupleadatom diffusions on adjacent terraces. Specialization to periodic steptrains reveals a competition between the stabilizing ES kinetics and adestabilizing energetic correction that can lead to step collisions. Theaforementioned instabilities can therefore be understood in terms of thetendency of the crystal to lower, away from equilibrium and in the presenceof dissipation, its total free energy. The presentation will be self-contained and no a priori knowledge of theunderlying physics is needed.