Seminars and Colloquia by Series

Homogeneous solutions to the incompressible Euler equation

Series
PDE Seminar
Time
Wednesday, February 3, 2016 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roman ShvydkoyUniversity of Illinois, Chicago
In this talk we describe recent results on classification and rigidity properties of stationary homogeneous solutions to the 3D and 2D Euler equations. The problem is motivated be recent exclusions of self-similar blowup for Euler and its relation to Onsager conjecture and intermittency. In 2D the problem also arises in several other areas such as isometric immersions of the 2-sphere, or optimal transport. A full classification of two dimensional solutions will be given. In 3D we reveal several new classes of solutions and prove their rigidity properties. In particular, irrotational solutions are characterized by vanishing of the Bernoulli function; and tangential flows are necessarily 2D axisymmetric pure rotations. In several cases solutions are excluded altogether. The arguments reveal geodesic features of the Euler equation on the sphere. We further discuss the case when homogeneity corresponds to the Onsager-critical state. We will show that anomalous energy flux at the singularity vanishes, which is suggestive of absence of extreme $0$-dimensional intermittencies in dissipative flows.

The Cauchy problem for the pressureless Euler/isentropic Navier-Stokes equations

Series
PDE Seminar
Time
Tuesday, December 1, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Young-Pil ChoiImperial College London
The interactions between particles and fluid have received a bulk of attention due to a number of their applications in the field of, for example, biotechnology, medicine, and in the study of sedimentation phenomenon, compressibility of droplets of the spray, cooling tower plumes, and diesel engines, etc. In this talk, we present coupled hydrodynamic equations which can formally be derived from Vlasov-Boltzmann/Navier-Stokes equations. More precisely, our proposed equations consist of the compressible pressureless Euler equations and the isentropic compressible Navier-Stokes equations. For the coupled system, we establish the global existence of classical solutions when the domain is periodic, and its large-time behavior which shows the exponential alignment between two fluid velocities. We also remark on blow-up of classical solutions in the whole space.

Uniqueness and Finsler type optimal transport metric for nonlinear wave equations

Series
PDE Seminar
Time
Tuesday, November 17, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Geng ChenSchool of Mathematics, Georgia Tech
In this talk, we will discuss a sequence of recent progresses on the global well-posedness of energy conservative Holder continuous weak solutions for a class of nonlinear variational wave equations and the Camassa-Holm equation, etc. A typical feature of solutions in these equations is the formation of cusp singularity and peaked soliton waves (peakons), even when initial data are smooth. The lack of Lipschitz continuity of solutions gives the major difficulty in studying the well-posedness and behaviors of solutions. Several collaboration works with Alberto Bressan will be discussed, including the uniqueness by characteristic method, Lipschitz continuous dependence on a Finsler type optimal transport metric and a generic regularity result using Thom's transversality theorem.

The Fokker-Planck equation in bounded domains

Series
PDE Seminar
Time
Tuesday, November 10, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Hyung Ju HwangPOSTECH, Korea
In this talk, we consider the initial-boundary value problem for the Fokker-Planck equation in an interval or in a bounded domain with absorbing boundary conditions. We discuss a theory of well-posedness of classical solutions for the problem as well as the exponential decay in time, hypoellipticity away from the singular set, and the Holder continuity of the solutions up to the singular set. This is a joint work with J. Jang,J. Jung, and J. Velazquez.

Global Smooth Solutions in R^3 to Short Wave-Long Wave Interactions in Magnetohydrodynamics

Series
PDE Seminar
Time
Thursday, October 22, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hermano FridInstitute de Matematica Pura e Aplicada (IMPA)
We consider a Benney-type system modeling short wave-long wave interactions in compressible viscous fluids under the influence of a magnetic field. Accordingly, this large system now consists of the compressible MHD equations coupled with a nonlinear Schodinger equation along particle paths. We study the global existence of smooth solutions to the Cauchy problem in R^3 when the initial data are small smooth perturbations of an equilibrium state. An important point here is that, instead of the simpler case having zero as the equilibrium state for the magnetic field, we consider an arbitrary non-zero equilibrium state B for the magnetic field. This is motivated by applications, e.g., Earth's magnetic field, and the lack of invariance of the MHD system with respect to either translations or rotations of the magnetic field. The usual time decay investigation through spectral analysis in this non-zero equilibrium case meets serious difficulties, for the eigenvalues in the frequency space are no longer spherically symmetric. Instead, we employ a recently developed technique of energy estimates involving evolution in negative Besov spaces, and combine it with the particular interplay here between Eulerian and Lagrangian coordinates. This is a joint work with Junxiong Jia and Ronghua Pan.

Regularity theory for surfaces in geometric optics and other Generated Jacobian Equations

Series
PDE Seminar
Time
Tuesday, October 20, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nestor GuillenUniversity of Massachusetts at Amherst
The study of reflector surfaces in geometric optics necessitates the analysis of nonlinear equations of Monge-Ampere type. For many important examples (including the near field reflector problem), the equation no longer falls within the scope of optimal transport, but within the class of "Generated Jacobian equations" (GJEs). This class of equations was recently introduced by Trudinger, motivated by problems in geometric optics, however they appear in many others areas (e.g. variations of the Minkowski problem in convex geometry). Under natural assumptions, we prove Holder regularity for the gradient of weak solutions. The results are new in particular for the near-field point source reflector problem, but are applicable for a broad class of GJEs: those satisfying an analogue of the A3-weak condition introduced by Ma, Trudinger and Wang in optimal transport. Joint work with Jun Kitagawa.

Approximation of p-ground states

Series
PDE Seminar
Time
Tuesday, October 6, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ryan HyndUniversity of Pennsylvania
The smallest eigenvalue of a symmetric matrix A can be expressed through Rayleigh's formula. Moreover, if the smallest eigenvalue is simple, it can be approximated by using the inverse iteration method or by studying the large time behavior of solutions of the ODE x'(t)=-Ax(t). We discuss surprising analogs of these facts for a nonlinear PDE eigenvalue problem involving the p-Laplacian.

Instability index, exponential trichotomy, and invariant manifolds for Hamiltonian PDEs: Part II

Series
PDE Seminar
Time
Tuesday, September 8, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chongchun ZengSchool of Mathematics, Georgia Tech
Consider a general linear Hamiltonian system u_t = JLu in a Hilbert space X, called the energy space. We assume that R(L) is closed, L induces a bounded and symmetric bi-linear form on X, and the energy functional has only finitely many negative dimensions n(L). There is no restriction on the anti-selfadjoint operator J except \ker L \subset D(J), which can be unbounded and with an infinite dimensional kernel space. Our first result is an index theorem on the linear instability of the evolution group e^{tJL}. More specifically, we obtain some relationship between n(L) and the dimensions of generalized eigenspaces of eigenvalues of JL, some of which may be embedded in the continuous spectrum. Our second result is the linear exponential trichotomy of the evolution group e^{tJL}. In particular, we prove the nonexistence of exponential growth in the finite co-dimensional center subspace and the optimal bounds on the algebraic growth rate there. This is applied to construct the local invariant manifolds for nonlinear Hamiltonian PDEs near the orbit of a coherent state (standing wave, steady state, traveling waves etc.). For some cases (particularly ground states), we can prove orbital stability and local uniqueness of center manifolds. We will discuss applications to examples including dispersive long wave models such as BBM and KDV equations, Gross-Pitaevskii equation for superfluids, 2D Euler equation for ideal fluids, and 3D Vlasov-Maxwell systems for collisionless plasmas. This work will be discussed in two talks. In the first talk, we will motivate the problem by several Hamiltonian PDEs, describe the main results, and demonstrate how they are applied. In the second talk, some ideas of the proof will be given.

Instability index, exponential trichotomy, and invariant manifolds for Hamiltonian PDEs: Part I

Series
PDE Seminar
Time
Tuesday, September 1, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zhiwu LinSchool of Mathematics, Georgia Tech
Consider a general linear Hamiltonian system u_t = JLu in a Hilbert space X, called the energy space. We assume that R(L) is closed, L induces a bounded and symmetric bi-linear form on X, and the energy functional has only finitely many negative dimensions n(L). There is no restriction on the anti-selfadjoint operator J except \ker L \subset D(J), which can be unbounded and with an infinite dimensional kernel space. Our first result is an index theorem on the linear instability of the evolution group e^{tJL}. More specifically, we obtain some relationship between n(L) and the dimensions of generalized eigenspaces of eigenvalues of JL, some of which may be embedded in the continuous spectrum. Our second result is the linear exponential trichotomy of the evolution group e^{tJL}. In particular, we prove the nonexistence of exponential growth in the finite co-dimensional center subspace and the optimal bounds on the algebraic growth rate there. This is applied to construct the local invariant manifolds for nonlinear Hamiltonian PDEs near the orbit of a coherent state (standing wave, steady state, traveling waves etc.). For some cases (particularly ground states), we can prove orbital stability and local uniqueness of center manifolds. We will discuss applications to examples including dispersive long wave models such as BBM and KDV equations, Gross-Pitaevskii equation for superfluids, 2D Euler equation for ideal fluids, and 3D Vlasov-Maxwell systems for collisionless plasmas. This work will be discussed in two talks. In the first talk, we will motivate the problem by several Hamiltonian PDEs, describe the main results, and demonstrate how they are applied. In the second talk, some ideas of the proof will be given.

Dynamics for the Fractional Nonlinear Schrodinger Equation

Series
PDE Seminar
Time
Tuesday, August 25, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Shihui ZhuDepartment of Mathematics, Sichuan Normal University
In this talk, we consider the dynamical properties of solutions to the fractional nonlinear Schrodinger equation (FNLS, for short) arising from pseudorelativistic Boson stars. First, by establishing the profile decomposition of bounded sequences in H^s, we find the best constant of a Gagliardo-Nirenberg type inequality. Then, we obtain the stability and instability of standing waves for (FNLS) by the profile decomposition. Finally, we investigate the dynamical properties of blow-up solutions for (FNLS), including sharp threshold mass, concentration and limiting profile. (Joint joint with Jian Zhang)

Pages