Nonlocal models for insect swarms

Applied and Computational Mathematics Seminar
Monday, November 4, 2013 - 14:05
1 hour (actually 50 minutes)
Skiles 005
Macalester College
From bird flocks to ungulate herds to fish schools, nature abounds with examples of biological aggregations that arise from social interactions. These interactions take place over finite (rather than infinitesimal) distances, giving rise to nonlocal models. In this modeling-based talk, I will discuss two projects on insect swarms in which nonlocal social interactions play a key role. The first project examines desert locusts. The model is a system of nonlinear partial integrodifferential equations of advection-reaction type. I find conditions for the formation of an aggregation, demonstrate transiently traveling pulses of insects, and find hysteresis in the aggregation's existence. The second project examines the pea aphid. Based on experiments that motion track aphids walking in a circular arena, I extract a discrete, stochastic model for the group. Each aphid transitions randomly between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid’s nearest neighbor. For large nearest neighbor distances, when an aphid is isolated, its motion is ballistic and it is less likely to stop. In contrast, for short nearest neighbor distances, aphids move diffusively and are more likely to become stationary; this behavior constitutes an aggregation mechanism.