Cube knots and a homology theory from cube diagrams

Series: 
Geometry Topology Seminar
Monday, April 20, 2009 - 13:00
1 hour (actually 50 minutes)
Location: 
Skiles 269
,  
LSU
Organizer: 
In this talk we will introduce the notion of a cube diagram---a surprisingly subtle, extremely powerful new way to represent a knot or link. One of the motivations for creating cube diagrams was to develop a 3-dimensional "Reidemeister's theorem''. Recall that many knot invariants can be easily be proven by showing that they are invariant under the three Reidemeister moves. On the other hand, simple, easy-to-check 3-dimensional moves (like triangle moves) are generally ineffective for defining and proving knot invariants: such moves are simply too flexible and/or uncontrollable to check whether a quantity is a knot invariant or not. Cube diagrams are our attempt to "split the difference" between the flexibility of ambient isotopy of R^3 and specific, controllable moves in a knot projection. The main goal in defining cube diagrams was to develop a data structure that describes an embedding of a knot in R^3 such that (1) every link is represented by a cube diagram, (2) the data structure is rigid enough to easily define invariants, yet (3) a limited number of 5 moves are all that are necessary to transform one cube diagram of a link into any other cube diagram of the same link. As an example of the usefulness of cube diagrams we present a homology theory constructed from cube diagrams and show that it is equivalent to knot Floer homology, one of the most powerful known knot invariants.