Fast Optimization Algorithms for Medical Imaging and Image Processing

Series: 
Applied and Computational Mathematics Seminar
Monday, November 14, 2016 - 14:05
1 hour (actually 50 minutes)
Location: 
Skiles 005
,  
Georgia Tech Mathematics
Organizer: 
Many real-world problems reduce to optimization problems that are solved by iterative methods. In this talk, I focus on recently developed efficient algorithms for solving large-scale optimization problems that arises in medical imaging and image processing. In the first part of my talk, I will introduce the Bregman Operator Splitting with Variable Stepsize (BOSVS) algorithm for solving nonsmooth inverse problems. The proposed algorithm is designed to handle applications where the matrix in the fidelity term is large, dense, and ill-conditioned. Numerical results are provided using test problems from parallel magnetic resonance imaging. In the second part, I will focus on the Euler's Elastica-based model which is non-smooth and non-convex, and involves high-order derivatives. I introduce two efficient alternating minimization methods based on operator splitting and alternating direction method of multipliers, where subproblems can be solved efficiently by Fourier transforms and shrinkage operators. I present the analytical properties of each algorithm, as well as several numerical experiments on image inpainting problems, including comparison with some existing state-of-art methods to show the efficiency and the effectiveness of the proposed methods.