Seminars and Colloquia by Series

Universality in quantum many-body systems

Series
Math Physics Seminar
Time
Tuesday, November 28, 2017 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Vieri MastropietroUniversita' di Milano, Italy
Abstract: A number of quantities in quantum many-body systems show remarkable universality properties, in the sense of exact independence from microscopic details. I will present some rigorous result establishing universality in presence of many body interaction in Graphene and in Topological Insulators, both for the bulk and edge transport. The proof uses Renormalization Group methods and a combination of lattice and emerging Ward Identities.

Semiclassical Spectral Estimates with Renainder Terms

Series
Math Physics Seminar
Time
Friday, November 17, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Timo WeidlUniv. Stuttgart

Please Note: This is part of the 2017 Quolloquium series.

Starting from the classical Berezin- and Li-Yau-bounds onthe eigenvalues of the Laplace operator with Dirichlet boundaryconditions I give a survey on various improvements of theseinequalities by remainder terms. Beside the Melas inequalitywe deal with modifications thereof for operators with and withoutmagnetic field and give bounds with (almost) classical remainders.Finally we extend these results to the Heisenberg sub-Laplacianand the Stark operator in domains.

Isoperimetric inequalities for convex cones

Series
Math Physics Seminar
Time
Thursday, November 16, 2017 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lotfi HermiFlorida International University

Please Note: This is part of the 2017 Quolloquium series.

We use the weighted isoperimetric inequality of J. Ratzkin for a wedge domain in higher dimensions to prove new isoperimetric inequalities for weighted $L_p$-norms of the fundamental eigenfunction of a bounded domain in a convex cone-generalizing earlier work of Chiti, Kohler-Jobin, and Payne-Rayner. We also introduce relative torsional rigidity for such domains and prove a new Saint-Venant-type isoperimetric inequality for convex cones. Finally, we prove new inequalities relating the fundamental eigenvalue to the relative torsional rigidity of such a wedge domain thereby generalizing our earlier work to this higher dimensional setting, and show how to obtain such inequalities using the Payne interpretation in Weinstein fractional space. (Joint work with A. Hasnaoui)

Quantum Transport Properties of Schrödinger Operator with a Quasi-Periodic Potential in Dimension Two

Series
Math Physics Seminar
Time
Tuesday, November 7, 2017 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yulia KarpeshinaUniversity of Alabama, Birmingham
Existence of ballistic transport for Schr ̈odinger operator with a quasi- periodic potential in dimension two is discussed. Considerations are based on the following properties of the operator: the spectrum of the operator contains a semiaxis of absolutely continuous spectrum and there are generalized eigenfunctions being close to plane waves ei⟨⃗k,⃗x⟩ (as |⃗k| → ∞) at every point of this semiaxis. The isoenergetic curves in the space of momenta ⃗k corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure).

Gradient Corrections in Atomic Physics

Series
Math Physics Seminar
Time
Friday, October 27, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 202
Speaker
Rafael BenguriaCatholic University of Chile
During the last few years there has been a systematic pursuit for sharp estimates of the energy components of atomic systems in terms of their single particle density. The common feature of these estimates is that they include corrections that depend on the gradient of the density. In this talk I will review these results. The most recent result is the sharp estimate of P.T. Nam on the kinetic energy. Towards the end of my talk I will present some recent results concerning geometric estimates for generalized Poincaré inequalities obtained in collaboration with C. Vallejos and H. Van Den Bosch. These geometric estimates are a useful tool to estimate the numerical value of the constant of Nam's gradient correction term.

Persistence of translation symmetry in the BCS model with radial pair interaction

Series
Math Physics Seminar
Time
Tuesday, March 28, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Alissa GeisingerUniversity of Tuebingen, Germany
We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. For this purpose, we first introduce the full BCS functional and the translation invariant BCS functional. Our main result states that theminimizers of the full BCS functional coincide with the minimizers of the translation invariant BCS functional for temperatures in the aforementioned interval. In the case of vanishing angular momentum our results translate to the three dimensional case. Finally, we will explain the strategy and main ideas of the proof. This is joint work with Andreas Deuchert, Christian Hainzl and Michael Loss.

Gevrey smoothing of weak solutions of the homogeneous Boltzmann equation for Maxwellian molecules

Series
Math Physics Seminar
Time
Tuesday, March 14, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tobias RiedKarlsruhe Institute of Technology
We study regularity properties of weak solutions of the homogeneous Boltzmann equation. While under the so called Grad cutoff assumption the homogeneous Boltzmann equation is known to propagate smoothness and singularities, it has long been suspected that the non-cutoff Boltzmann operator has similar coercivity properties as a fractional Laplace operator. This has led to the hope that the homogenous Boltzmann equation enjoys similar smoothing properties as the heat equation with a fractional Laplacian. We prove that any weak solution of the fully nonlinear non-cutoff homogenous Boltzmann equation (for Maxwellian molecules) with initial datum $f_0$ with finite mass, energy and entropy, that is, $f_0 \in L^1_2(\R^d) \cap L \log L(\R^d)$, immediately becomes Gevrey regular for strictly positive times, i.e. it gains infinitely many derivatives and even (partial) analyticity.This is achieved by an inductive procedure based on very precise estimates of nonlinear, nonlocal commutators of the Boltzmann operator with suitable test functions involving exponentially growing Fourier multipliers.(Joint work with Jean-Marie Barbaroux, Dirk Hundertmark, and Semjon Vugalter)

The one-dimensional discrete moment problem and the realisability problem in statistical mechanics

Series
Math Physics Seminar
Time
Monday, November 14, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tobias KunaUnisrsity of Reading, UK
The discrete truncated moment problem considers the question whether given a discrete subsets $K \subset \mathbb{R}$ and a sequence of real numbers one can find a measure supported on $K$ whose (power) moments are exactly these numbers. The truncated moment is a challenging problem. We derive a minimal set of necessary and sufficient conditions. This simple problem is surprisingly hard and not treatable with known techniques. Applications to the truncated moment problem for point processes, the so-called relizability or representability problem are given. The relevance of this problem for statistical mechanics in particular the theory of classic liquids, is explained. This is a joint work with M. Infusino, J. Lebowitz and E. Speer.

On some models in classical statistical mechanics

Series
Math Physics Seminar
Time
Friday, April 15, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex GrigoThe University of Oklahoma
In this talk we will consider a few different mathematical models of gas-like systems of particles, which interact through binary collisions that conserve momentum and mass. The aim of the talk will be to present how one can employ ideas from dynamical systems theory to derive macroscopic properties of such models.

Pages