Seminars and Colloquia by Series

Wednesday, December 7, 2011 - 14:00 , Location: Skiles 006 , Andrei Martinez Finkelshtein , University of Almeria, Spain , andrei@ual.es , Organizer: Jeff Geronimo
The asymptotic analysis of orthogonal polynomials with respect to a varying weight has found many interesting applications in approximation theory, random matrix theory and other areas. It has also stimulated a further development of the logarithmic potential theory, since the equilibrium measure in an external field associated with these weights enters the leading term of the asymptotics and its support is typically the place where zeros accumulate and oscillations occur. In a rather broad class of problems the varying weight on the real line is given by powers of a function of the form exp(P(x)), where P is a polynomial. For P of degree 2 the associated orthogonal polynomials can be expressed in terms of (varying) Hermite polynomials. Surprisingly, the next case, when P is of degree 4, is not fully understood. We study the equilibrium measure in the external field generated by such a weight, discussing especially the possible transitions between different configurations of its support. This is a joint work with E.A. Rakhmanov and R. Orive.
Thursday, December 1, 2011 - 14:00 , Location: Skiles 006 , Pierre Moussa , CEA/Saclay, Service de Physique Theorique, France , Organizer: Jeff Geronimo
The term "BMV Conjecture" was introduced in 2004 by Lieb and Seiringer for a conjecture introduced in 1975 by Bessis, Moussa and Villani, and they also introduced a new form for it : all coefficients of the polynomial Tr(A+xB)^k are non negative as soon as the hermitian matrices A and B are positive definite. A recent proof of the conjecture has been given recently by Herbert Stahl. The question occurs in various domains: complex analysis, combinatorics, operator algebras and statistical mechanics.
Tuesday, November 29, 2011 - 14:00 , Location: Skiles 006 , Prof. Andras Kroo , Hungarian Academy of Sciences , Organizer: Doron Lubinsky
By the classical Weierstrass theorem, any function continuous on a compact set can be uniformly approximated by algebraic polynomials. In this talk we shall discuss possible extensions of this basic result of analysis to approximation by homogeneous algebraic polynomials on central symmetric convex bodies. We shall also consider a related question of approximating convex bodies by convex algebraic level surfaces. It has been known for some time time that any convex body can be approximated arbitrarily well by convex algebraic level surfaces. We shall present in this talk some new results specifying rate of convergence.
Wednesday, November 9, 2011 - 14:00 , Location: Skiles 006 , Aleks Ignjatovic , University of New South Wales , Organizer: Doron Lubinsky
Chromatic derivatives are special, numerically robust linear differential operators which provide a unification framework for a broad class of orthogonal polynomials with a broad class of special functions. They are used to define chromatic expansions which generalize the Neumann series of Bessel functions. Such expansions are motivated by signal processing; they grew out of a design of a switch mode power amplifier. Chromatic expansions provide local signal representation complementary to the global signal representation given by the Shannon sampling expansion. Unlike the Taylor expansion which they are intended to replace, they share all the properties of the Shannon expansion which are crucial for signal processing. Besides being a promising new tool for signal processing, chromatic derivatives and expansions have intriguing mathematical properties connecting in a novel way orthogonal polynomials with some familiar concepts and theorems of harmonic analysis. For example, they introduce novel spaces of almost periodic functions which naturally correspond to a broad class of families of orthogonal polynomials containing most classical families. We also present a conjecture which generalizes the Paley Wiener Theorem and which relates the growth rate of entire functions with the asymptotic behavior of the recursion coefficients of a corresponding family of orthogonal polynomials.
Wednesday, November 2, 2011 - 14:05 , Location: Skiles 006 , Alexei Poltoratski , Texas A&M , Organizer: Michael Lacey
 The problem of weighted polynomial approximation of continuousfunctionson the real line was posted by S. Bernstein in 1924. It asks for adescription of theset of weights such that polynomials are dense in the space of continuousfunctions withrespect to the corresponding weighted uniform norm. Throughout the 20thcentury Bernstein's problem was studied by many prominent analysts includingAhkiezer, Carleson, Mergelyan andM. Riesz.In my talk I will discuss some of the complex analytic methods that can beapplied in Bernstein's problem along with a recently found solution.
Wednesday, October 26, 2011 - 14:00 , Location: Skiles 006 , Prof. Andras Kroo , Hungarian Academy of Sciences , Organizer: Doron Lubinsky
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 By the classical Weierstrass theorem, any function continuous on a compact set can be uniformly approximated by algebraic polynomials. In this talk we shall discuss possible extensions of this basic result of analysis to approximation by homogeneous algebraic polynomials on central symmetric convex bodies. We shall also consider a related question of approximating convex bodies by convex algebraic level surfaces.  It has been known for some time time that any convex body can be approximated arbirarily well by convex algebraic level surfaces. We shall present in this talk some new results specifying rate of convergence.
Wednesday, September 28, 2011 - 14:00 , Location: Skiles 006 , Tuomas Hytonen , University of Helsinki , Organizer: Michael Lacey
Expansion in a wavelet basis provides useful information ona function in different positions and length-scales. The simplest example of wavelets are the Haar functions, which are just linearcombinations of characteristic functions of cubes, but often moresmoothness is preferred. It is well-known that the notion of Haarfunctions carries over to rather general abstract metric spaces. Whatabout more regular wavelets? It turns out that a neat construction canbe given, starting from averages of the indicator functions over arandom selection of the underlying cubes. This is yet anotherapplication of such probabilistic averaging methods in harmonicanalysis. The talk is based on joint work in progress with P. Auscher.
Wednesday, June 15, 2011 - 14:00 , Location: Skiles 05 , Dr Anna Maltsev , University of Bonn , Organizer:
We consider ensembles of $N \times N$ Hermitian Wigner matrices, whose entries are (up to the symmetry constraints) independent and identically distributed random variables. Assuming sufficient regularity for the probability density function of the entries, we show that the expectation of the density of states on arbitrarily small intervals converges to the semicircle law, as $N$ tends to infinity.
Wednesday, April 27, 2011 - 14:00 , Location: Skiles 005 , Yuliya Babenko , Kennesaw State University , Organizer: Brett Wick
Wednesday, April 20, 2011 - 14:00 , Location: Skiles 005 , Maria Reguera Rodriguez , Georgia Tech , Organizer: Brett Wick
We consider boundedness of singular integrals in the two weight setting. The problem consists in characterizing non-negative weights v and w for which H: L^{p}(v)\mapsto L^{p}(w) for 1

Pages