Seminars and Colloquia Schedule

Chaotic Transition States on the Monkey Saddle

Series
CDSNS Colloquium
Time
Monday, April 16, 2018 - 11:15 for 1 hour (actually 50 minutes)
Location
skiles 005
Speaker
Thomas BartschLoughborough University

Transition State Theory describes how a reactive system crosses an energy barrier that is marked by a saddle point of the potential energy. The transition from the reactant to the product side of the barrier is regulated by a system of invariant manifolds that separate trajectories with qualitatively different behaviour. <br />
<br />
The situation becomes more complex if there are more than two reaction channels, or possible outcomes of the reaction. Indeed, the monkey saddle potential, with three channels, is known to exhibit chaotic dynamics at any energy. We investigate the boundaries between initial conditions with different outcomes in an attempt to obtain a qualitative and quantitative description of the relevant invariant structures.

TBA

Convolutional Neural Network with Structured Filters

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 16, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Xiuyuan ChengDuke University
Filters in a Convolutional Neural Network (CNN) contain model parameters learned from enormous amounts of data. The properties of convolutional filters in a trained network directly affect the quality of the data representation being produced. In this talk, we introduce a framework for decomposing convolutional filters over a truncated expansion under pre-fixed bases, where the expansion coefficients are learned from data. Such a structure not only reduces the number of trainable parameters and computation load but also explicitly imposes filter regularity by bases truncation. Apart from maintaining prediction accuracy across image classification datasets, the decomposed-filter CNN also produces a stable representation with respect to input variations, which is proved under generic assumptions on the basis expansion. Joint work with Qiang Qiu, Robert Calderbank, and Guillermo Sapiro.

Joint GT-UGA Seminar at GT - Asymmetric L-space Knots by Ken Baker

Series
Geometry Topology Seminar
Time
Monday, April 16, 2018 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ken BakerUniversity of Miami
Based on the known examples, it had been conjectured that all L-space knots in S3 are strongly invertible. We show this conjecture is false by constructing large families of asymmetric hyperbolic knots in S3 that admit a non-trivial surgery to the double branched cover of an alternating link. The construction easily adapts to produce such knots in any lens space, including S1xS2. This is joint work with John Luecke.

Joint GT-UGA Seminar at GT - Augmentations and immersed exact Lagrangian fillings by Yu Pan

Series
Geometry Topology Seminar
Time
Monday, April 16, 2018 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yu PanMIT
Augmentations and exact Lagrangian fillings are closely related. However, not all the augmentations of a Legendrian knot come from embedded exact Lagrangian fillings. In this talk, we show that all the augmentations come from possibly immersed exact Lagrangian fillings. In particular, let ∑ be an immersed exact Lagrangian filling of a Legendrian knot in $J^1(M)$ and suppose it can be lifted to an embedded Legendrian L in J^1(R \times M). For any augmentation of L, we associate an induced augmentation of the Legendrian knot, whose homotopy class only depends on the compactly supported Legendrian isotopy type of L and the homotopy class of its augmentation of L. This is a joint work with Dan Rutherford.

Dynamics of a degenerate PDE model of epitaxial crystal growth

Series
PDE Seminar
Time
Tuesday, April 17, 2018 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jian-Guo LiuDuke University
Epitaxial growth is an important physical process for forming solid films or other nano-structures. It occurs as atoms, deposited from above, adsorb and diffuse on a crystal surface. Modeling the rates that atoms hop and break bonds leads in the continuum limit to degenerate 4th-order PDE that involve exponential nonlinearity and the p-Laplacian with p=1, for example. We discuss a number of analytical results for such models, some of which involve subgradient dynamics for Radon measure solutions.

On the probability that a stationary Gaussian process with spectral gap remains non-negative on a long interval

Series
Analysis Seminar
Time
Wednesday, April 18, 2018 - 13:55 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Benjamin JayeClemson University
We discuss the probability that a continuous stationary Gaussian process on whose spectral measure vanishes in a neighborhood of the origin stays non-negative on an interval of long interval. Joint work with Naomi Feldheim, Ohad Feldheim, Fedor Nazarov, and Shahaf Nitzan

The Dehn-Nielsen-Baer Theorem

Series
Geometry Topology Student Seminar
Time
Wednesday, April 18, 2018 - 14:10 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sarah DavisGaTech
The theorem of Dehn-Nielsen-Baer says the extended mapping class group is isomorphic to the outer automorphism group of the fundamental group of a surface. This theorem is a beautiful example of the interconnection between purely topological and purely algebraic concepts. This talk will discuss the background of the theorem and give a sketch of the proof.

The weak Pinsker property

Series
School of Mathematics Colloquium
Time
Thursday, April 19, 2018 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tim AustinUCLA Mathematics Department
This talk is about the structure theory of measure-preserving systems: transformations of a finite measure space that preserve the measure. Many important examples arise from stationary processes in probability, and simplest among these are the i.i.d. processes. In ergodic theory, i.i.d. processes are called Bernoulli shifts. Some of the main results of ergodic theory concern an invariant of systems called their entropy, which turns out to be intimately related to the existence of `structure preserving' maps from a general system to Bernoulli shifts. I will give an overview of this area and its history, ending with a recent advance in this direction. A measure-preserving system has the weak Pinsker property if it can be split, in a natural sense, into a direct product of a Bernoulli shift and a system of arbitrarily low entropy. The recent result is that all ergodic measure-preserving systems have this property. This talk will assume graduate-level real analysis and measure theory, and familiarity with the basic language of random variables. Past exposure to entropy, measure-theoretic probability or ergodic theory will be helpful, but not essential.

The Generalized Györi-Lovasz Theorem

Series
Graph Theory Seminar
Time
Thursday, April 19, 2018 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alexander HoyerMath, GT
Györi and Lovasz independently proved that a k-connected graph can be partitioned into k subgraphs, with each subgraph connected, containing a prescribed vertex, and with a prescribed vertex count. Lovasz used topological methods, while Györi found a purely graph theoretical approach. Chen et al. later generalized the topological proof to graphs with weighted vertices, where the subgraphs have prescribed weight sum rather than vertex count. The weighted result was recently proven using Györi's approach by Chandran et al. We will use the Györi approach to generalize the weighted result slightly further. Joint work with Robin Thomas.

Graph Profiles via Sum of Squares

Series
Student Algebraic Geometry Seminar
Time
Friday, April 20, 2018 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jose AcevedoGeorgia Tech
In this talk we show how to obtain some (sometimes sharp) inequalities between subgraph densities which are valid asymptotically on any sequence of finite simple graphs with an increasing number of vertices. In order to do this we codify a simple graph with its edge monomial and establish a nice graphical notation that will allow us to play around with these densities.

Selling Partially-Ordered Items: Exploring the Space between Single- and Multi-Dimensional Mechanism Design

Series
ACO Student Seminar
Time
Friday, April 20, 2018 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kira GoldnerCSE, University of Washington
Consider the problem of selling items to a unit-demand buyer. Most work on maximizing seller revenue considers either a setting that is single dimensional, such as where the items are identical, or multi-dimensional, where the items are heterogeneous. With respect to revenue-optimal mechanisms, these settings sit at extreme ends of a spectrum: from simple and fully characterized (single-dimensional) to complex and nebulous (multi-dimensional). In this paper, we identify a setting that sits in between these extremes. We consider a seller who has three services {A,B,C} for sale to a single buyer with a value v and an interest G from {A,B,C}, and there is a known partial ordering over the services. For example, suppose the seller is selling {internet}, {internet, phone}, and {internet, cable tv}. A buyer with interest {internet} would be satisfied by receiving phone or cable tv in addition, but a customer whose interest is {internet, phone} cannot be satisfied by any other option. Thus this corresponds to a partial-ordering where {internet} > {internet, phone} and {internet} > {internet, cable tv}, but {internet, phone} and {internet, cable tv} are not comparable. We show formally that partially-ordered items lie in a space of their own, in between identical and heterogeneous items: there exist distributions over (value, interest) pairs for three partially-ordered items such that the menu complexity of the optimal mechanism is unbounded, yet for all distributions there exists an optimal mechanism of finite menu complexity. So this setting is vastly more complex than identical items (where the menu complexity is one), or even “totally-ordered” items as in the FedEx Problem [FGKK16] (where the menu complexity is at most seven, for three items), yet drastically more structured than heterogeneous items (where the menu complexity can be uncountable [DDT15]). We achieve this result by proving a characterization of the class of best duals and by giving a primal recovery algorithm which obtains the optimal mechanism. In addition, we (1) extend our lower-bound to the Multi-Unit Pricing setting, (2) give a tighter and deterministic characterization of the optimal mechanism when the buyer’s distribution satisfies the declining marginal revenue condition, and (3) prove a master theorem that allows us to reason about duals instead of distributions. Joint work with Nikhil Devanur, Raghuvansh Saxena, Ariel Schvartzman, and Matt Weinberg.

On a remarkable example of F. Almgren and H. Federer in global calculus of variations

Series
Dynamical Systems Working Seminar
Time
Friday, April 20, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 271
Speaker
Prof. Rafael de la LlaveGT Math
A well known paper of H. Federer on Flat chains contains a remarkable example attributed to F. Almgren. We intend to give a geometric exposition of the example and explain its relevance in the global theory of geodesic flows and some global problems such as homogenization in quasi-periodic media. This is part of an expository paper with X. Su.

On a remarkable example of F. Almgren and H. Federer in global calculus of variations

Series
Dynamical Systems Working Seminar
Time
Friday, April 20, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 271
Speaker
Prof. Rafael de la LlaveGT Math
A well known paper of H. Federer on Flat chains contains a remarkable example attributed to F. Almgren. We intend to give a geometric exposition of the example and explain its relevance in the global theory of geodesic flows and some global problems such as homogenization in quasi-periodic media. This is part of an expository paper with X. Su.