Modeling Avian Influenza and Control Strategies in Poultry

Mathematical Biology and Ecology Seminar
Wednesday, October 22, 2014 - 11:05
1 hour (actually 50 minutes)
Skiles 005
School of Biology, GaTech
The emerging threat of a human pandemic caused by high-pathogenic H5N1avian inuenza virus magnifies the need for controlling the incidence ofH5N1 in domestic bird populations. The two most widely used controlmeasures in poultry are culling and vaccination. In this talk, I will discussmathematical models of avian inuenza in poultry which incorporate cullingand vaccination. First, we consider an ODE model to understand the dy-namics of avian inuenza under different culling approaches. Under certainconditions, complex dynamical behavior such as bistability is observed andanalyzed. Next, we model vaccination of poultry by formulating a coupledODE-PDE model which takes into account vaccine-induced asymptomaticinfection. In this study, the model can exhibit the \silent spread" of thedisease through asymptomatic infection. We analytically and numericallydemonstrate that vaccination can paradoxically increase the total numberof infected when the ecacy is not suciently high.1