Seminars and Colloquia by Series

Series: ACO Seminar
Tuesday, October 21, 2008 - 15:00 , Location: Skiles 269 , Stephan Held , University of Bonn , Organizer: Annette Rohrs
A central characteristic of a computer chip is the speed at which it processes data, determined by the time it takes electrical signals to travel through the chip. A major challenge in the design of a chip is to achieve timing closure, that is to find a physical realization fulfilling the speed specifications. We give an overview over the major tasks for optimizing the performance of computer chips and present several new algorithms. For the topology generation of repeater trees, we introduce a variant of the Steiner tree problem and present fast algorithm that balances efficiently between the resource consumption and performance. Another indispensable task is gate sizing, a discrete optimization problem with nonlinear or PDE constraints, for which a fast heuristic is introduced. The effectiveness in practice is demonstrated by comparing with newly developed lower bounds for the achievable delay. We conclude with a variant of the time-cost tradeoff problem from project management. In contrast to the usual formulation cycles are allowed. We present a new method to compute the time-cost tradeoff curve in such instances using combinatorial algorithms. Several problems in chip design can be modeled as time-cost tradeoff problems, e.g. threshold voltage optimization of plane assignment.
Tuesday, October 21, 2008 - 13:00 , Location: Skiles 255 , Selma Yildirim , School of Mathematics, Georgia Tech , Organizer:
We consider the pseudodifferential operators H_{m,\Omega} associated by the prescriptions of quantum mechanics to the Klein-Gordon Hamiltonian when restricted to a compact domain \Omega in {\mathbb R}^d. When the mass m is 0 the operator H_{0,\Omega} coincides with the generator of the Cauchy stochastic process with a killing condition on \partial \Omega. (The operator H_{0,\Omega} is sometimes called the fractional Laplacian with power 1/2.) We prove several universal inequalities for the eigenvalues (joint work with Evans Harrell).
Series: Other Talks
Tuesday, October 21, 2008 - 11:00 , Location: Klaus Building, 1116E&W , Leslie Valiant , Division of Engineering and Applied Sciences, Harvard University , Organizer: Annette Rohrs
We argue that computational models have an essential role in uncovering the principles behind a variety of biological phenomena that cannot be approached by other means. In this talk we shall focus on evolution. Living organisms function according to complex mechanisms that operate in different ways depending on conditions. Darwin's theory of evolution suggests that such mechanisms evolved through random variation guided by natural selection. However, there has existed no theory that would explain quantitatively which mechanisms can so evolve in realistic population sizes within realistic time periods, and which are too complex. Here we suggest such a theory. Evolution is treated as a form of computational learning from examples in which the course of learning depends only on the aggregate fitness of the current hypothesis on the examples, and not otherwise on individual examples. We formulate a notion of evolvability that distinguishes function classes that are evolvable with polynomially bounded resources from those that are not. For example, we can show that monotone Boolean conjunctions and disjunctions are demonstrably evolvable over the uniform distribution, while Boolean parity functions are demonstrably not. We shall discuss some broader issues in evolution and intelligence that can be addressed via such an approach.
Monday, October 20, 2008 - 14:00 , Location: Skiles 269 , Iain Moffatt , University of Southern Alabama , Organizer: Stavros Garoufalidis
In this talk I will describe some relations between embedded graphs, their polynomials and the Jones polynomial of an associated link. I will explain how relations between graphs, links and their polynomials leads to the definition of the partial dual of a ribbon graph. I will then go on to show that the realizations of the Jones polynomial as the Tutte polynomial of a graph, and as the topological Tutte polynomial of a ribbon graph are related, surprisingly, by the homfly polynomial.
Monday, October 20, 2008 - 11:05 , Location: Skiles 255 , Chris Godsil , University of Waterloo , Organizer: Robin Thomas
In its simplest form, the Erdos-Ko-Rado theorem tells us that if we have a family F of subsets of size k from set of size v such that any two sets in the family have at least one point in common, then |F|<=(v-1)\choose(k-1) and, if equality holds, then F consists of all k-subsets that contain a given element of the underlying set. This theorem can also be viewed as a result in graph theory, and from this viewpoint it has many generalizations. I will outline how it can be proved using linear algebra, and then discuss how this approach can be applied in other cases.
Friday, October 17, 2008 - 15:00 , Location: Skiles 255 , Ravi Montenegro , University of Massachussetts , Organizer: Prasad Tetali
The Birthday Paradox says that if there are N days in a year, and 1.2*sqrt(N) days are chose uniformly at random with replacement, then there is a 50% probability that some day was chosen twice. This can be interpreted as a statement about self-intersection of random paths of length 1.2*sqrt(N) on the complete graph K_N with loops. We prove an extension which shows that for many graphs random paths with length of order sqrt(N) will have the same self-intersection property. We finish by discussing an application to the Pollard Rho Algorithm for Discrete Logarithm. (joint work with Jeong-Han Kim, Yuval Peres and Prasad Tetali).
Friday, October 17, 2008 - 14:00 , Location: Skiles 269 , Jim Krysiak , School of Mathematics, Georgia Tech , Organizer: John Etnyre
This will be a continuation of the previous talk by this title. Specifically, this will be a presentation of the classical result on the existence of three closed nonselfintersecting geodesics on surfaces diffeomorphic to the sphere. It will be accessible to anyone interested in topology and geometry.
Thursday, October 16, 2008 - 15:00 , Location: Skiles 269 , Tony Cai , Department of Statistics, The Wharton School, University of Pennsylvania , Organizer: Heinrich Matzinger
Adaptive estimation of linear functionals occupies an important position in the theory of nonparametric function estimation. In this talk I will discuss an adaptation theory for estimation as well as for the construction of confidence intervals for linear functionals. A between class modulus of continuity, a geometric quantity, is shown to be instrumental in characterizing the degree of adaptability and in the construction of adaptive procedures in the same way that the usual modulus of continuity captures the minimax difficulty of estimation over a single parameter space. Our results thus "geometrize" the degree of adaptability.
Thursday, October 16, 2008 - 11:00 , Location: Skiles 269 , Mohammad Ghomi , School of Mathematics, Georgia Tech , Organizer: Guillermo Goldsztein
We prove that a smooth compact submanifold of codimension $2$ immersed in $R^n$, $n>2$, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. This settles a question of Guan and Spruck related to a problem of Yau. Analogous results for complete fillings of arbitrary Riemannian submanifolds are obtained as well. On the other hand, we show that these finiteness theorems may not hold if the codimension is too high, or the prescribed boundary is not sufficiently regular. Our proofs employ, among other methods, a relative version of Nash's isometric embedding theorem, and the theory of Alexandrov spaces with curvature bounded below, including the compactness and stability theorems of Gromov and Perelman. These results consist of joint works with Stephanie Alexander and Jeremy Wong, and Robert Greene.
Wednesday, October 15, 2008 - 12:00 , Location: Skiles 255 , Ben Webb , School of Mathematics, Georgia Tech , Organizer:
In the study of one dimensional dynamical systems it is often assumed that the functions involved have a negative Schwarzian derivative. However, as not all one dimensional systems of interest have this property it is natural to consider a generalization of this condition. Specifically, we consider the interval functions of a real variable having some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class, that is to functions with an eventual negative Schwarzian derivative. The property of having an eventual negative Schwarzian derivative is nonasymptotic therefore verification of whether a function has such an iterate can often be done by direct computation. The introduction of this class was motivated by some maps arising in neuroscience.