The structure of graphs excluding a fixed immersion

Graph Theory Seminar
Thursday, April 19, 2012 - 12:05
1 hour (actually 50 minutes)
Skiles 005
ISyE, GT and The Sapienza University of Rome
A graph $G$ contains a graph $H$ as an immersion if there exist distinct vertices $\pi(v) \in V(G)$ for every vertex $v \in V(H)$ and paths $P(e)$ in $G$ for every $e \in E(H)$ such that the path $P(uv)$ connects the vertices $\pi(u)$ and $\pi(v)$ in $G$ and furthermore the paths $\{P(e):e \in E(H)\}$ are pairwise edge disjoint. Thus, graph immersion can be thought of as a generalization of subdivision containment where the paths linking the pairs of branch vertices are required to be pairwise edge disjoint instead of pairwise internally vertex disjoint. We will present a simple structure theorem for graphs excluding a fixed $K_t$ as an immersion. The structure theorem gives rise to a model of tree-decompositions based on edge cuts instead of vertex cuts. We call these decompositions tree-cut decompositions, and give an appropriate definition for the width of such a decomposition. We will present a ``grid" theorem for graph immersions with respect to the tree-cut width. This is joint work with Paul Seymour.