Seminars and Colloquia by Series

Second order free CLT

Series
Stochastics Seminar
Time
Thursday, September 25, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ionel PopescuGeorgia Tech
The CLT for free random variables was settled by Voiculescu very early in this work on free probability. He used this in turn to prove his main result on aymptotic freeness of independent random matrices. On the other hand, in random matrices, fluctuations can be understood as a second order phenomena. This notion of fluctuations has a conterpart in free probability which is called freenes of second order. I will explain what this is and how one can prove a free CLT result in this context. It is also interesting to point out that this is a nontrivial calculation which begs the same question in the classical context and I will comment on that.

Tropical K_4 curves

Series
Algebra Seminar
Time
Wednesday, September 24, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Melody ChanHarvard University
This is joint work with Pakwut Jiradilok. Let X be a smooth, proper curve of genus 3 over a complete and algebraically closed nonarchimedean field. We say X is a K_4-curve if the nonarchimedean skeleton G of X is a metric K_4, i.e. a complete graph on 4 vertices.We prove that X is a K_4-curve if and only if X has an embedding in p^2 whose tropicalization has a strong deformation retract to a metric K_4. We then use such an embedding to show that the 28 odd theta characteristics of X are sent to the seven odd theta characteristics of g in seven groups of four. We give an example of the 28 bitangents of a honeycomb plane quartic, computed over the field C{{t}}, which shows that in general the 4 bitangents in a given group need not have the same tropicalizations.

The Gaussian Radon Transform for Infinite-Dimensional Banach Spaces

Series
High-Dimensional Phenomena in Statistics and Machine Learning Seminar
Time
Tuesday, September 23, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 170
Speaker
Irina HolmesSchool of Mathematics, Georgia Tech
In this talk we construct an infinite-dimensional, stochastic version of the Radon transform. We work within the framework of abstract Wiener spaces, introduced by Leonard Gross. We present some basic properties of this transform, as well as compute some specific examples on the classical Wiener space.

Artin fans in tropical geometry

Series
Algebra Seminar
Time
Monday, September 22, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Martin UlirschBrown University
Recent work by J. and N. Giansiracusa, myself, and O. Lorscheid suggests that the tropical geometry of a toric variety $X$, or more generally of a logarithmic scheme $X$, can be formalized as a "Berkovich analytification" of a scheme over the field $\mathbb{F}_1$ with one element that is canonically associated to $X$.The goal of this talk is to introduce the theory of Artin fans, originally due to D. Abramovich and J. Wise, which can be used to lift rather unwieldy $\mathbb{F}_1$-geometric objects to the more familiar realm of algebraic stacks. Artin fans are \'etale locally isomorphic to quotient stacks of toric varieties by their big tori and their glueing data has a completely combinatorial description in terms of Kato fans.I am going to explain how to use the ideas surrounding the notion of Artin fans to study tropicalization maps associated to toric varieties and logarithmic schemes. Surprisingly these techniques allow us to give a reinterpretation of Tevelev's theory of tropical compactifications that can be generalized to compactifications of subvarieties in logarithmically smooth compactifcations of smooth varieties. For example, we can introduce definitions of tropical pairs and schoen varieties in terms of Artin fans that are equivalent to Tevelev's notions.

Weak Galerkin Finite Element Methods

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 22, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Chunmei Wang Georgia Tech Mathematics
Weak Galerkin finite element method is a new and efficient numerical method for solving PDEs which was first proposed by Junping Wang and Xiu Ye in 2011. The main idea of WG method is to introduce weak differential operators and apply them to the corresponding variational formulations to solve PDEs. In this talk, I will focus on the WG methods for biharmonic equations, maxwell equations and div-curl equations.

Trisections of 4-manifolds

Series
Geometry Topology Seminar
Time
Monday, September 22, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
David GayUniversity of Georgia
This is joint work with Rob Kirby. Trisections are to 4-manifolds as Heegaard splittings are to 3-manifolds; a Heegaard splitting splits a 3-manifolds into 2 pieces each of which looks like a regular neighborhood of a bouquet of circles in R^3 (a handlebody), while a trisection splits a 4-manifold into 3 pieces of each of which looks like a regular neighborhood of a bouquet of circles in R^4. All closed, oriented 4-manifolds (resp. 3-manifolds) have trisections (resp. Heegaard splittings), and for a fixed manifold these are unique up to a natural stabilization operation. The striking parallels between the two dimensions suggest a plethora of interesting open questions, and I hope to present as many of these as I can.

Determinantal representations of hyperbolic curves

Series
Algebra Seminar
Time
Friday, September 19, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel PlaumannUniversität Konstanz
We study symmetric determinantal representations of real hyperbolic curves in the projective plane. Such representations always exist by the Helton-Vinnikov theorem but are hard to compute in practice. In this talk, we will discuss some of the underlying algebraic geometry and show how to use polynomial homotopy continuation to find numerical solutions. (Joint work with Anton Leykin).

Patchy Feedbacks for Stabilization and Optimal Control

Series
School of Mathematics Colloquium
Time
Friday, September 19, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Professor Alberto BressanPenn State University
The talk will survey the main definitions and properties of patchy vector fields and patchy feedbacks, with applications to asymptotic feedback stabilization and nearly optimal feedback control design. Stability properties for discontinuous ODEs and robustness of patchy feedbacks will also be discussed.

A proof of the sharp Sobolev inequality

Series
SIAM Student Seminar
Time
Thursday, September 18, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Rohan GhantaSchool of Mathematics, Georgia Tech
By showing a duality relation between the Sobolev and Hardy-Littlewood-Sobolev inequalities, I discuss a proof of the sharp Sobolev inequality. The duality relation between these two inequalities is known since 1983 and has led to interesting recent work on the inequalities (which may be the topic of future talks).

Hopf fibrations for oceanic waves and turbulent pipe flows

Series
Math Physics Seminar
Time
Thursday, September 18, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Francesco FedeleSchool of Civil and Environmental Engineering, Georgia Tech
I propose a generalization of Hopf fibrations to quotient the streamwise translation symmetry of water waves and turbulent pipe flows viewed as dynamical systems. In particular, I exploit the geometric structure of the associated high dimensional state space, which is that of a principal fiber bundle. Symmetry reduction analysis of experimental data reveals that the speeds of large oceanic crests and turbulent bursts are associated with the dynamical and geometric phases of the corresponding orbits in the fiber bundle. In particular, in the symmetry-reduced frame I unveil a pattern-changing dynamics of the fluid structures, which explains the observed speed u ≈ Ud+Ug of intense extreme events in terms of the geometric phase velocity Ug and the dynamical phase velocity Ud associated with the orbits in the bundle. In particular, for oceanic waves Ug/Ud~-0.2 and for turbulent bursts Ug/Ud~0.43 at Reynolds number Re=3200.

Pages