Seminars and Colloquia by Series

Thursday, October 23, 2008 - 12:00 , Location: Skiles 255 , Tom Bohman , CMU , Organizer: Prasad Tetali
In this lecture I will introduce the method and sketch some recent applications. The main idea is to exploit a natural connection between the evolution of discrete random processes and continuous functions on the real numbers. Roughly speaking, the method is as follows: Given a discrete random process, we calculate the expected change in the random variable (or variables) of interest in one step of the process, write a differential equation suggested by the expected change, and show that the evolution of the random variable over the course of the process is sharply concentrated around the trajectory given by the solution of the differential equation. This allows us to translate simple facts (often combinatorial in nature) about expected changes in one step of the process into strong statements about sharp concentration of the random variable over the entire course of the process.
Thursday, October 9, 2008 - 12:05 , Location: Skiles 255 , Roland van der Veen , University of Amsterdam , Organizer: Robin Thomas
The aim of this talk is to introduce techniques from knot theory into the study of graphs embedded in 3-space. The main characters are hyperbolic geometry and the Jones polynomial. Both have proven to be very successful in studying knots and conjecturally they are intimately related. We show how to extend these techniques to graphs and discuss possible applications. No prior knowledge of knot theory or geometry will be assumed.
Monday, October 6, 2008 - 11:05 , Location: Skiles 255 , Hein van der Holst , University of Eindhoven , Organizer: Robin Thomas
For an undirected graph G=(V,E) with V={1,...,n} let S(G) be the set of all symmetric n x n matrices A=[a_i,j] with a_i,j non-zero for distinct i,j if and only if ij is an edge. The inertia of a symmetric matrix is the triple (p_+,p_-,p_0), where p_+, p_-,p_0 are the number of positive, negative, and null eigenvalues respectively. The inverse inertia problem asks which inertias can be obtained by matrices in S(G). This problem has been studied intensively by Barrett, Hall, and Loewy. In this talk I will present new results on the inverse inertia problem, among them a Colin de Verdiere type invariant for the inertia set (this is the set of all possible inertias) of a graph, a formula for the inertia set of graphs with a 2-separation, and a formula for the inertia set of the join of a collection of graphs. The Colin de Verdiere type invariant for the inertia set is joint work with F. Barioli, S.M. Fallat, H.T. Hall, D. Hershkowitz, L. Hogben, and B. Shader, and the formula for the inertia set of the join of a collection of graphs is joint work with W. Barrett and H.T. Hall.
Thursday, September 18, 2008 - 12:05 , Location: Skiles 255 , Luke Postle , School of Mathematics, Georgia Tech , Organizer: Robin Thomas
Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex, and the placement of one of these on an adjacent vertex. A graph is called pebbleable if for each vertex v there is a sequence of pebbling moves so that at least one pebble can be placed on vertex v. The pebbling number of a graph G is the smallest integer k such that G is pebbleable given any configuration of k pebbles on G. We improve on the bound of Bukh by showing that the pebbling number of a graph of diameter 3 on n vertices is at most the floor of 3n/2 + 2, and this bound is best possible. We give an alternative proof that the pebbling number of a graph of diameter 2 on n vertices is at most n + 1. This is joint work with Noah Streib and Carl Yerger.
Thursday, August 28, 2008 - 12:00 , Location: Skiles 255 , Sergey Norin , Mathematics, Princeton University , Organizer: Robin Thomas
The problem of generating random integral tables from the set of all nonnegative integral tables with fixed marginals is of importance in statistics. The Diaconis-Sturmfels algorithm for this problem performs a random walk on the set of such tables. The moves in the walk are referred to as Markov bases and correspond to generators of a certain toric ideal. When only one and two-way marginals are considered, one can naturally associate a graph to the model. In this talk, I will present a characterization of all graphs for which the corresponding toric ideal can be generated in degree four, answering a question of Develin and Sullivant. I will also discuss some related open questions and demonstrate applications of the Four Color theorem and results on clean triangulations of surfaces, providing partial answers to these questions. Based on joint work with Daniel Kral and Ondrej Pangrac.