Tropical Scheme Theory

Series: 
Algebra Seminar
Wednesday, January 8, 2014 - 11:05
1 hour (actually 50 minutes)
Location: 
Skiles 006
,  
UC Berkeley
Organizer: 
I'll discuss joint work with J.H. Giansiracusa (Swansea) in which we study scheme theory over the tropical semiring T, using the notion of semiring schemes provided by Toen-Vaquie, Durov, or Lorscheid. We define tropical hypersurfaces in this setting and a tropicalization functor that sends closed subschemes of a toric variety over a field with non-archimedean valuation to closed subschemes of the corresponding toric variety over T. Upon passing to the set of T-valued points this yields Payne's extended tropicalization functor. We prove that the Hilbert polynomial of any projective subscheme is preserved by our tropicalization functor, so the scheme-theoretic foundations developed here reveal a hidden flatness in the degeneration sending a variety to its tropical skeleton.