Image Processing Techniques for Assessing Contractility in Isolated Adult and Neonatal Cardiac Myocytes

Applied and Computational Mathematics Seminar
Monday, January 11, 2010 - 13:00
1 hour (actually 50 minutes)
Skiles 255
San Diego State University
We describe two computational frameworks for the assessment of contractileresponses of enzymatically dissociated adult and neonatal cardiac myocytes.The proposed methodologies are variants of mathematically sound andcomputationally robust algorithms very well established in the imageprocessing community. The physiologic applications of the methodologies areevaluated by assessing the contraction in enzymatically dissociated adultand neonatal rat cardiocytes. Our results demonstrate the effectiveness ofthe proposed approaches in characterizing the true 'shortening' in thecontraction process of the cardiocytes. The proposed method not onlyprovides a more comprehensive assessment of the myocyte contraction process,but can potentially eliminate historical concerns and sources of errorscaused by myocyte rotation or translation during contraction. Furthermore,the versatility of the image processing techniques makes the methodssuitable for determining myocyte shortening in cells that usually bend ormove during contraction. The proposed method can be utilized to evaluatechanges in contractile behavior resulting from drug intervention, diseasemodeling, transgeneity, or other common applications to mammaliancardiocytes.This is research is in collaboration with Carlos Bazan, David Torres, andPaul Paolini.