- You are here:
- GT Home
- Home
- News & Events

Series: Algebra Seminar

This is joint work with Pakwut Jiradilok. Let X be a smooth, proper curve of genus 3 over a complete and algebraically closed nonarchimedean field. We say X is a K_4-curve if the nonarchimedean skeleton G of X is a metric K_4, i.e. a complete graph on 4 vertices.We prove that X is a K_4-curve if and only if X has an embedding in p^2 whose tropicalization has a strong deformation retract to a metric K_4. We then use such an embedding to show that the 28 odd theta characteristics of X are sent to the seven odd theta characteristics of g in seven groups of four. We give an example of the 28 bitangents of a honeycomb plane quartic, computed over the field C{{t}}, which shows that in general the 4 bitangents in a given group need not have the same tropicalizations.

Series: Algebra Seminar

Recent work by J. and N. Giansiracusa, myself, and O. Lorscheid suggests that the tropical geometry of a toric variety $X$, or more generally of a logarithmic scheme $X$, can be formalized as a "Berkovich analytification" of a scheme over the field $\mathbb{F}_1$ with one element that is canonically associated to $X$.The goal of this talk is to introduce the theory of Artin fans, originally due to D. Abramovich and J. Wise, which can be used to lift rather unwieldy $\mathbb{F}_1$-geometric objects to the more familiar realm of algebraic stacks. Artin fans are \'etale locally isomorphic to quotient stacks of toric varieties by their big tori and their glueing data has a completely combinatorial description in terms of Kato fans.I am going to explain how to use the ideas surrounding the notion of Artin fans to study tropicalization maps associated to toric varieties and logarithmic schemes. Surprisingly these techniques allow us to give a reinterpretation of Tevelev's theory of tropical compactifications that can be generalized to compactifications of subvarieties in logarithmically smooth compactifcations of smooth varieties. For example, we can introduce definitions of tropical pairs and schoen varieties in terms of Artin fans that are equivalent to Tevelev's notions.

Series: Algebra Seminar

We study symmetric determinantal representations of real hyperbolic curves in the
projective plane. Such representations always exist by the Helton-Vinnikov theorem but are hard to
compute in practice. In this talk, we will discuss some of the underlying algebraic geometry and
show how to use polynomial homotopy continuation to find numerical solutions. (Joint work with
Anton Leykin).

Series: Algebra Seminar

In this talk we discuss a recent paper by Andrew Chan and Diane Maclagan on Groebner bases for fields, where the valuation of the coefficients is taken into account, when defining initial terms. For these orderings the usual division algorithm does not terminate, and ideas from standard bases needs to be introduced. Groebner bases for fields with valuations play an important role in tropical geometry, where they can be used to compute tropical varieties of a larger class of polynomial ideals than usual Groebner bases.

Series: Algebra Seminar

We study the Legendre elliptic curve E: y^2=x(x+1)(x+t) over the field F_p(t) and its extensions K_d=F_p(mu_d*t^(1/d)). When d has the form p^f+1, in previous work we exhibited explicit points on E which generate a group V of large rank and finite index in the full Mordell-Weil group E(K_d), and we showed that the square of the index is the order of the Tate-Shafarevich group; moreover, the index is a power of p. In this talk we will explain how to use p-adic cohomology to compute the Tate-Shafarevich group and the quotient E(K_d)/V as modules over an appropriate group ring.

Series: Algebra Seminar

A new and exciting breakthrough due to Maynard establishes that there exist infinitely many pairs of distinct primes $p_1,p_2$ with $|p_1-p_2|\leq 600$ as a consequence of the Bombieri-Vinogradov Theorem. We apply his general method to the setting of Chebotarev sets of primes. We study applications of these bounded gaps with an emphasis on ranks of prime quadratic twists of elliptic curves over $\mathbb{Q}$, congruence properties of the Fourier coefficients of normalized Hecke eigenforms, and representations of primes by binary quadratic forms.

Series: Algebra Seminar

Given a closed subvariety X of affine space A^n, there is a surjective
map from the analytification of X to its tropicalisation. The natural
question arises, whether this map has a continuous section. Recent work
by Baker, Payne, and Rabinoff treats the case of curves, and even more
recent work by Cueto, Haebich, and Werner treats Grassmannians of
2-spaces. I will sketch how one can often construct such sections when X
is obtained from a linear space smeared around by a coordinate torus
action. In particular, this gives a new, more geometric proof for the
Grassmannian of 2-spaces; and it also applies to some determinantal
varieties. (Joint work with Elisa Postinghel)

Series: Algebra Seminar

A notorious open problem in arithmetic geometry asks whether ranks ofelliptic curves are unbounded in families of quadratic twists. A proof ineither direction seems well beyond the reach of current techniques, butcomputation can provide evidence one way or the other. In this talk wedescribe two approaches for searching for high rank twists: the squarefreesieve, due to Gouvea and Mazur, and recursion on the prime factorization ofthe twist parameter, which uses 2-descents to trim the search tree. Recentadvances in techniques for Selmer group computations have enabled analysisof a much larger search region; a large computation combining these ideas,conducted by Mark Watkins, has uncovered many new rank 7 twists of$X_0(32): y^2 = x^3 - x$, but no rank 8 examples. We'll also describe aheuristic argument due to Andrew Granville that an elliptic curve hasfinitely many (and typically zero) quadratic twists of rank at least 8.

Series: Algebra Seminar

I will explain the construction of the essential
skeleton of a one-parameter degeneration of algebraic varieties, which
is a simplicial space encoding the geometry of the degeneration, and I
will prove that it coincides
with the skeleton of a good minimal dlt-model of the degeneration if
the relative canonical sheaf is semi-ample. These results, contained in
joint work with Mircea Mustata and Chenyang Xu, provide some interesting
connections between Berkovich geometry and
the Minimal Model Program.

Series: Algebra Seminar

Bayesian approaches to statistical model selection requires the evaluation of the marginal likelihood integral, which, in general, is difficult to obtain. When the statistical model is regular, it is well-known that the marginal likelihood integral can be approximated using a function of the maximized log-likelihood function and the dimension of the model. When the model is singular, Sumio Watanabe has shown that an approximation of the marginal likelihood integral can be obtained through resolution of singularities, a result that has intimately tied machine learning and Bayesian model selection to computational algebraic geometry. This talk will be an introduction to singular learning theory with the factor analysis model as a running example.