- You are here:
- GT Home
- Home
- News & Events

Wednesday, March 11, 2009 - 11:00 ,
Location: Skiles 255 ,
Dirk Brockmann ,
Northwestern University ,
Organizer:

Human Mobility in our globalised world has reached a complexity and volume of unprecedented degree. More than 60 million people travel billions of kilometres on more than 2 million international flights each week. Hundreds of millions of people commute on a complex web of highways and railroads most of which operate at their maximum capacity. Human mobility is responsible for the geographical spread of emergent human infectious diseases and plays a key role in human mediated bioinvasion, the dominant factor in the global biodiversity crisis. I will report on the recent discovery of scaling laws in global human traffic (obtained from online bill-tracking at www.wheresgeorge.com) and mathematical models that can account for it. I will present a complex network perspective on multi-scale human traffic networks, report on their statistical properties and show that they can be used to identify geographically coherent communities that only vaguely resemble administrative ones. The approach provides an operational segmentation of maps into a hierarchical set of effective regions and boundaries based on human behavior. I will briefly talk about European transportation networks, geocaching and trackable items.

Series: PDE Seminar

We consider the the following fourth order degenerate parabolic equation h_t + (hh_xxx)_x = 0. The equation arises in the lubrication approximation regime, describing the spreading of a thin film liquid with height profile h >= 0 on a plate. We consider the equation as free boundary problem, defined on its positivity set. We address existence and regularity of classical solutions in weighted Hölder and Sobolev spaces.

Series: CDSNS Colloquium

The Cohen-Gallavotti Fluctuation theorem is a result describing the behaviour of simple hyperbolic dynamical systems. It was introduced to illustrate, in a somewhat simpler context, anomalies in the second law of thermodynamics. I will describe the mathematical formulation of this Fluctuation Theorem, and some variations on it.

Monday, March 9, 2009 - 13:05 ,
Location: Skiles 255 ,
Zhi J. Wang ,
Aerospace Engineering, Iowa State University ,
Organizer: Yingjie Liu

The current breakthrough in computational fluid dynamics (CFD) is the emergence of unstructured grid based high-order (order > 2) methods. The leader is arguably the discontinuous Galerkin method, amongst several other methods including the multi-domain spectral, spectral volume (SV), and spectral difference (SD) methods. All these methods possess the following properties: k-exactness on arbitrary grids, and compactness, which is especially important for parallel computing. In this talk, recent progresses in the DG, SV, SD and a unified formulation called lifting collocation penalty will be presented. Numerical simulations with the SV and the SD methods will be presented. The talk will conclude with several remaining challenges in the research on high-order methods.

Series: Geometry Topology Seminar

Given any contact 3-manifold, Etnyre and Ozbagci defined new invariants of the contact structures in terms of open book decompositions supporting the contact structure. One of the invariants is the support genus of the contact structure which is defined as the minimal genus of a page of an open book that supports the contact structure. In a similar fashion, we define the support genus sg(L) of a Legendrian knot L in a contact manifold M as the minimal genus of a page of an open book of M supporting the contact structure such that L sits on a page and the framing given by the contact structure and by the page agree. In this talk, we will discuss the support genus of Legendrian knots in contact 3-manifolds. We will show any null-homologous loose knot has support genus zero. To prove this, we observe an interesting topological property of knots and links on the way. We observe any topological knot or link in a 3-manifold sits on a planar page (genus zero page) of an open book decomposition.

Series: Combinatorics Seminar

This is joint work with Alex Postnikov. Imagine that you are to build a system of space stations (graph vertices), which communicate via laser beams (edges). The edge directions were already chosen, but you must place the stations so that none of the beams miss their targets. In this talk, we let the edge directions be generic and independent, a choice that constrains vertex placement the most. For K_{3} in \mathbb{R}^{2}, the edges specify a unique triangle, but its size is arbitrary --- D_{2}(K_{3})=1 degree of freedom; we say that K_{3} is rigid in \mathbb{R}^{2}. We call D_{n}(G) the degree of parallel rigidity of the graph for generic edge directions. We found an elegant combinatorial characterization of D_{n}(G) --- it is equal to the minimal number of edges in the intersection of n spanning trees of G. In this talk, I will give a linear-algebraic proof of this result, and of some other properties of D_{n}(G). The notion of parallel graph rigidity was previously studied by Whiteley and Develin-Martin-Reiner. The papers worked with the generic parallel rigidity matroid; I will briefly compare our results in terms of D_{n}(G) with the previous work.

Series: Probability Working Seminar

The talk is based on the paper titled "Anosov diffeomorphisms and coupling" by Bressaud and Liverani. Existence and uniqueness of SRB invariant measure for the dynamics is established via a coupling of initial conditions introduced to dynamics by L.-S. Young.

Series: SIAM Student Seminar

In this talk, I will briefly introduce some basics of mathematical learning theory. Two basic methods named perceptron algorithm and support vector machine will be explained for the separable classification case. Also, the subgaussian random
variable and Hoeffding inequality will be mentioned in order to provide the upper bound for the deviation of the empirical risk. If time permits, the Vapnik combinatorics will be involved for shaper bounds of this deviation.

Series: Stochastics Seminar

A shot noise process is essentially a compound Poisson process whereby the arriving shots are allowed to accumulate or decay after their arrival via some preset shot (impulse response) function. Shot noise models see applications in diverse areas such as insurance, ﬁ- nance, hydrology, textile engineering, and electronics. This talk stud- ies several statistical inference issues for shot noise processes. Under mild conditions, ergodicity is proven in that process sample paths sat- isfy a strong law of large numbers and central limit theorem. These results have application in storage modeling. Shot function parameter estimation from a data history observed on a discrete-time lattice is then explored. Optimal estimating functions are tractable when the shot function satisﬁes a so-called interval similar condition. Moment methods of estimation are easily applicable if the shot function is com- pactly supported and show good performance. In all cases, asymptotic normality of the proposed estimators is established.

Series: School of Mathematics Colloquium

This is joint work with Andrei Okounkov. The ``honeycomb dimer model'' is a natural model of discrete random surfaces in R^3. It is possible to write down a ``Law of Large Numbers" for such surfaces which describes the typical shape of a random surface when the mesh size tends to zero. Surprisingly, one can parameterize these limit shapes in a very simple way using analytic functions, somewhat reminiscent of the Weierstrass parameterization of minimal surfaces. This is even more surprising since the limit shapes tend to be facetted, that is, only piecewise analytic. There is a large family of boundary conditions for which we can obtain exact solutions to the limit shape problem using algebraic geometry techniques. This family includes the (well-known) solution to the limit shape of a ``boxed plane partition'' and has many generalizations.