- You are here:
- GT Home
- Home
- News & Events

Series: Combinatorics Seminar

The search for the asymptotics of the Ramsey function R(3,k) has a long and fascinating history. It begins in the hill country surrounding Budapest and winding over the decades through Europe, America, Korea and Rio de Janiero. We explore it through a CS lens, giving algorithms that provide the various upper and lower bounds. The arguments are various more or less sophisticated uses of Erdos Magic and, indeed, many of the most important advances in the Probabilistic Method have come from these investigations.

Friday, November 3, 2017 - 15:00 ,
Location: Skiles 154 ,
Hassan Attarchi ,
Georgia Tech ,
Organizer:

This presentation is about the results of a paper by L. Bunimovich in
1974. One considers dynamical systems generated by billiards which are
perturbations of dispersing billiards. It was shown that such dynamical
systems are systems of A. N. Kolmogorov (K-systems), if the perturbation
satisfies certain conditions which have an intuitive geometric
interpretation.

Friday, November 3, 2017 - 13:55 ,
Location: Skiles 006 ,
John Etnyre ,
Georgia Tech ,
Organizer: John Etnyre

In this series of talks I will introduce branched coverings of manifolds and sketch proofs of most the known results in low dimensions (such as every 3 manifold is a 3-fold branched cover over a knot in the 3-sphere and the existence of universal knots). This week we sstart discussing branched covers of 3-manifolds.

Friday, November 3, 2017 - 10:00 ,
Location: Skiles 114 ,
Jaewoo Jung ,
GA Tech ,
Organizer: Timothy Duff

We continue our discussion of free resolutions and Stanley-Reisner ideals. We introduce Hochster's formula and state results on the behavior of Betti tables under clique-sums.

Series: Stochastics Seminar

The Sherrington-Kirkpatirck (SK) model is
a mean-field spin glass introduced by theoretical physicists in order
to explain the strange behavior of certain alloys, such as CuMn. Despite
of its seemingly simple formulation, it was conjectured to possess a
number of profound properties. This talk will be focused on the energy
landscapes of the SK model and the mixed p-spin model with both Ising
and spherical configuration spaces. We will present Parisi formule for
their maximal energies followed by descriptions of the energy landscapes
near the maximum energy. Based on joint works with A. Auffinger, M. Handschy, G. Lerman, and A. Sen.

Series: Graph Theory Seminar

Let G be a graph containing 5 different vertices a0, a1, a2, b1 and
b2. We say that (G, a0, a1, a2, b1, b2) is feasible if G contains
disjoint connected subgraphs G1, G2, such that {a0, a1, a2}⊆V(G1) and
{b1, b2}⊆V(G2). In this talk, we will introduce
ideal frames, slim connectors and fat connectors. We will first deal
with the ideal frames without fat connectors, by studying 3-edge and
5-edge configurations. Joint work with Changong Li, Robin Thomas, and
Xingxing Yu.

Series: School of Mathematics Colloquium

Traditional Erdos Magic (a.k.a. The Probabilistic Method) proves the existence of an object with certain properties
by showing that a random (appropriately defined) object will have those properties with positive probability. Modern Erdos Magic analyzes a random process, a random (CS take note!) algorithm. These, when successful, can find a "needle in an exponential haystack" in polynomial time.
We'll look at two particular examples, both involving a family of n-element sets under suitable side conditions. The Lovasz Local Lemma finds a coloring with no set monochromatic. A result of this speaker finds a coloring with low discrepency. In both cases the original proofs were not implementable but Modern Erdos Magic finds the colorings in polynomial times.
The methods are varied. Basic probability and combinatorics. Brownian Motion. Semigroups. Martingales. Recursions ... and Tetris!

Thursday, November 2, 2017 - 11:05 ,
Location: Skiles 006 ,
Joel Spencer ,
Courant Institute, New York University ,
Organizer: Lutz Warnke
Traditional Erdos Magic (a.k.a. The Probabilistic Method) proves the existence of an object with certain properties by showing that a random (appropriately defined) object will have those properties with positive probability. Modern Erdos Magic analyzes a random process, a random (CS take note!) algorithm. These, when successful, can find a "needle in an exponential haystack" in polynomial time. We'll look at two particular examples, both involving a family of n-element sets under suitable side conditions. The Lovasz Local Lemma finds a coloring with no set monochromatic. A result of this speaker finds a coloring with low discrepency. In both cases the original proofs were not implementable but Modern Erdos Magic finds the colorings in polynomial times. The methods are varied. Basic probability and combinatorics. Brownian Motion. Semigroups. Martingales. Recursions ... and Tetris!

Series: Research Horizons Seminar

The talk will include a crash course on infinite dimensional
topology, with applications to various topological properties of the
space of congruence classes of convex bodies in the Euclidean space.

Series: Analysis Seminar

The bispectral problem concerns the construction and the classification
of operators possessing a symmetry between the space and spectral
variables. Different versions of this problem can be solved using
techniques from integrable systems, algebraic geometry, representation
theory, classical orthogonal polynomials, etc. I will review the problem
and some of these connections and then discuss new results related to
the generic quantum superintegrable system on the sphere.