Modeling and Controllability issues for a general class of smart structures, a general outlook

Applied and Computational Mathematics Seminar
Monday, November 30, 2015 - 11:05
1 hour (actually 50 minutes)
Skiles 006
University of Nevada-Reno
In many applications, such as vibration of smart structures (piezoelectric, magnetorestrive, etc.), the physical quantity of interest depends both on the space an time. These systems are mostly modeled by partial differential equations (PDE), and the solutions of these systems evolve on infinite dimensional function spaces.  For this reason, these systems are called infinite dimensional systems. Finding active controllers in order to influence the dynamics of these systems generate highly involved problems. The control theory for PDE governing the dynamics of smart structures is a mathematical description of such situations. Accurately modeling these structures play an important role to understanding not only the overall dynamics but the controllability and stabilizability issues.  In the first part of the talk,  the differences between the finite and infinite dimensional control theories are addressed. The major challenges tagged along in controlling coupled PDE are pointed out. The connection between the observability and controllability concepts for PDE are introduced by the duality argument (Hilbert's Uniqueness Method). Once this connection is established, the PDE models corresponding to the simple piezoelectric material structures are analyzed in the same context. Some modeling issues will be addressed.  Major results are presented, and open  problems are discussed. In the second part of the talk, a problem of actively constarined layer (ACL) structures is considered. Some of the major results are presesented. Open problems in this context are discussed.   Some of this research presented in this talk are joint works with Prof. Scott Hansen (ISU) and Kirsten Morris (UW).