su19

Summer 2019

Archived: 

Probability and Statistics with Applications

Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance.

Introduction to Discrete Mathematics

Mathematical logic and proof, mathematical induction, counting methods, recurrence relations, algorithms and complexity, graph theory and graph algorithms.

Classical Mathematical Methods in Engineering

Fourier series, Fourier integrals, boundary value problems for partial differential equations, eigenvalue problems

Topics in Linear Algebra

Linear algebra in R^n, standard Euclidean inner product in R^n, general linear spaces, general inner product spaces, least squares, determinants, eigenvalues and eigenvectors, symmetric matrices

Introduction to Probability and Statistics

This course is a problem oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.

Applied Combinatorics

Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs.

Survey of Calculus

Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.

Finite Mathematics

Linear equations, matrices, linear programming, sets and counting, probability and statistics.

Differential Equations

Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.

Multivariable Calculus

Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.

Pages

Subscribe to RSS - su19