Cantor Boundary Behavior of Analytic Functions

Series: 
Analysis Seminar
Thursday, March 10, 2011 - 15:00
1 hour (actually 50 minutes)
Location: 
Skiles 006
,  
Hong Kong Chinese University
There is a large literature to study the behavior of the image curves f(\partial {\mathbb D}) of analytic functions f on the unit disc {\mathbb D}. Our interest is on the class of analytic functions f for which the image curves f(\partial {\mathbb D}) form infinitely many (fractal) loops. We formulated this as the Cantor boundary behavior (CBB). We develop a general theory of this property in connection with the analytic topology, the distribution of the zeros of f'(z) and the mean growth rate of f'(z) near the boundary. Among the many examples, we showed that the lacunary series such as the complex Weierstrass functions have the CBB, also the Cauchy transform F(z) of the canonical Hausdorff measure on the Sierspinski gasket, which is the original motivation of this investigation raised by Strichartz.