On rich lines in grids

Series: 
Combinatorics Seminar
Friday, September 5, 2008 - 15:00
1 hour (actually 50 minutes)
Location: 
Skiles 255
,  
School of Mathematics, Georgia Tech
Organizer: 
Let A be a set of n real numbers. A central problem in additive combinatorics, due to Erdos and Szemeredi, is that of showing that either the sumset A+A or the product set A.A, must have close to n^2 elements. G. Elekes, in a short and brilliant paper, showed that one can give quite good bounds for this problem by invoking the Szemeredi-Trotter incidence theorem (applied to the grid (A+A) x (A.A)). Perhaps motivated by this result, J. Solymosi posed the following problem (actually, Solymosi's original problem is slightly different from the formulation I am about to give). Show that for every real c > 0, there exists 0 < d < 1, such that the following holds for all grids A x B with |A| = |B| = n sufficiently large: If one has a family of n^c lines in general position (no three meet at a point, no two parallel), at least one of them must fail to be n^(1-d)-rich -- i.e. at least one of then meets in the grid in fewer than n^(1-d) points. In this talk I will discuss a closely related result that I and Evan Borenstein have proved, and will perhaps discuss how we think we can use it to polish off this conjecture of Solymosi.