Cycles lengths in graphs with large minimum degree

Series: 
Graph Theory Seminar
Thursday, October 1, 2015 - 13:30
1 hour (actually 50 minutes)
Location: 
Skiles 006
,  
University of Science and Technology of China
Organizer: 
There has been extensive research on cycle lengths in graphs with large minimum degree. In this talk, we will present several new and tight results in this area. Let G be a graph with minimum degree at least k+1. We prove that if G is bipartite, then there are k cycles in G whose lengths form an arithmetic progression with common difference two. For general graph G, we show that G contains \lfloor k/2\rfloor cycles with consecutive even lengths, and in addition, if G is 2-connected and non-bipartite, then G contains \lfloor k/2\rfloor cycles with consecutive odd lengths. Thomassen (1983) made two conjectures on cycle lengths modulo a fixed integer k: (1) every graph with minimum degree at least k+1 contains cycles of all even lengths modulo k; (2) every 2-connected non-bipartite graph with minimum degree at least $k+1$ contains cycles of all lengths modulo k. These two conjectures, if true, are best possible. Our results confirm both conjectures! when k is even. And when k is odd, we show that minimum degree at least $+4 suffices. Moreover, our results derive new upper bounds of the chromatic number in terms of the longest sequence of cycles with consecutive (even or odd) lengths. This is a joint work with Chun-Hung Liu.