- You are here:
- GT Home
- Home
- News & Events

Series: Stochastics Seminar

We present a unified framework for sequential low-rank matrix completion and estimation, address the joint goals of uncertainty quantification (UQ) and statistical design. The first goal of UQ aims to provide a measure of uncertainty of estimated entries in the unknown low-rank matrix X, while the second goal of statistical design provides an informed sampling or measurement scheme for observing the entries in X. For UQ, we adopt a Bayesian approach and assume a singular matrix-variate Gaussian prior the low-rank matrix X which enjoys conjugacy. For design, we explore deterministic design from information-theoretic coding theory. The effectiveness of our proposed methodology is then illustrated on applications to collaborative filtering.

Wednesday, October 18, 2017 - 13:55 ,
Location: Skiles 006 ,
Sudipta Kolay ,
Georgia Tech ,
Organizer: Jennifer Hom

I will talk about the Berge conjecture, and Josh Greene's resolution of a related problem, about which lens spaces can be obtained by integer surgery on a knot in S^3.

Series: Analysis Seminar

We are going to prove that indicator functions of convex sets with a
smooth boundary cannot serve as window functions for orthogonal Gabor
bases.

Series: Research Horizons Seminar

This
talk will cover some recent and preliminary results in the area of
non-smooth dynamics, with connections to applications that have been
overlooked.
Much of the talk will present open questions for research projects related to this area.

Series: Algebra Seminar

In this talk, I will summarize forthcoming work with Griffin, Ono, and Zagier. In 1927 Pólya proved that the Riemann Hypothesis is equivalent to the hyperbolicity of Jensen polynomials for Riemann's Xi-function. This hyperbolicity has been proved for degrees $d\leq 3$. We obtain an arbitrary precision asymptotic formula for the derivatives $\Xi^{(2n)}(0)$, which allows us to prove thehyperbolicity of 100% of the Jensen polynomials of each degree. We obtain a general theorem which models such polynomials by Hermite polynomials. This general condition also confirms a conjecture of Chen, Jia, and Wang.

Monday, October 16, 2017 - 14:00 ,
Location: Skiles 005 ,
Dr. Barak Sober ,
Tel Aviv University ,
barakino@gmail.com ,
Organizer: Doron Lubinsky

We approximate a function defined over a $d$-dimensional manifold $M
⊂R^n$ utilizing only noisy function values at noisy locations on the manifold. To produce
the approximation we do not require any knowledge regarding the manifold
other than its dimension $d$. The approximation scheme is based upon the
Manifold Moving Least-Squares (MMLS) and is therefore resistant to noise in
the domain $M$ as well. Furthermore, the approximant is shown to be smooth
and of approximation order of $O(h^{m+1})$ for non-noisy data, where $h$ is
the mesh size w.r.t $M,$ and $m$ is the degree of the local polynomial
approximation. In addition, the proposed algorithm is linear in time with
respect to the ambient space dimension $n$, making it useful for cases
where d is much less than n. This assumption, that the high dimensional data is situated
on (or near) a significantly lower dimensional manifold, is prevalent in
many high dimensional problems. Thus, we put our algorithm to numerical
tests against state-of-the-art algorithms for regression over manifolds and
show its dominance and potential.

Series: Geometry Topology Seminar

Every four-dimensional Stein domain has a Morse function whoseregular level sets are contact three-manifolds. This allows us to studycomplex curves in the Stein domain via their intersection with thesecontact level sets, where we can comfortably apply three-dimensional tools.We use this perspective to understand links in Stein-fillable contactmanifolds that bound complex curves in their Stein fillings.

Friday, October 13, 2017 - 15:00 ,
Location: Skiles 154 ,
Bhanu Kumar ,
GT Math ,
Organizer: Jiaqi Yang

Birkhoff's Theorem is a result useful in characterizing the boundary of certain open sets U ⊂ T^1 x [0, inf) which are invariant under "vertical-tilting" homeomorphisms H. We present the method used by A. Fathi to prove Birkhoff's theorem, which develops a series of lemmas using topological arguments to prove that this boundary is a graph.

Series: Combinatorics Seminar

The original notion of poset dimension is due to Dushnik and Miller (1941). Last year, Uerckerdt (2016) proposed a variant, called local dimension, which has garnered considerable interest. A local realizer of a poset P is a collection of partial linear extensions of P that cover the comparabilities and incomparabilities of P. The local dimension of P is the minimum frequency of a local realizer where frequency is the maximum multiplicity of an element of P.
Hiraguchi (1955) proved that any poset with n points has dimension at most n/2, which is sharp. We prove that the local dimension of a poset with n points is O(n/log n). To show that this bound is best possible, we use probabilistic methods to prove the following stronger result which extends a theorem of Chung, Erdős, and Spencer (1983): There is an n-vertex bipartite graph in which each difference graph cover of the edges will cover one of the vertices Θ(n/log n) times. (This is joint work with Jinha Kim, Ryan R. Martin, Tomáš Masařı́k, Warren Shull, Andrew Uzzell, and Zhiyu Wang)

Friday, October 13, 2017 - 13:55 ,
Location: Skiles 006 ,
John Etnyre ,
Georgia Tech ,
Organizer: John Etnyre

In this series of talks I will introduce branched coverings of manifolds and sketch proofs of most the known results in low dimensions (such as every 3 manifold is a 3-fold branched cover over a knot in the 3-sphere and the existence of universal knots). Along the way several open problems will be discussed.