Communication-Efficient Decentralized and Stochastic Optimization

Series: 
ACO Student Seminar
Friday, March 17, 2017 - 13:05
1 hour (actually 50 minutes)
Location: 
Groseclose 402
,  
School of Industrial & Systems Engineering, Georgia Tech
Organizer: 
Optimization problems arising in decentralized multi-agent systems have gained significant attention in the context of cyber-physical, communication, power, and robotic networks combined with privacy preservation, distributed data mining and processing issues. The distributed nature of the problems is inherent due to partial knowledge of the problem data (i.e., a portion of the cost function or a subset of the constraints is known to different entities in the system), which necessitates costly communications among neighboring agents. In this talk, we present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems which can significantly reduce the number of inter-node communications. Our major contribution is the development of decentralized communication sliding methods, which can skip inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions.This is a joint work with Guanghui  (George) Lan and Yi Zhou.