Control of Multi-Robot Networks

Graph Theory Seminar
Thursday, April 21, 2011 - 12:05
1 hour (actually 50 minutes)
Skiles 006
Arguably, the overarching scientific challenge facing the area of networked robot systems is that of going from local rules to global behaviors in a predefined and stable manner. In particular, issues stemming from the network topology imply that not only must the individual agents satisfy some performance constraints in terms of their geometry, but also in terms of the combinatorial description of the network. Moreover, a multi-agent robotic network is only useful inasmuch as the agents can be redeployed and reprogrammed with relative ease, and we address these two issues (local interactions and programmability) from a controllability point-of-view. In particular, the problem of driving a collection of mobile robots to a given target destination is studied, and necessary conditions are given for this to be possible, based on tools from algebraic graph theory. The main result will be a necessary condition for an interaction topology to be controllable given in terms of the network's external, equitable partitions.