Seminars and Colloquia by Series

Friday, April 11, 2014 - 11:05 , Location: Skiles 005 , Jan Draisma , TU Eindhoven , Organizer: Josephine Yu
Given a closed subvariety X of affine space A^n, there is a surjective map from the analytification of X to its tropicalisation. The natural question arises, whether this map has a continuous section. Recent work by Baker, Payne, and Rabinoff treats the case of curves, and even more recent work by Cueto, Haebich, and Werner treats Grassmannians of 2-spaces. I will sketch how one can often construct such sections when X is obtained from a linear space smeared around by a coordinate torus action. In particular, this gives a new, more geometric proof for the Grassmannian of 2-spaces; and it also applies to some determinantal varieties. (Joint work with Elisa Postinghel)
Monday, March 24, 2014 - 15:05 , Location: Skiles 006 , Nick Rogers , Department of Defense , Organizer: Matt Baker
A notorious open problem in arithmetic geometry asks whether ranks ofelliptic curves are unbounded in families of quadratic twists.  A proof ineither direction seems well beyond the reach of current techniques, butcomputation can provide evidence one way or the other.  In this talk wedescribe two approaches for searching for high rank twists: the squarefreesieve, due to Gouvea and Mazur, and recursion on the prime factorization ofthe twist parameter, which uses 2-descents to trim the search tree.  Recentadvances in techniques for Selmer group computations have enabled analysisof a much larger search region; a large computation combining these ideas,conducted by Mark Watkins, has uncovered many new rank 7 twists of$X_0(32): y^2 = x^3 - x$, but no rank 8 examples.  We'll also describe aheuristic argument due to Andrew Granville that an elliptic curve hasfinitely many (and typically zero) quadratic twists of rank at least 8.
Wednesday, March 12, 2014 - 15:05 , Location: Skiles 006 , Johannes Nicaise , KU Leuven , Organizer: Matt Baker
I will explain the construction of the essential skeleton of a one-parameter degeneration of algebraic varieties, which is a simplicial space encoding the geometry of the degeneration, and I will prove that it coincides with the skeleton of a good minimal dlt-model of the degeneration if the relative canonical sheaf is semi-ample. These results, contained in joint work with Mircea Mustata and Chenyang Xu, provide some interesting connections between Berkovich geometry and the Minimal Model Program.
Monday, March 10, 2014 - 15:05 , Location: Skiles 005 , Elizabeth Gross , NCSU , Organizer: Anton Leykin
Bayesian approaches to statistical model selection requires the evaluation of the marginal likelihood integral, which, in general, is difficult to obtain.  When the statistical model is regular, it is well-known that the marginal likelihood integral can be approximated using a function of the maximized log-likelihood function and the dimension of the model.  When the model is singular, Sumio Watanabe has shown that an approximation of the marginal likelihood integral can be obtained through resolution of singularities, a result that has intimately tied machine learning and Bayesian model selection to computational algebraic geometry.  This talk will be an introduction to singular learning theory with the factor analysis model as a running example.
Wednesday, March 5, 2014 - 15:00 , Location: Skiles 254 , Annette Werner , Johann Wolfgang Goethe-Universität (Frankfurt) , Organizer: Joseph Rabinoff
The goal of this talk is to show that Bruhat-Tits buildings can be investigated with analytic geometry. After introducing the theory of Bruhat-Tits buildings we show that they can be embedded in a natural way into Berkovich analytic flag varieties. The image of the building is contained in an open subset which in the case of projective space is Drinfeld's well-known p-adic upper half plane. In this way we can compactify buildings in a natural way.
Monday, March 3, 2014 - 15:05 , Location: Skiles 005 , Luke Oeding , Auburn University , Organizer: Anton Leykin
In Computer Vision and multi-view geometry one considers several cameras in general position as a collection of projection maps. One would like to understand how to reconstruct the 3-dimensional image from the 2-dimensional projections. [Hartley-Zisserman] (and others such as Alzati-Tortora and Papadopoulo-Faugeras)  described several natural multi-linear (or tensorial) constraints which record certain relations between the cameras such as the epipolar, trifocal, and quadrifocal tensors. (Don't worry, the story stops at quadrifocal tensors!) A greater understanding of these tensors is needed for Computer Vision, and Algebraic Geometry and Representation Theory provide some answers.I will describe a uniform construction of the epipolar, trifocal and quadrifocal tensors via equivariant projections of a Grassmannian. Then I will use the beautiful Algebraic Geometry and Representation Theory, which naturally arrises in the construction, to recover some known information (such as symmetry and dimensions) and some new information (such as defining equations).  Part of this work is joint with Chris Aholt (Microsoft).
Monday, February 24, 2014 - 15:05 , Location: Skiles 005 , Shuhong Gao , Clemson University , Organizer: Anton Leykin
Buchberger (1965) gave  the first algorithm for computing Groebner bases and introduced some simple criterions for detecting useless S-pairs. Faugere (2002)  presented the F5 algorithm which is significantly much faster  than Buchberger's algorithm and can detect all useless S-pairs for regular sequences of homogeneous polynomials.  In recent years, there has been extensive effort trying to simply F5 and to give a rigorous mathematical foundation for F5. In this talk, we present a simple new criterion for strong Groebner bases that contain Groebner bases for both ideals and  the related syzygy modules.  This criterion can detect all useless J-pairs (without performing any reduction)  for any sequence of polynomials, thus yielding an efficient algorithm for computing Groebner bases and  a simple proof of finite termination of the algorithm. This is a joint work with  Frank Volny IV (National Security Agency) and Mingsheng Wang (Chinese Academy of Sciences).
Monday, February 17, 2014 - 15:05 , Location: Skiles 006 , Eric Katz , University of Waterloo , Organizer: Matt Baker
Given a surface in space with a set of curves on it, one can ask whichpossible combinatorial arrangement of curves are possible.  We give anenriched formulation of this question in terms of which two-dimensionalfans occur as the tropicalization of an algebraic surface in space.  Ourmain result is that the arrangement is either degenerate or verycomplicated.  Along the way, we introduce tropical Laplacians, ageneralization of graph Laplacians, explain their relation to the Colin deVerdiere invariant and to tensegrity frameworks in dynamics.This is joint work with June Huh.
Friday, January 10, 2014 - 16:05 , Location: Skiles 006 , Orsola Tomassi , Leibniz University Hannover , Organizer: Matt Baker
It is well known that the cohomology of the moduli space A_g of g-dimensional principally polarized abelian varieties stabilizes when the degree is smaller than g. This is a classical result of Borel on the stable cohomology of the symplectic group. By work of Charney and Lee, also the stable cohomology of the minimal compactification of A_g, the Satake compactification, is explicitly known.In this talk, we consider the stable cohomology of toroidal compactifications of A_g, concentrating on the perfect cone compactification and the matroidal partial compactification. We prove stability results for these compactifications and show that all stable cohomology is algebraic. This is joint work with S. Grushevsky and K. Hulek.
Friday, January 10, 2014 - 15:05 , Location: Skiles 006 , Remke Kloosterman , Humboldt University Berlin , Organizer: Matt Baker
Let $C=\{f(z_0,z_1,z_2)=0\}$ be a complex plane curve with ADE singularities. Let $m$ be a divisor of the degree of $f$ and let $H$ be the hyperelliptic curve $y^2=x^m+f(s,t,1)$ defined over $\mathbb{C}(s,t)$. In this talk we explain how one can determine the Mordell-Weil rank of the Jacobian of $H$ effectively. For this we use some results on the Alexander polynomial of $C$. This extends a result by Cogolludo-Augustin and Libgober for the case where $C$ is a curve with ordinary cusps.  In the second part we discuss how one can do a similar approach over fields like $\mathbb{Q}(s,t)$ and $\mathbb{F}(s,t)$.