Seminars and Colloquia by Series

Monday, November 10, 2008 - 14:00 , Location: Skiles 269 , Stavros Garoufalidis , School of Mathematics, Georgia Tech , Organizer: Stavros Garoufalidis
It is easy to ask for the number T(g,n) of (rooted) graphs with n edges on a surface of genus g. Bender et al gave an asymptotic expansion for fixed g and large n. The contant t_g remained missing for over 20 years, although it satisfied a complicated nonlinear recursion relation. The relation was vastly simplified last year. But a further simplification was made possible last week, thus arriving to Painleve I. I will review many trivialities and lies about this famous non-linear differential equation, from a post modern point of view.
Monday, November 10, 2008 - 13:00 , Location: Skiles 255 , Guowei Wei , Michigan State University , Organizer: Haomin Zhou
Solvation process is of fundamental importance to other complex biological processes, such signal transduction, gene regulation, etc. Solvation models can be roughly divided into two classes: explicit solvent models that treat the solvent in molecular or atomic detail while implicit solvent models take a multiscale approach that generally replaces the explicit solvent with a dielectric continuum. Because of their fewer degrees of freedom, implicit solvent methods have become popular for many applications in molecular simulation with applications in the calculations of biomolecular titration states, folding energies, binding affinities, mutational effects, surface properties, and many other problems in chemical and biomedical research. In this talk, we introduce a geometric flow based multiscale solvation model that marries a microscopic discrete description of biomolecules with a macroscopic continuum treatment of the solvent. The free energy functional is minimized by coupled geometric and potential flows. The geometric flow is driven not only by intrinsic forces, such as mean curvatures, but also by extrinsic potential forces, such as those from electrostatic potentials. The potential flow is driven mainly by a Poisson-Boltzmann like operator. Efficient computational methods, namely the matched interface and boundary (MIB) method, is developed for to solve the Poisson- Boltzmann equation with discontinuous interface. A Dirichlet- to-Neumann mapping (DTN) approach is developed to regularize singular charges from biomolecules.
Friday, November 7, 2008 - 15:00 , Location: Skiles 255 , Asaf Shapira , School of Mathematics, Georgia Tech , Organizer: Prasad Tetali
Given a set of linear equations Mx=b, we say that a set of integers S is (M,b)-free if it contains no solution to this system of equations. Motivated by questions related to testing linear-invariant Boolean functions, as well as recent investigations in additive number theory, the following conjecture was raised (implicitly) by Green and by Bhattacharyya, Chen, Sudan and Xie: we say that a set of integers S \subseteq [n], is \epsilon-far from being (M,b)-free if one needs to remove at least \epsilon n elements from S in order to make it (M,b)-free. The conjecture was that for any system of homogeneous linear equations Mx=0 and for any \epsilon > 0 there is a *constant* time algorithm that can distinguish with high probability between sets of integers that are (M,0)-free from sets that are \epsilon-far from being (M,0)-free. Or in other words, that for any M there is an efficient testing algorithm for the property of being (M,0)-free. In this paper we confirm the above conjecture by showing that such a testing algorithm exists even for non-homogeneous linear equations. As opposed to most results on testing Boolean functions, which rely on algebraic and analytic arguments, our proof relies on results from extremal hypergraph theory, such as the recent removal lemmas of Gowers, R\"odl et al. and Austin and Tao.
Friday, November 7, 2008 - 15:00 , Location: Skiles 168 , Yuri Bakhtin , School of Mathematics, Georgia Tech , Organizer:
A discrete infinite volume limit for random trees will be constructed and studied.
Friday, November 7, 2008 - 14:00 , Location: Skiles 269 , Igor Belegradek , School of Mathematics, Georgia Tech , Organizer: Igor Belegradek
In the 1980s Gromov showed that curvature (in the triangle comparison sense) decreases under branched covers. In this expository talk I shall prove Gromov's result, and then discuss its generalization (due to Allcock) that helps show that some moduli spaces arising in algebraic geometry have contractible universal covers. The talk should be accessible to those interested in geometry/topology.
Thursday, November 6, 2008 - 15:00 , Location: Skiles 269 , Trevis Litherland , School of Mathematics, Georgia Tech , Organizer: Heinrich Matzinger
The limiting law of the length of the longest increasing subsequence, LI_n, for sequences (words) of length n arising from iid letters drawn from finite, ordered alphabets is studied using a straightforward Brownian functional approach. Building on the insights gained in both the uniform and non-uniform iid cases, this approach is then applied to iid countable alphabets. Some partial results associated with the extension to independent, growing alphabets are also given. Returning again to the finite setting, and keeping with the same Brownian formalism, a generalization is then made to words arising from irreducible, aperiodic, time-homogeneous Markov chains on a finite, ordered alphabet. At the same time, the probabilistic object, LI_n, is simultaneously generalized to the shape of the associated Young tableau given by the well-known RSK-correspondence. Our results on this limiting shape describe, in detail, precisely when the limiting shape of the Young tableau is (up to scaling) that of the iid case, thereby answering a conjecture of Kuperberg. These results are based heavily on an analysis of the covariance structure of an m-dimensional Brownian motion and the precise form of the Brownian functionals. Finally, in both the iid and more general Markovian cases, connections to the limiting laws of the spectrum of certain random matrices associated with the Gaussian Unitary Ensemble (GUE) are explored.
Thursday, November 6, 2008 - 11:00 , Location: Skiles 269 , Chongchun Zeng , School of Mathematics, Georgia Tech , Organizer: Guillermo Goldsztein
In this talk, we discuss 1.) the nonlinear instability and unstable manifolds of steady solutions of the Euler equation with fixed domains and 2.) the evolution of free (inviscid) fluid surfaces, which may involve vorticity, gravity, surface tension, or magnetic fields. These problems can be formulated in a Lagrangian formulation on infinite dimensional manifolds of volume preserving diffeomorphisms with an invariant Lie group action. In this setting, the physical pressure turns out to come from the combination of the gravity, surface tension, and the Lagrangian multiplier. The vorticity is naturally related to an invariant group action. In the absence of surface tension, the well-known Rayleigh-Taylor and Kelvin-Helmholtz instabilities appear naturally related to the signs of the curvatures of those infinite dimensional manifolds. Based on these considerations, we obtain 1.) the existence of unstable manifolds and L^2 nonlinear instability in the cases of the fixed domains and 2.) in the free boundary cases, the local well-posedness with surface tension in a rather uniform energy method. In particular, for the cases without surface tension which do not involve hydrodynamical instabilities, we obtain the local existence of solutions by taking the vanishing surface tension limit.
Wednesday, November 5, 2008 - 13:30 , Location: ISyE Executive Classroom , Leonid Bunimovich , School of Mathematics, Georgia Tech , Organizer: Annette Rohrs
It has been found about ten years ago that most of the real networks are not random ones in the Erdos-Renyi sense but have different topology (structure of the graph of interactions between the elements of a network). This finding generated a steady flux of papers analyzing structural aspects of networks. However, real networks are rather dynamical ones where the elements (cells, genes, agents, etc) are interacting dynamical systems. Recently a general approach to the studies of dynamical networks with arbitrary topology was developed. This approach is based on a symbolic dynamics and is in a sense similar to the one introduced by Sinai and the speaker for Lattice Dynamical Systems, where the graph of interactions is a lattice. The new approach allows to analyze a combined effect of all three features which characterize a dynamical network ( topology, dynamics of elements of the network and interactions between these elements) on its evolution. The networks are of the most general type, e.g. the local systems and interactions need not to be homogeneous, nor restrictions are imposed on a structure of the graph of interactions. Sufficient conditions on stability of dynamical networks are obtained. It is demonstrated that some subnetworks can evolve regularly while the others evolve chaotically. Some natural graph theoretical and dynamical questions appear in the farther developments of this approach. No preliminary knowledge of anything besides basic calculus and linear algebra is required to understand what is going on.
Wednesday, November 5, 2008 - 11:00 , Location: Skiles 255 , Melissa Kemp , Dept of Biomedical Engineering, Georgia Tech , Organizer: Christine Heitsch
Hydrogen peroxide has been long considered a harmful reactive oxygen species, but is increasingly appreciated as a cellular signaling molecule. The mechanism by which the cell buffers against intracellular H2O2 accumulation during periods of oxidative stress is not fully understood. I will introduce a detailed network model of the known redox reactions and cellular thiol modifications involved in H2O2 buffering. The model includes anti-oxidative contributions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, in addition to the cytoplasmic redox buffers, thioredoxin and glutathione. Based on ordinary differential equations, the model utilizes mass action kinetics to describe changes in concentration and redox state of cytoplasmic proteins upon exposure to physiologically relevant concentrations of extracellular H2O2. Simulations match experimental observations of a rapid and transient oxidation of thioredoxin upon exposure to extracellular peroxide. The increase in the concentration of oxidized proteins predicted by the model is simultaneously accompanied by an increase in protein S-glutathionylation, possibly regulating signal transduction in cells undergoing oxidative stress. Ultimately, this network analysis will provide insight into how to target antioxidant therapies for enhanced buffering without impacting the necessary protein oxidation used by cells for signaling purposes.
Tuesday, November 4, 2008 - 12:00 , Location: Skiles 255 , Doron Lubinsky , School of Mathematics, Georgia Tech , Organizer:
Orthogonal polynomials play a role in myriads of problems ranging from approximation theory to random matrices and signal processing. Generalizations of orthogonal polynomials - such as biorthogonal polynomials, cardinal series, Muntz polynomials, are used for example, in number theory and numerical analysis. We discuss some of these, and some potential research projects involving them.