Seminars and Colloquia by Series

Monday, December 11, 2017 - 11:15 , Location: Skiles 005 , Andrey Shilnikov , Georgia State University , Organizer: Livia Corsi
Over recent years, a great deal of analytical studies and modeling simulations have been brought together to identify the key signatures that allow dynamically similar nonlinear systems from diverse origins to be united into a single class. Among these key structures are bifurcations of homoclinic and heteroclinic connections of saddle equilibria and periodic orbits.   Such homoclinic structures are the primary cause for high sensitivity and instability of deterministic chaos in various systems. Development of effective, intelligent and yet simple algorithms and tools is an imperative task for studies of complex dynamics in generic nonlinear systems.  The core of our approach is the reduction of the time evolution of a characteristic observable in a system to its symbolic representation to conjugate or differentiate between similar behaviors. Of our particular consideration are the Lorenz-like systems and systems with spiral chaos due to the Shilnikov saddle-focus.  The proposed approach and tools will let one detect homoclinic and heteroclinic orbits, and carry out state of the art studies  homoclinic  bifurcations in parameterized systems of diverse origins.
Wednesday, December 6, 2017 - 11:15 , Location: Skiles 249 , Kelly Yancey , Institute for Defense Analyses , kyancey@math.umd.edu , Organizer: Michael Damron
A special class of dynamical systems that we will focus on are substitutions. This class of systems provides a variety of ergodic theoretic behavior and is connected to self-similar interval exchange transformations. During this talk we will explore rigidity sequences for these systems. A sequence $\left( n_m \right)$ is a rigidity sequence for the dynamical system $(X,T,\mu)$ if $\mu(T^{n_m}A\cap A)\rightarrow \mu(A)$ for all positive measure sets $A$. We will discuss the structure of rigidity sequences for substitutions that are rank-one and substitutions that have constant length. This is joint work with Jon Fickenscher.
Monday, November 20, 2017 - 11:15 , Location: Skiles 005 , Igor Belykh , Georgia State University , Organizer: Livia Corsi
Several modern footbridges around the world have experienced large lateral vibrations during crowd loading events. The onset of large-amplitude bridge wobbling has generally been attributed to crowd synchrony; although, its role in the initiation of wobbling has been challenged. In this talk, we will discuss (i) the contribution of a single pedestrian into overall, possibly unsynchronized, crowd dynamics, and (ii) detailed, yet analytically tractable, models of crowd phase-locking. The pedestrian models can be used as "crash test dummies" when numerically probing a specific bridge design. This is particularly important because the U.S. code for designing pedestrian bridges does not contain explicit guidelines that account for the collective pedestrian behavior. This talk is based on two recent papers: Belykh et al., Science Advances, 3, e1701512 (2017) and Belykh et al., Chaos, 26, 116314 (2016).
Monday, November 6, 2017 - 11:15 , Location: Skiles 005 , Farshad Shirani , Georgia Institute of Technology , Organizer: Livia Corsi
We present a mean field model of electroencephalographic activity in the brain, which is composed of a system of coupled ODEs and PDEs. We show the existence and uniqueness of weak and strong solutions of this model and investigate the regularity of the solutions. We establish biophysically plausible semidynamical system frameworks and show that the semigroups of weak and strong solution operators possess bounded absorbing sets. We show that there exist parameter values for which the semidynamical systems do not possess a global attractor due to the lack of the compactness property. In this case, the internal dynamics of the ODE components of the solutions can create asymptotic spatial discontinuities in the solutions, regardless of the smoothness of the initial values and forcing terms.
Monday, November 6, 2017 - 11:15 , Location: Skiles 005 , Farshad Shirani , Georgia Institute of Technology , Organizer: Livia Corsi
We present a mean field model of electroencephalographic activity in the brain, which is composed of a system of coupled ODEs and PDEs. We show the existence and uniqueness of weak and strong solutions of this model and investigate the regularity of the solutions. We establish biophysically plausible semidynamical system frameworks and show that the semigroups of weak and strong solution operators possess bounded absorbing sets. We show that there exist parameter values for which the semidynamical systems do not possess a global attractor due to the lack of the compactness property. In this case, the internal dynamics of the ODE components of the solutions can create asymptotic spatial discontinuities in the solutions, regardless of the smoothness of the initial values and forcing terms.
Monday, October 23, 2017 - 11:15 , Location: Skiles 005 , Albert Fathi , Georgia Institute of Technology , Organizer: Livia Corsi
If h is a homeomorphism on a compact manifold which is chain-recurrent, we will try to understand when the lift of h to an abelian cover is also chain-recurrent. This has consequences on closed geodesics in manifold of negative curvature.
Monday, October 23, 2017 - 11:15 , Location: Skiles 005 , Albert Fathi , Georgia Institute of Technology , Organizer: Livia Corsi
If h is a homeomorphism on a compact manifold which is chain-recurrent, we will try to understand when the lift of h to an abelian cover is also chain-recurrent. This has consequences on closed geodesics in manifold of negative curvature.
Monday, September 25, 2017 - 11:15 , Location: Skiles 005 , Larissa Serdukova , Georgia Institute of Technology , Organizer: Livia Corsi
For the tipping elements in the Earth’s climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.
Monday, September 25, 2017 - 11:15 , Location: Skiles 005 , Larissa Serdukova , Georgia Institute of Technology , Organizer: Livia Corsi
For the tipping elements in the Earth’s climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.
Monday, September 18, 2017 - 12:30 , Location: Skiles 006 , Livia Corsi , Georgia Institute of Technology , lcorsi6@math.gatech.edu , Organizer: Livia Corsi
  I will consider the isotropic XY quantum chain with a transverse magnetic field acting on a single site and analyze the long time behaviour of the time-dependent state of the system when a periodic perturbation drives the impurity. It has been shown in the early 70’s that, in the thermodynamic limit, the state of such system obeys a linear time-dependent Schrodinger equation with a memory term. I will consider two different regimes, namely when the perturbation has non-zero or zero average, and I will show that if the magnitute of the potential is small enough then for large enough frequencies the state approaches a periodic orbit synchronized with the potential. Moreover I will provide the explicit rate of convergence to the asymptotics. This is a joint work with G. Genovese. 

Pages